Monetary Policy & Anchored Expectations
An Endogenous Gain Learning Model

Laura Gáti¹

ECB Research Department

FRB Cleveland & ECB - Inflation: Drivers and Dynamics 2022
September 29, 2022

¹The views expressed are solely the views of the author and do not necessarily reflect the views of the European Central Bank or the Eurosystem.
Anchoring

“Essential to anchor inflation expectations at some low level.”

“We don’t see a de-anchoring.”

“Failure of the Fed to stably achieve its 2 percent target could de-anchor inflation expectations.”

“Long-run inflation expectations [...] are not perfectly anchored in real economies; moreover, the extent to which they are anchored can change.”
Anchoring

“Essential to anchor inflation expectations at some low level.”

“We don’t see a de-anchoring.”

“Failure of the Fed to stably achieve its 2 percent target could de-anchor inflation expectations.”

“Long-run inflation expectations [...] are not perfectly anchored in real economies; moreover, the extent to which they are anchored can change.”
This paper

1. A model of unanchored expectations:
This paper

1. A model of unanchored expectations:
 ↗ sensitivity of long-run expectations to short-run fluctuations
 (Carvalho et al 2022)
This paper

1. A model of unanchored expectations:
 \[\rightarrow \text{sensitivity of long-run expectations to short-run fluctuations} \]
 (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations
This paper

1. A model of unanchored expectations:
 \[\rightarrow \text{sensitivity of long-run expectations to short-run fluctuations} \]
 (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
This paper

1. A model of unanchored expectations:
 - sensitivity of long-run expectations to short-run fluctuations
 (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
This paper

1. A model of unanchored expectations:
 \[
 \rightarrow \text{sensitivity of long-run expectations to short-run fluctuations}
 \]
 (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
 - Derive optimal monetary policy
This paper

1. A model of unanchored expectations:
 - sensitivity of long-run expectations to short-run fluctuations
 (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
 - Derive optimal monetary policy

3. Key takeaway: optimal monetary policy
This paper

1. A model of unanchored expectations:
 ↔ sensitivity of long-run expectations to short-run fluctuations
 (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations
 • Embed anchoring theory in general equilibrium New Keynesian model
 • Quantify unanchoring using data on inflation expectations
 • Derive optimal monetary policy

3. Key takeaway: optimal monetary policy
 • anchors expectations to inflation target
1. A model of unanchored expectations:

→ sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations

- Embed anchoring theory in general equilibrium New Keynesian model
- Quantify unanchoring using data on inflation expectations
- Derive optimal monetary policy

3. Key takeaway: optimal monetary policy

- anchors expectations to inflation target
- responds aggressively to movements in long-run expectations
Related literature

• **Optimal monetary policy in the New Keynesian model**

• **Adaptive learning**

• **Anchoring and the Phillips curve**
MODEL OF ANCHORING EXPECTATIONS

QUANTIFICATION OF ANCHORING

OPTIMAL MONETARY POLICY
Households: standard up to \hat{E}

Maximize lifetime expected utility

$$\hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} \left[U(C_T^i) - \int_0^1 v(h_T^i(j))dj \right]$$

Budget constraint

$$B_t^i \leq (1 + i_{t-1})B_{t-1}^i + \int_0^1 w_t(j)h_t^i(j)dj + \Pi_t^i(j)dj - T_t - P_tC_t^i$$
Firms: standard up to \hat{E}

Maximize present value of profits

$$\hat{E}_t^j \sum_{T=t}^{\infty} \alpha^{T-t} Q_{t,T} \left[\Pi_t^j(p_t(j)) \right]$$

subject to demand

$$y_t(j) = Y_t \left(\frac{p_t(j)}{P_t} \right)^{-\theta}$$
Aggregate relationships

- New Keynesian core: standard IS and Phillips curves

\[
x_t = \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} ((1 - \beta)x_{T+1} - \sigma(\beta i_T - \pi_{T+1}) + \sigma r_T^n)
\]

\[
\pi_t = \kappa x_t + \hat{E}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1 - \alpha) \beta \pi_{T+1} + u_T)
\]

Observables: \((\pi, x, i)\)

