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The COVID-19 pandemic has ignited a resurgence of 
interest in models of epidemics. As the virus spread first 
across China, Italy, then other countries in Europe, the 
United States, and South America, predictions from such 
models demonstrated the urgent need for a response 
and helped to guide policies including social distancing 
and economic lockdowns. Similarly, as measures have 
taken effect and the spread of the virus has slowed, 
epidemiological models help guide the path back toward 
relaxing restrictions and reopening the economy while being 
aware of the risk of a second wave of infections.

There are a number of different families of models in use 
today, each with different advantages and disadvantages. 
This Commentary argues that adopting a network 
perspective that explicitly accounts for the structure of 
interactions among individuals can provide important 

insights regarding both the spread of a disease and the best 
ways to tackle it, in particular when compared to the class 
of SIR models, one of the most widely used modeling 
approaches in epidemiology.

Network models have successfully been employed 
in many fields to study phenomena for which 
interrelationships matter. In economics, these include 
job referrals in labor markets (Calvó-Armengol and 
Jackson, 2007), patterns of international trade (Chaney, 
2014), the diffusion of technology (Banerjee et al., 2013), 
and contagion in financial markets (Elliott, Golub, and 
Jackson, 2014).1 In all of these areas, adopting network 
models has led to new perspectives and novel insights, 
and we argue that network models can do the same to 
advance our understanding of epidemics.
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The Baseline SIR Model
There are many models that track the behavior of an 
epidemic as it infects a population. Most of these are 
categorical models in which individuals are categorized by 
disease status. A particularly prominent example of such 
a model is the SIR model introduced by Kermack and 
McKendrick (1927).2 In this model individuals are either 
susceptible (S), infected (I), or removed (R).  Individuals 
start out in S and, depending on their interaction with 
already contagious individuals and the characteristics of the 
disease (such as how contagious it is), proceed to I and then 
R, which includes individuals who have either recovered 
(or are otherwise immune) or died. Other categorical 
models include the SIS (“susceptible-infected-susceptible”) 
model, in which recovered individuals can be reinfected 
and thus re-enter the pool of the susceptible, and the SEIR 
(“susceptible-exposed-infected-removed”) model, which 
incorporates a new health status for individuals that have 
been exposed to the virus and are contagious but are as 
yet asymptomatic. The key parameters describing the 
epidemic in the SIR model are the infection parameter, 
called reproduction number, which describes how quickly 
infected individuals infect others, and the recovery rate, 
which describes how quickly infected individuals recover 
and thereby stop being infectious.

Once the parameters are fixed, the flow of newly infected 
individuals in these models depends on both the number of 
already infected individuals and the number of susceptible 
individuals at a given point in time. In the standard SIR 
model, the flow from susceptible to infected is proportional 
to the total numbers of both the susceptible and the 
infected. This approach seeks to capture the idea that for a 
given transmissibility of a virus the likelihood of infection 
depends on how frequently already infected individuals 
interact with those who are still susceptible.

In the SIR model, a disease to which no individual has 
immunity (as is likely the case with COVID-19) starts with 
a small number of infected and a large pool of susceptible 
individuals. As the infection spreads among the population 
and the number of infected individuals increases, the rate of 
new infections increases rapidly while the rate of removal 
remains constant, causing the number of those infected 
to increase more rapidly.3 Without any interventions or 
changes in behavior, the number of new infections per 
day increases up to a peak and declines from then on. 
The decline arises from the fact that fewer and fewer 
susceptible individuals are found in the population, limiting 
opportunities for further transmission. As the number 
of susceptible individuals declines further and a larger 
share of the population is immune by having recovered, 
the spread of the disease will slow down and at some 
point begin to peter out. The large number of immune 
individuals then provides protection to the population, 
resulting in herd immunity.4

Figure 1 illustrates these infection dynamics for a simple 
setting with parameters based on the early COVID-19 

Figure 1.	 The Infection Dynamics in the Baseline SIR Model

experience.5 The top panel shows for any point in time 
the share of the population that is currently infected. The 
bottom panel shows for any point in time the share of the 
population that has ever been infected up that point; that 
is, it includes both those currently infected as well as those 
previously infected but now recovered.

Vaccines work in an SIR setting by protecting vaccinated 
individuals themselves, and by also increasing the share of 
immune individuals, thereby slowing down the spread of 
disease. If sufficient numbers are vaccinated, the population 
will reach herd immunity without large portions of the 
population ever becoming infected.

