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Abstract

A salient feature of the post-COVID inflation surge is that economic activity has remained
resilient despite unfavorable supply-side developments. We develop a macroeconomic model with
nonlinear price and wage Phillips curves, endogenous intrinsic indexation and an unobserved
components representation of a cost-push shock that is consistent with these observations. In
our model, a persistent large adverse supply shock can lead to a persistent inflation surge while
output expands if the central bank follows an inflation forecast-based policy rule and thus
abstains from hiking policy rates for some time as it (erroneously) expects inflationary pressures
to dissipate quickly. A standard linearized formulation of our model cannot account for these
observations under identical assumptions. Our nonlinear framework implies that the standard
prescription of “looking through”supply shocks is a good policy for small shocks when inflation is
near the central bank’s target, but that such a policy may be quite risky when economic activity
is strong and large shocks drive inflation well above target. Moreover, our model implies that
the economic costs of “going the last mile”— i.e. a tight stance aimed at returning inflation
quickly to target —can be substantial.
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1. Introduction

Following several decades of low and stable inflation in advanced economies, the post-COVID

inflation surge caught central banks, economic forecasters, and academic economists by surprise.

A vibrant debate has ensued about the causes of the surge, on why models failed to predict it, and

on how to refine policy strategies.1

Supply shocks were widely viewed as generating much of the initial spike in inflation after the

pandemic, including from COVID-related supply disruptions and escalating energy prices. However,

while the shocks were clearly very large and drove headline inflation to levels not seen in decades,

both the shocks and their effects on underlying inflation were forecast to be transient. The view that

"second round" effects were likely small - implying weak endogenous propagation of supply shocks

- was supported by a wide body of empirical evidence, and attributed to well-anchored inflation

expectations as well as to structural features such as relatively flexible labor markets (Blanchard

and Gali, 2007). Accordingly, advanced economy central banks choose to largely "look through"

these temporary shocks and maintain highly accommodative policies even as realized inflation ran

far above their targets.

The growing perception headline inflation pressures were reverberating to wages and core infla-

tion eventually led to a rapid tightening in monetary policy that has helped markedly slow inflation.

But the experience has left many open questions. Why did such a broad range of forecasters and

forecasting models predict that high inflation would rapidly dissipate? What modeling features

could help account for why second-round effects have generally been small since the start of the

Great Moderation, but much higher in the recent surge? Are large shocks different in their effects?

And, if transmission is more state-dependent than recognized, what are the implications for pol-

icy strategy, including for "looking through" supply shocks and how policy responds to inflation

forecasts?

Our paper develops a modeling framework that aims to help address these questions. Following

Harding, Lindé and Trabandt (2022, HLT), we start by embedding a nonlinear Phillips Curve into

a fairly standard DSGE model that arises from a quasi-kinked demand schedule. The Phillips

curve is flat when inflationary pressures are subdued and steepens as inflationary pressures rise.

As shown by HLT (2023), these features imply that large shocks can have an outsized effect on

inflation when inflation is already running above target.

We extend the analysis in HLT along several important dimensions. First, we introduce gradual

1 See e.g. Federal Reserve Chair J. Powell speech at the 2021 Jackson Hole conference as well as the debate
between L. Summers and P. Krugman that took place since early 2021. See also Gopinath (2022).
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learning about the nature of the cost push shocks that are assumed to (mainly) drive inflation.

Specifically, agents can’t tell if the shocks are transitory or persistent (only observing the sum of

the components), and must solve a signal extraction problem to estimate the underlying shock.

The initial misperception of the shock as transitory - when it in fact turns about to be much more

persistent - is one factor helping our model account for the large inflation forecast errors observed

during the early phases of the inflation surge.

Second, we allow for endogenous indexation of prices and wages by firms and households. In

particular, the fraction of prices and wages set in a backward-looking manner is higher when inflation

runs persistently above target and by a greater magnitude. Thus, the stock of past inflation forecast

errors has important consequences for inflation persistence in the Phillips Curve. Our calibration

implies that this "intrinsic" persistence is very low if inflation has been reasonably close to target

in recent years, consistent with estimates during the Great Moderation period; but implies much

higher intrinsic persistence if inflation rises significantly above target for some time, as during the

recent inflation surge.

Third, we consider the implications of a forecast-based targeting rule in which the central

bank responds to an inflation forecast one or two years ahead, and compare this to a standard

instrument rule with contemporaneous inflation. The forecast-based rule aims to capture how

inflation-targeting central banks typically respond to medium-term forecasts of inflation and thus

"look through" transient supply shocks (consistent with a wide literature on forecast-based Taylor

rules).

Interactions of these three key features — information about the nature of the adverse cost-

push shock, endogenous indexation, and the policy reaction function - allow our model account

for key facets of the persistent post-COVID inflation surge and the monetary policy response.

Given that the shock is initially perceived as transitory and intrinsic persistence is viewed as

low, inflation is expected to quickly revert to baseline, and the central bank under the forecast-

based rule keeps policy rates nearly unchanged. When inflationary pressures turn out to be more

pervasive than initially projected the central bank starts to hike rates materially, but at this stage

the "inflation ghost" is already out of the bottle. In particular, the state-dependent sensitivity

of inflation to economic activity (from the nonlinear Phillips Curve) interacts with endogenous

indexation mechanism to produce a full "inflation cycle" in our nonlinear model.