Exogenous states: \((r^n, u)\)

Laura Gáti (ECB)
Aggregate relationships

- New Keynesian core: standard IS and Phillips curves

\[
x_t = \mathbb{E}_t \sum_{T=t}^{\infty} \beta^{T-t} ((1 - \beta)x_{T+1} - \sigma (\beta i_T - \pi_{T+1}) + \sigma r^n_t)
\]

\[
\pi_t = \kappa x_t + \mathbb{E}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1 - \alpha) \beta \pi_{T+1} + u_T)
\]

Observables: \((\pi, x, i)\) inflation, output gap, interest rate
Aggregate relationships

- New Keynesian core: standard IS and Phillips curves

\[x_t = \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t}((1 - \beta)x_{T+1} - \sigma(\beta i_T - \pi_{T+1}) + \sigma r^n_T) \]

\[\pi_t = \kappa x_t + \hat{E}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t}(\kappa \alpha \beta x_{T+1} + (1 - \alpha)\beta \pi_{T+1} + u_T) \]

Observables: \((\pi, x, i)\) inflation, output gap, interest rate
Exogenous states: \((r^n, u)\) natural rate and cost-push shock
Uncertainty on mean inflation

- Need a model of fluctuating long-run inflation expectations
- Main info assumption: $\hat{E}_i = \hat{E}_j = \hat{E}$ captures
- Firms and households do not know mean inflation
- They learn it from observed data
- Forecasts of inflation tomorrow centered around long-run expectation:
 $$\hat{E}_t \pi_{t+1} = \bar{\pi}_t + E_t \pi_{t+1}$$
- E: rational (model-consistent) expectations
- Short-run surprises informative about long-run inflation expectations
Uncertainty on mean inflation

- Need a model of: fluctuating long-run inflation expectations
Uncertainty on mean inflation

• Need a model of: fluctuating long-run inflation expectations

→ Main info assumption: \(\hat{E}^i = \hat{E}^j = \hat{E} \) captures

\[
\bar{\pi}_t + \pi_{t+1} = \hat{E}_t \pi_{t+1}
\]

E: rational (model-consistent) expectations

\(\bar{\pi} \): short-run surprises informative about long-run inflation expectations
Uncertainty on mean inflation

• Need a model of: fluctuating long-run inflation expectations

→ Main info assumption: \(\hat{E}^i = \hat{E}^j = \hat{E} \) captures

• Firms and households do not know mean inflation
Uncertainty on mean inflation

• Need a model of: fluctuating long-run inflation expectations

→ Main info assumption: \(\hat{\mathbb{E}}^i = \hat{\mathbb{E}}^j = \hat{\mathbb{E}} \) captures

• Firms and households do not know mean inflation
• They learn it from observed data
Uncertainty on mean inflation

• Need a model of: fluctuating long-run inflation expectations

→ Main info assumption: \(\hat{E}^i = \hat{E}^j = \hat{E} \) captures

• Firms and households do not know mean inflation
• They learn it from observed data

→ Forecasts of inflation tomorrow centered around long-run expectation:

\[
\hat{E}_t \pi_{t+1} = \bar{\pi}_t + E_t \pi_{t+1}
\]

\(E \): rational (model-consistent) expectations
Uncertainty on mean inflation

• Need a model of: fluctuating long-run inflation expectations

→ Main info assumption: $\hat{E}^i = \hat{E}^j = \hat{E}$ captures

• Firms and households do not know mean inflation
• They learn it from observed data

→ Forecasts of inflation tomorrow centered around long-run expectation:

$$\hat{E}_t \pi_{t+1} = \bar{\pi}_t + E_t \pi_{t+1}$$

E: rational (model-consistent) expectations

→ short-run surprises informative about long-run inflation expectations $\bar{\pi}_t$
Learning mean inflation from data

Yesterday’s one-period ahead inflation forecast:

\[\hat{E}_{t-1} \pi_t = \bar{\pi}_{t-1} + E_{t-1} \pi_t \]
Learning mean inflation from data

Yesterday’s one-period ahead inflation forecast:

\[\hat{E}_{t-1} \pi_t = \bar{\pi}_{t-1} + E_{t-1} \pi_t \]

