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A. Techniques and Models

Refined five-year moving average

It is well-known that while a five-year moving average filters out most of the fluctuations that revert more
quickly than five years, they do this imperfectly; some of those fluctuations “leak through.” The result is
that an ordinary five-year moving average is not smooth. It is possible to improve upon an ordinary five-
year moving average by applying two alternative moving averages in succession: a 16-quarter moving
average, and then an 8-quarter moving average. (Technically, by examining these filters in the frequency
domain, it is easy to show that these filters are nearly identical in terms of the (low) frequencies that they
allow to pass through—namely, all fluctuations that last at least five years—while the (16, 8) filter does a
vastly superior job of filtering out all fluctuations that last less than five years.) The end result is,
effectively, a smooth five-year moving average.

ARMA(p,q) models
An ARMA(p,q) model of the inflation differential is
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where €, is a white-noise error term. (An ARMA model of the inflation or price relative ratio is defined

analogously.) The lag length p and the number of moving-average terms ¢ are selected by minimizing an
information criterion such as the Akaike Information Criterion (AIC) or the Hannan-Quinn Information
Criterion (HQ); this approach is a statistical means of “penalizing” the total number of parameters. Such
criteria are often used in the forecasting literature, and enhance the forecasting accuracy of the model. In
preliminary analysis, we found that the AIC resulted in frequent and large swings in the ARMA
parameter selections, which suggests overfitting. We thus decided to use the HQ criterion, which
penalizes extra parameters at a slightly higher rate; this also resulted in more accurate forecasts.

Time-varying parameter models

There are many kinds of time-varying parameter models. What distinguishes these models from other
models is that the estimated coefficients are allowed to vary over time—in other words, the estimation
procedure explicitly allows the estimated coefficient to be different at different periods. The basic
specification is
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and then one must specify various details that govern how quickly the coefficients are allowed to change
as time moves forward.



Bayesian vector autoregression

A VAR(p) model can be written as
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where ¥, = (yl’,,yz,[, ves yn,[) is a data vector of n random variables, 4, =(c,,c,...,c, ) is a vector of

constants, 4, 4,,..., A, are nXn matrices of VAR coefficients, and ¢, [] N (0, Z) . In this equation, p

indicates the number of lags.

We estimate the VARs using Bayesian shrinkage (hence the term BVAR). This implies that we
use an objective statistical approach to estimation that combines the modeler’s prior beliefs with the
available data. We achieve this by imposing prior restrictions on the parameter estimates. Specifically, we
shrink the coefficients of the VAR toward the univariate random walk model with a drift. Doing this gives
us an a priori system consisting of random walk processes. The overall degree of shrinkage is controlled

by hyperparameter 4. As A — 0, shrinkage increases and the prior dominates, making data less influential
in determining the posterior coefficient estimates (with a 4 = 0 prior equals posterior, so that the data are

ignored), whereas as A— @, the data dominate the prior and influence the posterior estimates to a greater

extent (so that we obtain OLS estimates with /=2). The value assigned to the hyperparameter A is 0.15.

The BVAR we consider in this paper implements the normal-inverted Wishart prior proposed by Kadiyala
and Karlsson (1997) and Sims and Zha (1998), which is basically a version of the Minnesota prior
introduced by Litterman (1986).
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