Importantly, the inflation cycle is associated with an expansion in economic activity followed by

a subsequent contraction later in the inflation cycle when real interest rates rise. Because nominal

rates depend on the medium-term forecast of inflation and hence only rise gradually, short-term
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real interest rates actually fall for some time (since inflation in the very near-term rises more).

This stimulus contrasts with a standard full-information model in which an adverse supply shock

triggers higher inflation along with a sizeable contraction in output. Thus, our model can account

for some of the observed resilience in economic activity that accompanied the initial inflation surge

even without demand shocks playing a material role.

We highlight how the implications of our nonlinear model contrast sharply with the those of a

linearized formulation embedding otherwise identical assumptions. The linearized variant implies

only a modest rise in inflation rather than large inflation boom as in the nonlinear model. The

stark difference between the linearized and nonlinear formulations of the model is driven by the

size of the underlying supply shock. When the supply disturbance is notably smaller, the stark

difference between the nonlinear and linear model dissipates. We also show that our nonlinear

model —when fed with a combination of large adverse supply shocks and moderate demand shocks

—does a good job of accounting for the overall contours of U.S. data in 2021-2023. Our nonlinear

model also accounts well for the forecast revisions of professional forecasters. By contrast, the

linearized model fails to account for the data and forecasts.

From a policy perspective, our analysis suggests that the standard monetary policy prescription

of “looking through”adverse supply shocks should be applied cautiously. While there is a strong

case for the merits of such a policy for small adverse cost-push shocks which does not drive inflation

far away from its target, our nonlinear model provides an example that such a policy may prove

very costly when the economy is hit with a rare and large adverse cost-push shock which drives

inflation well above the central bank’s target.2

Our model can be used to assess the costs (and benefits) of the forecast-based policy framework

assuming that the economy is initially at the steady state before the adverse supply shock hits.

In this case, a central bank that use a policy rule based on actual instead of forecasted inflation

moderates the surge in inflation somewhat, since the central bank from the onset acts more ag-

gressively to battle higher inflation. However, a tighter monetary policy stance to curb inflationary

pressures comes at a cost, namely that output falls more. Even so, the expected loss —measured

as the sum of the squared deviations of annualized inflation from target plus the sum of squared

output gaps for the first 5 years —falls by about 30 percent from a loss value of about 255 under

the forecast-based rule to a loss of about 174 under a rule which responds to actual inflation.3

2 Our calibration of the unobserverd components representation of the cost-push shock places a predominant role
on transitory realizations of cost-push shocks and hence rationalizes that the central bank uses a forecast-based policy
rule in normal times.

3 The improvement in the loss function in the rule with actual inflation is not contingent on the weight of the
output gap in the loss function; the loss improves for any weight on the output gap between 0 and 2 in the loss
function. Debortoli, Kim, Linde, and Nunes (2019) shows that an inflation-output gap loss function approximates
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An additional important policy implication from our nonlinear model is that the central bank

faces a more severe tradeoff between inflation and output stabilization if it strives to push infla-

tion all the way back to target aggressively when inflation has peaked and is gradually receding.

While the Phillips curve appears to have steepened and the sensitivity of inflation and inflation

expectations becomes elevated when the adverse supply shock hits the economy, the steepening is

temporary and it flattens again when the Phillips curve shifts out. This feature of our model makes

it costly for the central bank to aggressively attempt to push inflation all the way back to target

quickly unless a sizeable part of the underlying adverse supply shock reverses and helps to push

inflation back to target. Put differently, we find that the economic costs of “going the last mile”

and bringing inflation quickly back to target can be sizeable.

Our findings rest importantly on the interaction between the steeper portion of the Phillips curve

and on the relevance of inflation indexation mechanisms when inflation exceeds the central banks’

inflation target. Taken together, these mechanisms imply that all shocks in the model transmit

stronger to inflation when inflation rises materially above its steady state level. In particular, cost-

push shocks generate conditional heteroskedasticity in inflation and inflation risk in our nonlinear

model, consistent with the seminal paper by Engle (1982) and the more recent work by López-

Salido and Loria (2020). Since these shocks are commonly believed to have played an important

role during the post-COVID period, we argue that our model can account better for inflation

dynamics during this period than a standard linearized macroeconomic model. Regression analysis

supports the view that cost-push-type shocks have a larger impact on inflation if inflation is high to

begin with (see e.g., Gelos and Ustyugova 2017; Forbes, Gagnon and Collins 2021a; Forbes, Gagnon

and Collins 2021b; and Ball, Leigh and Mishra 2022).