One-period ahead inflation forecast error:

\[f_{t|t-1} = \pi_t - \hat{E}_{t-1} \pi_t \]
Learning mean inflation from data

Yesterday’s one-period ahead inflation forecast:

$$\hat{E}_{t-1} \pi_t = \bar{\pi}_{t-1} + E_{t-1} \pi_t$$

One-period ahead inflation forecast error:

$$f_{t|t-1} = \pi_t - \hat{E}_{t-1} \pi_t$$

→ **Update** for long-run inflation expectations:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t f_{t|t-1}$$
Learning mean inflation from data

Yesterday’s one-period ahead inflation forecast:

\[
\hat{E}_{t-1} \pi_t = \bar{\pi}_{t-1} + \mathbb{E}_{t-1} \pi_t
\]

One-period ahead inflation forecast error:

\[
f_{t|t-1} = \pi_t - \hat{E}_{t-1} \pi_t
\]

→ Update for long-run inflation expectations:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + k_t f_{t|t-1}
\]

\(k_t \in (0, 1)\) learning gain as sensitivity to surprises
Alternatives for the gain

1. **Decreasing** gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}
\]

2. **Constant** gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}
\]
Alternatives for the gain

1. Decreasing gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1} \]

2. Constant gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1} \]

3. Endogenous gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1} \]
Alternatives for the gain

1. Decreasing gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}
\]

2. Constant gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}
\]

3. **Endogenous** gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1}
\]

Carvalho et al (2022): endogenous gain as a **metric for unanchoring**

- Low gain: anchored regime
- High gain: unanchored regime
Smoothly varying degrees of unanchoring

\[k_t = g(f_t|t-1), \quad g'' > 0 \]
Smoothly varying degrees of unanchoring

\[k_t = g(f_{t|t-1}), \quad g'' > 0 \]

\[\rightarrow g(\cdot) \text{ smooth and continuous for optimal policy problem, convex} \]
Smoothly varying degrees of unanchoring

\[k_t = g(f_{t|t-1}), \quad g'' > 0 \]

\[\rightarrow g(\cdot) \text{ smooth and continuous for optimal policy problem, convex} \]

Convexity:

- Large surprises unanchor more than smaller ones
Smoothly varying degrees of unanchoring

\[k_t = g(f_{t|t-1}), \quad g'' > 0 \]

\[\rightarrow g(\cdot) \text{ smooth and continuous for optimal policy problem, convex} \]

Convexity:

- Large surprises unanchor more than smaller ones
- Pay more attention to inflation when it *really* surprises you
Smoothly varying degrees of unanchoring

\[k_t = g(f_{t|t-1}), \quad g'' > 0 \]

\[\rightarrow g(\cdot) \text{ smooth and continuous for optimal policy problem, convex} \]

Convexity:

- Large surprises unanchor more than smaller ones
- Pay more attention to inflation when it \textit{really} surprises you
 (rational inattention, expectations data, experimental studies)
Alternatives for the gain

1. Decreasing gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1} \]

2. Constant gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1} \]

3. Endogenous gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1} \]
Alternatives for the gain

1. Decreasing gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1} \]

2. Constant gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1} \]

3. Endogenous gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1} \]
Alternatives for the gain

1. Decreasing gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1} \]

2. Constant gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1} \]

Optimal monetary policy: Molnár & Santoro (2014)

3. Endogenous gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1} \]
Alternatives for the gain

1. Decreasing gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}
\]

2. Constant gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}
\]

Optimal monetary policy: Molnár & Santoro (2014)

3. Endogenous gain:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1}
\]

Marcet & Nicolini (2003), Carvalho et al (2022)
Alternatives for the gain

1. Decreasing gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1} \]

2. Constant gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1} \]

Optimal monetary policy: Molnár & Santoro (2014)

3. Endogenous gain:

\[\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1} \]

Marcet & Nicolini (2003), Carvalho et al (2022)
Optimal monetary policy: -
Model of anchoring expectations

Quantification of anchoring

Optimal monetary policy
Estimating form of gain function

- Calibrate parameters of New Keynesian core to literature

\[\pi_t = \pi_{t-1} + g(f_{t|t-1}) \]