The SIR model has long been a standard tool used in 
epidemiology to study the spread of infectious disease.6 
Because both infection rates and mitigation efforts such 
as social distancing have a large impact on economic 
behavior, economists are now working with these models 
to better understand the interrelationships between public 
health measures and economic activity.7 However, like any 
model, it is not without shortcomings. The key limitation 

Notes: The top panel shows for any point in time the share of the 
population that is currently infected. The bottom panel shows for 
any point in time the share of the population that has ever been 
infected up to that point, that is, it includes both those currently 
infected as well as those previously infected but now recovered.
Source: Authors’ simulations.

0.30
Share of the population infected at time t

Cumulative share of the population infected up to time t

0.20

0.15

0.10

0.05

0.00

0.25

1.0

0.6

0.4

0.2

0.0

0.8

t
0 70605040302010 80

t
0 70605040302010 80



3

Figure 3.	 An Incomplete Network with Link HeterogeneityFigure 2.	 The Complete Network in the SIR Model
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of the SIR model for the purposes of this Commentary is 
the assumption it makes regarding the frequency at which 
infected individuals meet with those who are susceptible, 
thereby generating opportunities for disease transmission. 
The SIR model assumes uniform mixing across the 
entire population, meaning that infections evolve as if any 
susceptible individual interacts with and could be infected 
by any infected individual across the population with 
equal probability. However, it is well documented that 
social interactions are not organized in this stylized way. 
Instead, individuals interact mostly within much narrower 
groups, shaped, for example, by family ties, work and social 
environments, and geography. Network models provide 
a route into analyzing epidemics in a way that takes these 
patterns of interaction into account.

A Network SIR Model of Epidemics
The key component of adopting the network approach 
to modeling an epidemic is the description of patterns of 
interaction using a network, consisting of nodes and links.8 
Nodes represent individuals or households, and the links 
describe the interactions that potentially spread disease. 
The existence of a link could indicate, for example, that 
two individuals work in the same plant or attend the same 
school, and a disease could be transmitted between them 
in that environment. Importantly, in the absence of a link, 
for example, because two individuals live at opposite ends 
of the country, the disease does not pass directly from one 
to the other. Figures 2 and 3 illustrate two sample networks 
that will be useful in the discussion below. Nodes are 
represented by numbered blue circles and the lines between 
them are links.

The elements of the baseline SIR model can be 
accommodated within this network framework. Individual 
nodes are either “susceptible,” “infected,” or “removed,” 
and the transitions between these states work as before: 
A susceptible individual interacting with many infected 
contacts will be more likely to become infected than 
an individual with only few or no infected contacts in 

their network. Just as in the SIR model, the epidemic 
is then modeled by simulating the spread of the virus 
among individuals that interact. The difference is that 
the interactions are explicitly described by a network that 
permits more complex patterns of interaction than the 
baseline SIR model.

Within the framework of a network model, the baseline 
SIR model is a special case with two properties: First, 
each and every pair of individuals across the entire 
population is potentially linked (such a network is said to be 
complete). Second, each and every individual has the same 
number of links as all other individuals (such a network 
is homogeneous in its structure). Figure 2 illustrates these 
assumptions in a simple setting with eight nodes. Every 
pair of nodes is linked by a dashed line, indicating that in 
the SIR setting the disease can potentially be transferred 
between every pair of individuals in the population. This 
is an extreme case, and in most settings the assumptions 
of completeness and homogeneity are not satisfied. Figure 
3 shows a different network using the same eight nodes 
but adding heterogeneity to the link patterns—not all nodes 
are directly connected by a link and there is variation in 
the number of links that each node has. We will argue that 
ignoring such variation hides some important aspects of disease 
spread that a more flexible network model can uncover.

The greater granularity of the network model does not 
come without costs. For example, the data required to map 
out a given interaction network fully may be prohibitively 
costly to acquire. In addition, network models can be harder 
to work with than simpler classes of models and often can 
only be solved using simulations. However, we argue that 
the useful insights such models can offer about the spread of 
disease may make it worthwhile to incur the costs.