We establish our main results in a nonlinear variant of the benchmark Erceg, Henderson and

Levin (2000, henceforth EHL) model with sticky wages and prices. The EHL model shares most

of the model features in Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007,

henceforth SW), except that it excludes endogenous capital accumulation. To parameterize the

model, we follow HLT (2023) and allow for a more prominent role for Kimball (1995) quasi-kinked

demand in goods markets. HLT shows that the more prominent role for quasi-kinked demand

increases the marginal data density in the basic SW model provided that the average markup

aligns with micro- and macroeconomic empirical evidence. Recent work by Dupraz (2017) and Ilut

et al. (2022) provides a microfounded theory of kinked demand.

household welfare policy closely in the standard Erceg, Henderson and Levin (2000) and Smets-Wouters (2007) sticky
price-wage models.
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The remainder of the paper is organized as follows. Section 2 presents and discusses cross-

country data for inflation and policy rates as well as the projections for the survey of professional

forecaster forecasts for the U.S. economy. Section 3 presents the quantitative macroeconomic model

with real rigidities in a dynamic stochastic general equilibrium framework with nominal price and

wage stickiness. Section 4 discusses our results. Section 5 discusses the related literature. Finally,

Section 6 provides some concluding remarks.
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Figure 1: Inflation rates and nominal policy rates in the U.S., Euro Area, and United Kingdom.
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2. Data

Figure 1 depicts monthly data for inflation (12-month change) and nominal policy rates for the

U.S., the Euro Area and the U.K. Several facts emerge from the figures. First, inflation has surged

in all these major economies, with the US about half-year ahead. Second, the central banks in these

economies —US Federal Reserve, ECB and the Bank of England —kept policy rates unchanged for

about 1 to 1.5 years after inflation rose above their 2 percent targets. In 2022 (the vertical dotted

line in the figure), the central banks pivoted and hiked rates materially. Figure 2 shows quarterly

U.S. data for PCE inflation, PCE growth and the three-months T-bill rate. In addition, the figure

contains projections by survey of professional forecasters. Several facts emerge from Figure 2. First,

professional forecasters underestimated both the size and persistence of the increase in U.S. inflation

from early 2021. Second, professional forecasters underestimated the resilience of economic activity

initially. Third and finally, professional forecasters also underestimated how much the Fed would

need to raise policy rates and 3-months T-bills to cool the economy and bring inflation back to

target. We seek to develop a model that can account for these facts and then use it to garner policy

lessons.
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Figure 2: U.S. PCE inflation, PCE growth and 3-months T-Bill rate (solid: data; dashed: survey
of professional forecasters (SPF) data.)

3. Quantitative Model

The model developed below modifies and extends the model in Lindé and Trabandt (2018) and

Harding, Lindé and Trabandt (2022, 2023).
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3.1. Households

There is a continuum of households j ∈ [0, 1] in the economy. Each household supplies a specialized

type of labor j to the labor market. The jth household is the monopoly supplier of the jth type of

labor service. The jth household maximizes

max
ct,nt,bt

E0

∞∑
t=0

βtςt

{
ln (ct − hCt−1)− 1

1 + χ
n1+χ
j,t

}
(1)

subject to

Ptct +Bt = Wj,tnj,t +Rt−1Bt−1 − Tt + Γt + aj,t

where the choice variables of the jth household are consumption ct and risk-free bonds Bt. Bonds

are in zero net supply. The jth household also chooses the wage Wj subject to Calvo sticky prices

as in Erceg, Henderson and Levin (2000, EHL). The household understands that when choosingWj

that it must supply the amount of labor nj demanded by a labor contractor according to equation

(2).

In principle, the presence of wage setting frictions implies that households have idiosyncratic

levels of wealth and, hence, consumption. However, we follow EHL in supposing that each household

has access to perfect consumption insurance. Because of the additive separability of the family

utility function, perfect consumption insurance at the level of households implies equal consumption

across households. Given this, we have simplified our notation and not include a subscript, j, on

the jth family’s consumption (and bond holdings). Note that even though consumption is equal

across households, consumption in response to shocks is not constant over time across households.

Pt denotes the aggregate price level, and Rt the gross nominal interest rate on bonds purchased in

period t−1 which pay off in period t. Tt are lump-sum taxes net of transfers and Γt denotes the share

of profits that the household receives. Finally, aj,t denotes the payments and receipts associated

with the insurance associated with wage stickiness. E0 denotes the conditional expectation operator.

Further, 0 ≤ β < 1 and 0 ≤ h < 1 are parameters. Finally, the variable ςt is an exogenous shock to

the discount factor. We assume that δt =
ςt+1

ςt
is exogenous and follows an AR(1) process:

δt − δ = ρδ (δt−1 − δ) + εδ,t,

with δ = 1 in steady state.

3.2. Labor Contractors

Competitive labor contractors aggregate specialized labor inputs nt,j supplied by households into

homogenous labor nt which is hired by intermediate good producers. Labor contractors maximize
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profits

max
nt,j ,nt

Wtnt −
∫
Wt,jnt,jdj, or max

nt,j/nt
1−

∫
Wt,j

Wt

nt,j
nt

dj

where Wt,j is the wage paid by the labor contractor to households for supplying type j labor.

