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A. Techniques and Models 
Refined five-year moving average 

It is well-known that while a five-year moving average filters out most of the fluctuations that revert more 
quickly than five years, they do this imperfectly; some of those fluctuations “leak through.” The result is 
that an ordinary five-year moving average is not smooth. It is possible to improve upon an ordinary five-
year moving average by applying two alternative moving averages in succession: a 16-quarter moving 
average, and then an 8-quarter moving average. (Technically, by examining these filters in the frequency 
domain, it is easy to show that these filters are nearly identical in terms of the (low) frequencies that they 
allow to pass through—namely, all fluctuations that last at least five years—while the (16, 8) filter does a 
vastly superior job of filtering out all fluctuations that last less than five years.) The end result is, 
effectively, a smooth five-year moving average. 

ARMA(p,q) models 

An ARMA(p,q) model of the inflation differential is 

( ) ( )
1 1

p q
C P C P
t t j t j t j t i t i

j i
cp p b p p e e- - -

= =
- = - + +å å  

where te  is a white-noise error term. (An ARMA model of the inflation or price relative ratio is defined 
analogously.) The lag length p and the number of moving-average terms q are selected by minimizing an 
information criterion such as the Akaike Information Criterion (AIC) or the Hannan-Quinn Information 
Criterion (HQ); this approach is a statistical means of “penalizing” the total number of parameters. Such 
criteria are often used in the forecasting literature, and enhance the forecasting accuracy of the model. In 
preliminary analysis, we found that the AIC resulted in frequent and large swings in the ARMA 
parameter selections, which suggests overfitting. We thus decided to use the HQ criterion, which 
penalizes extra parameters at a slightly higher rate; this also resulted in more accurate forecasts. 

Time-varying parameter models 

There are many kinds of time-varying parameter models. What distinguishes these models from other 
models is that the estimated coefficients are allowed to vary over time—in other words, the estimation 
procedure explicitly allows the estimated coefficient to be different at different periods. The basic 
specification is  
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and then one must specify various details that govern how quickly the coefficients are allowed to change 
as time moves forward.  



Bayesian vector autoregression 

A VAR(p) model can be written as 
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where ( )1, 2, ,, ,...,t t t n tY y y y=  is a data vector of n random variables, ( )1 2, ...,c nA c c c=  is a vector of 

constants, 1 2, ,..., nA A A  are n n×  matrices of VAR coefficients, and ( )0,t Nε Σ . In this equation, p 
indicates the number of lags.  

We estimate the VARs using Bayesian shrinkage (hence the term BVAR). This implies that we 
use an objective statistical approach to estimation that combines the modeler’s prior beliefs with the 
available data. We achieve this by imposing prior restrictions on the parameter estimates. Specifically, we 
shrink the coefficients of the VAR toward the univariate random walk model with a drift. Doing this gives 
us an a priori system consisting of random walk processes. The overall degree of shrinkage is controlled 
by hyperparameter λ. As λ → 0, shrinkage increases and the prior dominates, making data less influential 
in determining the posterior coefficient estimates (with a λ = 0 prior equals posterior, so that the data are 
ignored), whereas as λ→∞, the data dominate the prior and influence the posterior estimates to a greater 

extent (so that we obtain OLS estimates with λ=∞). The value assigned to the hyperparameter λ is 0.15. 
The BVAR we consider in this paper implements the normal-inverted Wishart prior proposed by Kadiyala 
and Karlsson (1997) and Sims and Zha (1998), which is basically a version of the Minnesota prior 
introduced by Litterman (1986). 
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