Insights from a Network Perspective
Relaxing the assumption of uniform random mixing and 
explicitly modeling interaction patterns via a network can 
provide a number of important insights about the spread 
of a disease that are not present in the baseline model. 
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these connections randomly across all other individuals in 
the population to reflect the completeness of the network 
of potential links in the SIR model. Finally, we adjust the 
infection parameter so that the infection dynamics with 
these 100,000 nodes and 50 links on average are exactly 
the same as in the SIR model without a network structure. 
With these adjustments, the blue line is exactly the same 
as the continuous blue line in figure 1. The solid orange 
line shows a variation in which we assume that there are 
two groups of individuals: one that interacts significantly 
less at 10 connections (hermit) and one that interacts 
significantly more at 90 connections (friendly). We calibrate 
the model so that the average number of connections across 
all individuals remains 50. All other model parameters are 
identical between the two lines.

Compared to the benchmark case, in the hermit-friendly 
model the disease initially spreads significantly faster, 
through the highly connected individuals, but spread then 
slows down and the number of infected approaches zero 
earlier. Interestingly, in the hermit-friendly model, the 
long-run share of the population that ever gets infected 
is significantly lower than in the SIR model. This reflects 
the fact that as the infection progresses, fewer “friendly” 

Figure 4.	 Infection Dynamics in a Network SIR model with 
Degree Heterogeneity

We focus on the insights that come from two features of 
real-world networks that network models can capture: 
(1) heterogeneity in the number of connections, and (2) 
network clustering. Below we show that both of these affect 
the evolution of the epidemic in meaningful ways.

The first useful feature that can be captured by a network 
model is that it can accommodate differences in the number 
of interactions between individuals in a population. For 
example, some individuals may live in rural environments 
with relatively few contacts through their work or social 
life, while others live in dense urban centers, using crowded 
public transport, working in high-contact occupations, and 
interacting with many others outside of work.9 While the 
baseline SIR model does not allow for such differences 
in interaction frequency, a network model can readily 
accommodate it, most directly by having nodes with 
different numbers of links. For example, in the network in 
figure 3 Node 1 has only two links, while Node 4 has five. 
In the context of a spreading disease, it makes a substantial 
difference whether an infected individual is more like the 
former or more like the latter. In epidemiological research of 
certain diseases, it is not uncommon that highly connected 
individuals, so-called “super-spreaders,” turn out to be 
particularly important in the early stages of a disease, 
helping it spread rapidly based on their high degree of 
interaction with others.

Another, more subtle, effect of the variability in the number 
of contacts is that, given a fixed share of infected individuals 
who are uniformly distributed, individuals are more likely 
to become infected if their number of interactions is higher. 
This greater connectedness of those who get infected then 
implies that they are also more likely to pass on the disease 
themselves. This pattern of the network can contribute to 
accelerating the spread of the disease in the early stages. 
Conversely, in later stages of a disease once many highly 
connected individuals have recovered, infected individuals 
will tend to have fewer connections and thus fewer 
opportunities to pass on the disease.

Many structural models of network behavior in an epidemic 
are much more complicated about how the number of 
links are distributed than the simple example we illustrate 
here. For example, how widely connected are the “super-
connected”? Do highly connected people tend to seek 
out and connect with more highly connected individuals? 
These and other questions have been examined, both with 
respect to measuring actual connections, and with respect 
to measuring the behavior of an epidemic during actual 
historical (and current) outbreaks.10

Figure 4 illustrates the impact of heterogeneity in the 
number of connections on the progression of an epidemic. 
The blue line shows the baseline SIR model. To make the 
SIR baseline model comparable to the network models, we 
convert the SIR model to a network. We create 100,000 
nodes and endow each with exactly 50 connections, so that 
the network is homogeneous. Furthermore, we allocate 

Source: Authors’ simulations.
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Figure 5.	 Infection Dynamics in a Network SIR Model with 
Clustering

individuals remain susceptible and are infected and 
the share of “hermit” individuals increases. With fewer 
connections to facilitate transmission, the disease spreads 
more slowly and herd immunity is reached earlier.11 

The second feature that network models can capture is 
that social networks tend to exhibit a significant degree 
of overlapping relationships among groups of individuals 
who move in the same circles. Among coworkers in a 
given plant, for example, it is likely that a large share of 
the interactions of one worker in the workplace as well as 
in other social circles overlap significantly with those of 
another worker at the same plant. This feature is illustrated 
in figure 3 by the two easily distinguished clusters involving 
Nodes 1, 2, and 3, and Nodes 4 to 8, respectively. Within 
the clusters, nodes are tightly connected, but there is only 
one link across, from Node 3 to 4.

This phenomenon, termed “clustering” in the networks 
literature, has important implications for the spread of a 
disease. With a high degree of clustering, as the share of 
infected individuals in one part of the network increases, 
the likelihood of infecting another individual in that part 
decreases, as fewer and fewer contacts remain susceptible. 
This slows down the spread of the disease.