Wt denotes the wage paid to the labor contractor for homogenous labor. Maximization of profits

is subject to ∫
Gw

(
nt,j
nt

)
dj = 1

where

Gw

(
nt,j
nt

)
=

ωw
1 + ψw

[
(1 + ψw)

nt,j
nt
− ψw

] 1
ωw

− ωw
1 + ψw

+ 1

is the Kimball aggregator specification as used in Dotsey and King (1995) or Levin, Lopez-Salido

and Yun (2007) adapted for the labor market. Note that ωw = (1+ψw)φw
1+φwψw

and φw = 1 + θw where

θw ≥ 0 denotes the net wage markup, φw ≥ 1 denotes the gross wage markup and ψw ≤ 0 is the

Kimball parameter that controls the degree of complementarities in wage setting. Let ϑwt denote

the multiplier on the labor contractor’s constraint. The appendix contains detailed derivations that

result in the following equations:

nt,j
nt

=
1

1 + ψw

[Wt,j

Wt

]− (1+θw)(1+ψw)
θw

[ϑwt ]
(1+θw)(1+ψw)

θw + ψw

 (2)

Wtϑ
w
t =

[∫
W
− 1+ψw+θwψw

θw
t,j dj

]− θw
1+ψw+θwψw

(3)

ϑwt = 1 + ψw − ψw
∫
Wt,j

Wt
dj (4)

Where equation (2) denotes the demand for labor, equation (3) is the aggregate wage index and

equation (4) is the zero profit condition for labor contractors. Note that for ψw = 0 we get the

standard Dixit-Stiglitz expressions nt,j
nt

=
[
Wt,j

Wt

]− (1+θw)
θw ,Wt =

[∫
W
− 1
θw

t,j dj

]−θw
, and ϑwt = 1.

3.3. Wage Setting

The household faces a standard monopoly problem of selecting Wj,t to maximize the welfare, (1)

subject to the demand for labor (2). Following EHL, we assume that the household experiences

Calvo-style frictions in its choice of Wj,t. In particular, with probability 1 − ξw the jth family has

the opportunity to re-optimize its wage rate. With the complementary probability, the family must

set its wage rate according to the following rule:

Wj,t = Π̃w
t Wj,t−1 (5)
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where Π̃w
t is an indexation factor whose determinants we discuss in Section 3.6 below.

Let Λt denote the Lagrange multiplier on the household budget constraint. To compute the

optimal choice for W̃j,t, the household seeks to maximize:

max
W̃j,t

Et

∞∑
i=0

(βξw)i ςt+i

{
− 1

1 + χ
n1+χ
j,t+i + Λt+iW̃j,t

(
Π̃w
t+i × ...× Π̃w

t+1

)
nj,t+i

}
subject to labor demand:

nt+i,j =
1

1 + ψw


W̃j,t

(
Π̃w
t+i × ...× Π̃w

t+1

)
Wt+i

−
(1+θw)(1+ψw)

θw [
ϑwt+i

] (1+θw)(1+ψw)
θw + ψw

nt+i

In what follows, we assume that χ = 0 for simplicity.4 The appendix provides detailed deriva-

tions for optimal wage setting.

3.4. Final Goods Producers

Competitive final goods producers maximize profits:

max
yt,i/yt

1−
∫
Pt,i
Pt

yt,i
yt
di

subject to ∫
G

(
yt,i
yt

)
di = 1

where

G

(
yt,i
yt

)
=

ωp
1 + ψp

[(
1 + ψp

) yt,i
yt
− ψp

] 1
ωp

− ωp
1 + ψp

+ 1

is the Kimball (1995) aggregator specification used by Dotsey and King (1995) and Levin,

Lopez-Salido and Yun (2007). Note that ωp =
(1+ψp)φp
1+φpψp

and φp = 1 + θp where θp ≥ 0 denotes the

net price markup, φp ≥ 1 denotes the gross price markup and ψp ≤ 0 is the Kimball parameter that

controls the degree of complementarities in firm’s pricing decisions. Let ϑt denote the multiplier on

the constraint. The appendix contains detailed derivations that result in the following equations:

yt,i
yt

=
1

1 + ψp

[Pt,i
Pt

]− 1+θp
θp

(1+ψp)
ϑ

1+θp
θp

(1+ψp)
t + ψp


Ptϑt =

[∫
P
− 1+ψp+ψpθp

θp

t,i di

]− θp
1+ψp+ψpθp

ϑt = 1 + ψp − ψp
∫
Pt,i
Pt

di

4 In a future version of this paper, we might consider allowing for χ > 0.
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where φp = 1 + θp and εp =
φp(1+ψp)

1−φp
. Note that for ψp = 0 we get the standard Dixit-Stiglitz

expressions yt,i
yt

=
[
Pt,i
Pt

]− 1+θp
θp , ϑt = 1 and Pt =

[∫
P
− 1
θp

t,i di

]−θp
.

3.5. Intermediate Goods Producers

Intermediate goods firms have the following production function:

yt,i = nt,i

Total costs for the firm are:

TCt,i = τ
1/κ
t Wtnt,i

where τ1/κ
t is an exogenous shifter of firms’total costs. τ1/κ

t is a stand in for e.g. a tax shock

(with lump-sum redistribution to households) or any other shock to firms’ total cost. In what

follows, we refer to a shock to τ t as a cost-push shock (which we use interchangeably as a markup

shock, too). Note that the shock to marginal cost is scaled by the inverse slope of the price Phillips

curves once the model is log-linearized, i.e. κp = 1
1+βκ

(1−βξp)(1−ξp)
ξp

1
1−(1+θp)ψp

. This way, after

log-linearization, the shock enters the Phillips curve additively separable with a unit coeffi cient as

in Smets and Wouters (2007) and other estimated DSGE models. An additional attractive feature

with this scaling is that small shocks to τ t propagate identically in the nonlinear and linearized

formulation of the model. τ t has a mean of unity so that the scaling does not affect the steady state.