Moments: autocovariances of inflation, output gap, federal funds rate and 1-year ahead Survey of Professional Forecasters (SPF) inflation expectations at lags 0, ..., 4
Estimating form of gain function

• Calibrate parameters of New Keynesian core to literature

• Estimate flexible form of expectations process via simulated method of moments

\[\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1} \]
Estimating form of gain function

• Calibrate parameters of New Keynesian core to literature

• Estimate flexible form of expectations process via simulated method of moments

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + g(f_{t|t-1}) f_{t|t-1}
\]

• Moments: autocovariances of inflation, output gap, federal funds rate and 1-year ahead Survey of Professional Forecasters (SPF) inflation expectations at lags 0, \ldots, 4
Calibration - parameters from the literature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.98</td>
<td>stochastic discount factor</td>
</tr>
<tr>
<td>σ</td>
<td>1</td>
<td>intertemporal elasticity of substitution</td>
</tr>
<tr>
<td>α</td>
<td>0.5</td>
<td>Calvo probability of not adjusting prices</td>
</tr>
<tr>
<td>κ</td>
<td>0.0842</td>
<td>slope of the Phillips curve</td>
</tr>
<tr>
<td>ψ_π</td>
<td>1.5</td>
<td>coefficient of inflation in Taylor rule</td>
</tr>
<tr>
<td>ψ_x</td>
<td>0.3</td>
<td>coefficient of the output gap in Taylor rule</td>
</tr>
<tr>
<td>σ_r</td>
<td>0.01</td>
<td>standard deviation, natural rate shock</td>
</tr>
<tr>
<td>σ_i</td>
<td>0.01</td>
<td>standard deviation, monetary policy shock</td>
</tr>
<tr>
<td>σ_u</td>
<td>0.5</td>
<td>standard deviation, cost-push shock</td>
</tr>
<tr>
<td>\bar{g}</td>
<td>0.145</td>
<td>initial value of the gain</td>
</tr>
</tbody>
</table>

Carvalho et al (2022)
Estimated expectations process

\[\bar{\pi}_t - \bar{\pi}_{t-1} = \hat{g}(f_{t|t-1}) f_{t|t-1} \]

Estimated change in long-run inflation expectations for various forecast errors
MODEL OF ANCHORING EXPECTATIONS

QUANTIFICATION OF ANCHORING

OPTIMAL MONETARY POLICY
Ramsey problem

$$\min_{\{y_t, \pi_t, k_t\}_{t=t_0}} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} (\pi_t^2 + \lambda_x x_t^2)$$

s.t. model equations

s.t. evolution of expectations

• \(\mathbb{E}\) is the central bank’s (CB) expectation

• Assumption: CB observes private expectations and knows the model
Optimal policy - responding to unanchoring

\[i(\bar{\pi}, \text{all other states at their means}) \]

Stabilizing \(\bar{\pi} \)
Optimal policy - responding to unanchoring

\[i(\bar{\pi}, \text{all other states at their means}) \]

\[\uparrow \bar{\pi} \text{ by 5 bp} \implies \uparrow i \text{ by 250 bp} \]
Optimal policy - responding to unanchoring

\(i(\bar{\pi}, \text{all other states at their means}) \)

\[\uparrow \bar{\pi} \text{ by 5 bp} \implies \uparrow i \text{ by 250 bp} \]

Stabilizing \(\bar{\pi} \)

Mode: 0.3 bp movement in \(\bar{\pi} \)
Unanchoring amplifies shocks

Impulse responses after a cost-push shock *when policy follows a Taylor rule*
Conclusion
Conclusion

First theory of monetary policy for potentially unanchored expectations
Conclusion

First theory of monetary policy for potentially unanchored expectations

Model-based notion of unanchoring
 • Sensitivity of long-run expectations to short-run fluctuations
Conclusion

First theory of monetary policy for potentially unanchored expectations

Model-based notion of unanchoring
 • Sensitivity of long-run expectations to short-run fluctuations

Optimal monetary policy
 • Anchors expectations by responding aggressively to long-run expectations