The effect of clustering in the aggregate is illustrated in 
figure 5. As before, the blue line shows the baseline SIR 
model replicated in a network of nodes with 50 connections 
each, randomly assigned across the population. The solid 
lines of different colors show simulations with different 
levels of clustering. These differences are achieved by 
maintaining 50 links per node but assigning these links no 
longer randomly as in the SIR baseline, but such that the 
fraction of shared neighbors on average hits a specified level 
from  0.1 to 0.7. For comparison, in the SIR baseline case 
with random assignment, the fraction of neighbors that are 
shared goes to zero as the network becomes large.

The simulations show how in the aggregate greater 
clustering leads to a small slowdown in the spread of the 
disease compared to the benchmark case. Note that higher 
clustering is also associated with a slightly shorter duration 
of the disease compared to the benchmark, and a lower 
share of the population becoming infected at some point.12

Locally, the result of clustering is an acceleration of spread 
within the cluster. In the context of COVID-19, there were 
a number of notable local networks of individuals with 
significant clustering, such as on the Diamond Princess 
cruise ship, where the disease spread aggressively until 
new infections petered out as fewer and fewer susceptible 
passengers or crew were around. Similar dynamics have 
been at work in the various outbreaks in prisons across 
the country. In contrast, in a classic SIR model there is 
no space for such local saturation and the disease is able 
to draw on the complete pool of susceptible individuals 
across the population.

Implications for Economic Activity and Policy
Beyond the insights on disease spread discussed above, 
adopting a network perspective provides insights on the 
implications for economic activity and opens up a way to 
understand some additional policy options available to 
combat an epidemic. 

Network models of disease provide insights that can enrich 
the analysis of the economic implications of a pandemic. 
For example, as the simple hermit-friendly model above 
illustrates, significant heterogeneity in connections can 
accelerate the early spread of disease while reducing the 
share of the population that is affected in the long run. This 
result affects the relative benefits of lockdown policies in 
models that trade off economic disruption for a slowdown 
in the spread of the disease, such as in Eichenbaum, Rebelo, 
and Trabandt (2020). In addition, the model suggests that 
allowing for heterogeneity in economic analyses of the 
disease’s impact can provide substantial benefits, as different 
groups might contribute differently to economic output as 
they do for disease outcomes. Recent work by Acemoglu et 
al. (2020) employs this approach to great effect.

Furthermore, the clustering of connections and the 
implications this network pattern has for the way the disease 
spreads suggest that the economic disruptions caused by 

Source: Authors’ simulations.
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the disease might exhibit similar behavior. For example, 
in a network model a local outbreak in an industrial 
town or plant can quickly spread in that area. Economic 
output in that area will then likewise quickly be severely 
disrupted in part because a large share of employees are 
sick or stay at home even though the statewide or national 
share of infections is limited. Such instances occurred 
within the meat processing industry throughout the 
spring and summer of 2020, causing substantial supply 
chain disruptions and price increases that affected families 
throughout the country.13

As pathways of disease transmission are explicitly described 
in a network model, a network model can accommodate 
the tracing of contacts (and isolation) of known infected 
individuals, a policy commonly used in combating 
epidemics and also advocated for in the context of the 
COVID-19 pandemic. Indeed, such aggressive use of 
information on contact networks has been part of the policy 
response to COVID-19 in South Korea that is widely 
regarded as having been more successful than that in many 
other countries.14 At a much cruder level, the quarantining 
of the Diamond Princess and other cruise ships represents 
a similar response that exploits the pattern of relationships 
among individuals—in this case, the absence of interactions 
outside the ship as long as it remained at sea.

In addition to tracing contacts of known infected 
individuals, network information can also be exploited for 
targeted testing. By focusing limited testing resources on 
highly connected individuals such as workers in healthcare 
or public transport, these resources can be put to the best use.

In a basic SIR model, every individual is potentially 
connected to everyone else and thus the set of “contacts” 
is always potentially the full population. Therefore, this 
modeling approach does not capture the potential for 
targeted, localized policies that have been key to responding 
to past epidemics. One implication of this limitation is that 
short of letting an epidemic play out until herd immunity 
is achieved, defeating a fast-spreading virus such as 
COVID-19 requires finding and distributing an effective 
vaccine or restricting interactions sufficiently until the virus 
is fully extinguished. Otherwise, within an SIR model, once 
restrictions are lifted, any remaining infected individuals 
are able to spread the disease again to any individual still 
susceptible, potentially necessitating a return to population-
wide lockdowns. The network view allows policymakers to 
think about more nuanced policies, such as lifting general 
restrictions but following up with targeted responses to any 
new clusters of infections that might occur using targeted 
testing and contact tracing.