Consistent with the literature, e.g. Smets and Wouters (2007) and Galí, Smets and Wouters (2012),

we assume that the cost-push shock only affects the actual economy but not potential output, i.e.

the cost-push shock is ineffi cient.5

Firms minimize costs (or maximize negative cost) subject to production:

max
nt,i
−τ1/κ

t Wtnt,i +MCt,i [nt,i − yt,i]

MCt,i denotes the lagrange multiplier and coincides with firm marginal cost. Since all firms

face the same marginal costs, the first order condition reads as:

MCt,i ≡MCt = τ
1/κ
t Wt

Profit maximization:

max
P̃t,i

Et

∞∑
j=0

(
βξp
)j
ςt+jΛt+j

[(
Π̃t+j × ...× Π̃t+1

)
P̃t,iyt+j,i −MCt+jyt+j,i

]
5 It would be interesting to consider other types of adverse supply shocks (such as e.g. adverse total factor

productivity shocks reflecting e.g. supply chain disruptions or energy price hikes) that affect the potential economy
with flexible prices and wages.
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subject to

yt+j,i =
1

1 + ψp



(

Π̃t+j × ...× Π̃t+1

)
P̃t,i

Pt+j

−
1+θp
θp

(1+ψp)

ϑ

1+θp
θp

(1+ψp)
t+j + ψp

 yt+j

where Π̃t is an indexation factor whose determinants we discuss in Section 3.6 below. The

appendix provides a detailed set of derivations of optimal price setting.

3.6. Endogenous Price and Wage Indexation

Define the gross inflation rate Πt = Pt/Pt−1. As noted earlier, Π̃t and Π̃w
t are the price- and

wage-setting indexation inflation rates for non-optimizing firms and labor unions. We consider the

following state-dependent price and wage indexation specification:

Π̃t = Π̃w
t = Π̄1−κtΠκtt−1 (6)

where

κt = e
− %

max(Π∗t−Π̄, 0.0001) − e−
%

0.0001 (7)

and

Π∗t =
(
Π∗t−1

)ω
(Πt−1)1−ω (8)

with 0 ≤ ω < 1 and % ≥ 0. Π̄ denotes steady state inflation. Note that prices and wages are

indexed by the same factor which is a function of a geometric lag of past inflation rates, provided

ω > 0.6 We will henceforth use the term ‘endogenous’indexation when κt > 0 since it depends on

the aggregate rate of inflation which is an endogenous variable in our model.7

To illustrate the indexation specification, consider the following parameters. We set % = 0.002

and Π̄ = 1.005. The number 0.0001 inside the max operator is set for numerical stability. Note that

κt is zero in steady state. Figure 3 provides a graphical illustration of the endogenous indexation

feature of our model. Specifically, varying Π∗t on a grid and calculating the resulting indexation

factor κt results in the relationship between Π∗t and κt displayed in Figure 3.
6 It would be interesting to study the implications of making indexation dependent on annual lagged inflation

Πa
t−1 = (Πt−1Πt−2Πt−3Πt−4)1/4 and compare the results to our our baseline specifiation with quarterly lagged

inflation, Πt−1.
7 Note that our indexation scheme offers one way of rationalizing state dependence. An alternative mechanism

could be that firms re-optimize prices and wages more frequently in high-inflation environments, i.e. state-dependent
Calvo probabilities. This would be consistent with many S-s type models. We favour the endogenous indexation
feature of our model since it implies that inflation may remain persistently high in response to inflation surges. In
other words, the endogenous inflation indexation feature generates endogenous inflation persistence. In addition,
our inflation indexation feature implies that disinflations are more costly the higher inflation is to begin with. By
contrast, in models where prices and wages become more flexible as a consequence of high inflation, disinflations
become less costly in terms of economic activity the higher the rate of inflation.
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Figure 3: Endogenous Indexation

Note that when taking logs of the indexation equation Π̃t = Π̄1−κtΠκtt−1 we get

ln
Π̃t

Π̄
= ̂̃Πt = κt ln

Πt−1

Π̄
= κtΠ̂t−1

Taking a first order Taylor series approximation gives:

̂̃Πt = κΠ̂t−1 (9)

that is, the state-dependency feature of endogenous indexation disappears in the log-linearized

model variant. The reason for eq. (9) is that Π̄ = Πt−1 in eq. (6) in the steady state, which is the

point of approximation. This implies no dynamic indexation in the linearized model, since κ = 0.

By contrast, in the nonlinear model, indexation to past inflation is state-dependent. Consistent

with the empirical evidence in Smets and Wouters (2007) and Fernandez-Villaverde and Rubio-

Ramirez (2008), there is little or no dynamic indexation when inflation is close or below the steady

state, but dynamic indexation arises endogenously when inflation runs up well above the central

banks’inflation target.8

8 As as alternative to the indexation scheme described above, we have also examined the implications when

adopting the following indexation rule: Π̃t =
(

Πt−1
Π̄

)κt
. This indexation rule has similar implications in terms

of dynamic indexation as the rule in the main text, i.e. it implies no dynamic indexation after log-linearization
and endogenous dynamic indexation in the nonlinear model. In addition to these properties, the indexation rule
also implies no indexation in the steady state, i.e. the model then features price dispersion in the steady state. Our
qualitative and quantitative results are very little affected with this alternative indexation scheme, although it implies
that the average time that is takes for firms to change their prices becomes endogenous in our nonlinear model. When
inflation is close or below the steady state, firms change their prices once every three quarters. But in response to
large persistent shocks that drives inflation well above the central banks’inflation target, firms change their prices
more often. This model feature is consistent with recent micro evidence documented in Cavallo, Lippi, and Miyahara
(2023, Figure 2).
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3.7. Aggregate Resources

The aggregate resource constraint can be written as:

ct = yt = (p∗t )
−1 (w∗t )

−1 lt

where p∗t and w
∗
t are measures of price and wage dispersion. See the appendix for detailed

derivations and expressions for these variables.

Note that the payments and receipts associated with the insurance associated with wage stick-

iness are in zero net supply, i.e.

∫
aj,tdj = 0

and bonds are in zero net supply

Bt = 0.

3.8. Monetary Policy

Consider the following monetary policy rule which defines the so-called notional interest rate:

Rnott

R
=

(
Rnott−1

R

)ρ(
EtΠt+4

Π̄

)(1−ρ)γπ
(
Yt
Y
/
Y pot
t

Y pot

)(1−ρ)γx

eεR,t (10)

where the monetary policy shock εR,t is assumed to be i.i.d. zero mean with positive variance.9

Monetary policy is subject to the zero lower bound on interest rates, i.e. the actual nominal

interest rate is

Rt = max(0, Rnott )

Regarding the fiscal authority we assume that net lump-sum taxes adjust to balance the gov-

ernment budget. Because of Ricardian equivalence we don’t spell out the government budget and

fiscal rule for lump sum transfers.

3.9. Learning about the Cost-Push Shock

We adopt the following unobserved components representation for the cost-push shock. First,

define: at ≡ τ t−1, i.e. at is the deviation of τ t from its steady state. Now suppose that the stochastic

process at consists of a transitory part aT,t and a persistent part aP,t. Agents can observe at but not

aT,t or aP,t. Below we set up the signal-extraction problem that households and firms are solving

9 Our results are robust to replacing EtΠt+4

Π̄
in the monetary policy rule with

EtΠ
1yoy
t+4

Π̄
where Π1yoy

t =

(Πt+4Πt+3Πt+2Πt+1)1/4 denotes the annual rate of change (at quarterly rate) of the price level. The results based on
this alternative monetary policy rule are available upon request.
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following Erceg and Levin (2003), who used this approach to solve a signal-extraction problem

about transitory and persistent shocks to the central bank’s inflation target. Edge, Laubach and

Williams (2007) apply the same technique on a signal extraction problem for productivity.

Following e.g. Erceg and Levin (2003), Hamilton (1994), Ljungqvist and Sargent (2018), or

Canova (2007), we set up the following state space system:

at =
[
1 1

]︸ ︷︷ ︸
H′

[
aPt
aTt

]
[
aPt+1

aTt+1

]
=

[
ρP 0
0 ρT

]
︸ ︷︷ ︸

F

[
aPt
aTt

]
+

[
σP 0
0 σT

]
︸ ︷︷ ︸

Q

[
εPt+1

εTt+1

]

Then, using the Kalman filter, the estimate of state variables is (state update):[
âPt|t
âTt|t

]
=

[
âPt|t−1

âTt|t−1

]
+ Lt

(
at −H ′

[
âPt|t−1

âTt|t−1

])
where

Lt = Pt|t−1H(H
′
Pt|t−1H)−1

Pt|t = Pt|t−1 − LtH
′
Pt|t−1

The optimal forecast of state variables is (state forecast):[
âPt+1|t
âTt+1|t

]
= F

[
âPt|t−1

âTt|t−1

]
+Kt

(
at −H ′

[
âPt|t−1

âTt|t−1

])
where

Kt = FPt|t−1H(H
′
Pt|t−1H)−1

Pt+1|t =
(
F −KtH

′
)
Pt|t−1

(
F
′ −HK ′t

)
+QQ

′
.

Note that: [
âPt+j|t
âTt+j|t

]
= F j

[
âPt|t
âTt|t

]
for j = 1, ....∞

The forecast of e.g. at+1 is straightforward:

ât+j|t = H
′

[
âPt+j|t
âTt+j|t

]
for j = 1, ....∞

We assume that the agents have an infinite amount of past data available so that they run the

recursions of Kt and Pt+1|t until convergence. In other words, we solve for the fixed point Pt+1|t =

Pt|t−1 = P .
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Table 1: Model parameter values

Parameter Value Description

Π̄ 1.005 Steady state gross inflation rate

θp 0.1 Net price markup in steady state
ξp 2/3 Calvo price stickiness parameter
ψp −12 Parameter Kimball aggregator prices

% 0.002 Curvature parameter endogenous indexation
ω 0.8 Parameter in endogenous. indexation
κ 0 Inflation indexation parameter in linear model