Conclusion
This Commentary has made the case that adopting a network 
perspective can offer useful insights when modeling the 
spread of infectious diseases such as COVID-19. We 
have shown that the baseline SIR model commonly 
used implicitly makes assumptions about the pattern of 
interactions among individuals that are unlikely to hold true 
in the real world. More importantly, we have demonstrated 
how incorporating some commonly observed network 
patterns, such as heterogeneity in the number of contacts 
individuals have and the clustering of contacts, can change 
the behavior of the model in important ways, affecting the 
speed of the disease spread, long-run health outcomes, and 
the effects of the disease on economic activity. Furthermore, 
by accounting for the patterns of interaction among a 
population, a network model offers additional nuance for 
the analysis of the economic effects of COVID-19 and 
better informs the discussion of targeted policies such as 
contact tracing and testing that have been successfully used 
to help combat infectious diseases.

Footnotes
1. For a broader background on the economics of networks 
see Jackson (2008).

2. See Brauer, van den Driessche, and Wu. (2008) for a 
textbook treatment.

3. For the disease to spread in this manner, the infection 
must be sufficiently contagious at this point. This is 
captured in the SIR model by the condition that the basic 
reproduction number, before any mitigation is taking 
place, is greater than 1; that is, on average each infected 
individual infects more than one other individual. If fewer 
new infections than removals take place right from the 
beginning, the disease never takes off.

4. Formally, herd immunity is reached in the SIR model 
when the share of immune individuals is sufficiently large 
so that the reproduction number effectively falls below 
one. At this point effective recoveries occur faster than new 
infections (as so many individuals are already immune) and 
any limited outbreaks peter out.

5. The chart shows the evolution of a simulated epidemic 
in the SIR framework. There is a wide range of parameters 
that are consistent with the early data on COVID-19. See, 
for example, the scenarios set out by the CDC at https://
www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.
html. Our parameters follow the baseline setting in Atkeson 
(2020b). We assume infected individuals recover on 
average over 8 days. The disease is assumed to have a basic 
reproduction number of 2.5; that is, without any mitigation 
and before large numbers of individuals are immune, on 
average an infected individual spreads the disease to 2.5 
additional people before recovering. Note these infectiousness 

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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parameters do not incorporate the widespread mitigation 
efforts that have changed the dynamics of the spread of 
COVID-19. Our simulation starts with 5 percent of the 
population being infected. For the formal description of the 
model see the online appendix to this Commentary.

6. See Hethcote (2000) for a comprehensive review of the 
literature on mathematical models of infectious disease, 
including a major section on SIR models.

7. Since early 2020 a large number of papers on the 
economics of pandemics and of COVID-19 have been 
published, including Atkeson (2020a), Eichenbaum, Rebelo, 
and Trabandt (2020), Alvarez, Argente, and Lippi (2020), 
Piguillem and Shi (2020), Berger, Herkenhoff, and Mongey 
(2020) and Toda (2020). For a discussion of this literature 
and additional references, see Hur and Jenuwine (2020).

8. Our discussion below is based on Kiss, Miller, and 
Simon (2017). For further reading, this book provides 
a comprehensive treatment of the use of networks in 
epidemiology. We focus in this Commentary in particular on 
aspects and models discussed in Chapters 4 and 5.

9. The technical term for the number of links of a node is 
“degree.”

10. See Keeling and Eames (2005), in particular, Section 3, 
for an overview of this and related research.

11. For further treatments of heterogeneity in SIR models 
of epidemics, see Britton, Ball, and Trapman (2020) and for 
the economic perspective, see Ellison (2020) and Acemoglu 
et al. (2020).

12. We present a simple example to highlight the potential 
effects of clustering in networks. For deeper treatments see, 
for example, Keeling and Rohani (2008), Rand (1999), and 
House and Keeling (2010).

13. In June 2020, beef and veal prices increased by 25.1 
percent compared to June 2019. Source: https://www.bls.
gov/news.release/archives/cpi_07142020.htm.

14. See the discussion of policy scenarios supporting the exit 
from quarantine and lockdowns in Humphrey et al. (2020).
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