θw 0.1 Net wage markup in steady state
ξw 0.75 Calvo wage stickiness parameter
ψw −6 Parameter Kimball aggregator wages

ρ 0.85 Taylor rule: interest rate smoothing
γπ 1.5 Taylor rule: coef. on expected inflation
γx 0.125 Taylor rule: coef. on output gap

β 0.995 Household discount factor
h 0.7 Household consumption habit
χ 0 Inverse Frisch elasticity of labor supply

ρP 0.9 AR(1) persistent markup shock
ρT 0 AR(1) transitory markup shock
σP 1 Standard deviation persistent markup shock
σT 10 Standard deviation transitory markup shock
ρδ 0.9 AR(1) discount factor shock

3.10. Equilibrium, Solution and Parameters

The appendix provides full sets of equilibrium equations for the nonlinear and linear model. The

appendix also provides the steady state as well as details about how we solve the model.

Table 1 contains the parameter values that we use in the analysis. Most of the values are taken

from HLT (2022, 2023) and considered standard in the literature. But parameters related to the

learning of the cost-push shock and dynamic indexation features of the model necessitate further

discussion. Beginning with the parameters related to the unobserved components representation

(ρP , ρT , σP and σT ) for the cost-push shock, we calibrate them such that the observed cost-push
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shock process at = aTt +aPt follows closely the estimated ARMA(1,1) process in Smets and Wouters

(2007).10 This implies setting ρP = 0.9, ρT = 0, and σP /σT = 1/10. This parameterization

also enables the model to account well for the projections and forecast errors made by the survey

of professional forecasters (see Figure 4 that we discuss in the next section). The indexation

parameters ω and % are chosen such that the nonlinear model captures well the hump-shaped

dynamics of inflation in the data.

Notice that dynamic price and wage indexation is absent (i.e. κ = 0 in eq. 6) in steady state in

both the nonlinear and linear models and also absent in the linearized model away from the steady

state. This is consistent with many studies showing that there is not little (if at all) evidence in

favor dynamic indexation in micro and macro data when inflation is close to target. However, once

inflation surges endogenous indexation kicks in our nonlinear model, whereas this model feature is

absent in the linearized model.

4. Results

In this section, we report our results. We begin in the next subsection by showing that our model

can capture the key features of the post-COVID inflation surge, including the behavior of realized

and forecasted inflation, real activity, and the federal funds rate. Given the critical role of cost

push shocks, the following subsections focus heavily on the features influencing their transmission

in our nonlinear framework —including the size of the shock and initial conditions —and contrast

these results with a standard linear setting. We also consider the implications for monetary policy —

including to gauge the merits of “looking through”supply shocks, and evaluate different disinflation

strategies.

4.1. U.S. Data-Model Comparison

Figure 4 provides a U.S. data-model comparison for the nonlinear model. The data in the left

column show actual realizations (red solid with dots) and projections (green dashed with dots)

made by the Survey of Professional Forecasters (SPF). They are the same as presented in Figure

2, except that the trajectories in this figure are expressed in changes relative to 2020Q4.11 In

the model simulation underlying the right column in Figure 4, we use both an adverse cost-push

shock and an expansionary demand (discount factor) shock. Both shocks are phased-in over two to

three quarters using forward guidance on the policy rate so that the first quarter when the policy

10 Smets and Wouters (2007) estimate the following cost-push shock process: at = .9at−1 + εa,t —0.75εa,t−1.
11 We choose 2020Q4 as a reference date since inflation —the key object of interest in our paper —was close to its

target of two percent.
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Figure 4: Comparison of U.S. data vs. nonlinear model.

rate change matches the survey of professional forecasters first expected lift-off date absent any

additional shocks. Accordingly, model variables can be expressed relative to their respective steady

states.

Although we have not optimized the fit of the model relative to the data with a formal criterion,

our nonlinear model does a good job of accounting for the overall contours of the U.S. data and

the inflation forecasts from the Survey of Professional Forecasters. This includes the progressive

ratcheting up of inflation through mid-2022 as well as for the “optimistic”forecasts that projected

that inflation would recede fairly quickly.

Two implications of this analysis are important to highlight that we will explore more fully

in subsequent analysis. First, our model implies a very strong endogenous propagation of the

underlying demand shocks through the two sources of nonlinearity in our model. The shocks

17



required to match the observed runup in inflation are big enough that the nonlinearities in our

model really “kick in.”As we illustrate in Appendix B.1, the same structural shocks in a linearized

version of the model would generate only a small and relatively transient rise in inflation.

The second implication is that while many of the salient features of the data can be accounted

for by a sequence of large but temporary cost-push shocks and a sequence of large positive demand

shocks, our analysis shows that adverse cost-push shocks can have expansionary short-run output

effects while triggering an inflation cycle. Hence, our model can explain the joint inflation-output

dynamics during the post-COVID inflation surge without a key role for outsized positive demand

shocks as in Giannone and Primiceri (2024). In the following we explore further how large persis-

tent cost-push shocks transmit to the economy and the conditions that can markedly affect their

transmission relative to a standard linear framework.

4.2. How Adverse Cost-push Shocks can be Expansionary

Figure 5 provides the impulse responses in the nonlinear model to an adverse cost-push shock.

Specifically, we assume εP0 = 0.0025 and εT0 = 0 so that the realized cost-push shock is driven by

the persistent component of the unobserved components representation. The central bank follows

the inflation-forecast based Taylor rule in equation (10) and can only observe the sum of the

persistent and transitory components but has to sequentially filter (in periods t = 0, 1, 2, ...) which

of the two components drives the cost-push shock. Figure 5 shows the realized impulse responses

as well as real-time forecasts of households, firms, and the central bank at each point in time.

In line with the SPF forecast patterns following the COVID pandemic discussed in Figure 4, the

figure shows that it takes considerable time for households, firms, and the central bank to adjust

their beliefs and come to see more of the observed cost-push shocks as driven by the persistent

component.

The figure shows that the cost-push shock drives a hump-shaped inflation boom and induces a

gradual rise in the policy rate. A striking aspect of the responses is that output increases in the

short-run —in contrast the familiar result that a markup shock causes output to contract.

Three features in the model account for this interesting result. First, agents have misperceptions

about the underlying shock. Given that the model is calibrated so that cost-push shocks are usually

transitory, agents forecast the cost-push shock to recede soon and hence that inflation and output

will return quickly to the steady state (as can be seen by the dashed lines). Second, the central

bank’s forecast rule (10) responds to 4-quarter ahead inflation with some degree of gradualism or

inertia; consistent with estimated forecast-based rules, the central bank raises the nominal interest

18



0 5 10 15 20

-2

0

2

Real GDP (%)

0 5 10 15 20
2

4

6

Policy Rate (APR)

0 5 10 15 20

-2

0

2

Real Wage (%)

0 5 10 15 20
2

4

6

Wage inflation (APR)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Cost-push Shock, a=aP+aT (%)

Realization

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Unobs. persistent comp. aP (%)

True
Estimated state

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Unobs. transitory comp. aT (%)

True
Estimated state

0 5 10 15 20
2

4

6

Inflation (APR)

Realization Real-time Prediction

Figure 5: Impulse responses to an adverse cost-push shock in the baseline nonlinear model.

rate very little initially. Because expected inflation rises in the short-term, this can cause output

to expand if it dominates the dampening effect of higher real rates at longer horizons. The third

factor reflects that intrinsic persistence in the Phillips Curve rises in response to large and ongoing

misses of the inflation target —a key form of nonlinearity in model, and what accounts mainly for

the output expansion. This feature induces markup-shock surprises to have progressively bigger

effects on inflation and inflation expectations. With the gradualist forecast-based rule, real rates

fall markedly, generating the sizeable short-term output expansion seen in Figure 5.

While we will later explore the role of monetary policy and misperceptions, we turn first to

explore more deeply how the nonlinear features of our model give rise to a sizeable and persistent

output expansion as well as hump-shaped inflation response. In this vein, Figure 6 provides a

comparison of the impulse responses to a cost-push shock in both the nonlinear and linearized
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Figure 6: Impulse responses to a cost-push shock in the nonlinear model with and without index-
ation, and in the linearized formulation of the model.

versions of our model. Notably, the linear model implies a front-loaded response of inflation that

is also far smaller than in the nonlinear model. Even a modest and gradual rise in the policy rate

is enough to basically keep output at potential. Thus, even with misperceptions, the gradualist

reaction function does pretty well in bringing inflation monotonically back to target: monetary

policy doesn’t get “behind the curve.”

The dash-dotted line shows how the inflation response is considerably amplified by allowing

for a nonlinear Phillips Curve through a Kimball aggregator as in HLT (2023). Even so, it is the

combination of the Kimball aggregator and the endogenous indexation feature (allowing κt > 0 in

eq. 6) that drives the large and hump-shaped inflation response (as can be teased by difference

between the red dashed and solid lines).12 With the nonlinearity from the Kimball aggregator

12 Note that due to endogenous indexation, medium-term inflation expectations become more elevated in the
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alone, the inflation response is bigger, but relatively little policy tightening is needed to keep output

close to potential and inflation on a monotonically declining path. When endogenous indexation is

added to the mix, the large deviations of realized inflation from target cause the inflation indexation

parameter to rise so that subsequent markup shocks have bigger effects on inflation and inflation

expectations. In this vein, Figure 7 shows the impulse responses of the endogenous indexation

variables Π̃t and Π∗t to the cost-push shock in the nonlinear and linearized model. When inflation

is low, there is very little (if any) indexation. But once inflation rises well above the central bank’s

inflation target and stays high, indexation starts to kick in.
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Figure 7: Impulse responses of indexation variables to the adverse cost-push shock in the baseline
nonlinear and linearized models.

Given that the indexation parameter depends on the size of the geometric average of inflation

deviations from target, the size of the cost-push shocks plays a critical role in accounting for

the hump-shaped inflation dynamics in Figure 5. To underscore this, Figure 8 compares impulse

responses of inflation in the nonlinear and linearized model for different sizes of the cost-push

nonlinear than the linearized model. Our nonlinear framework implies that inflation expectations become more
sensitive to realized inflation rates above target due to endogenous indexation (κt > 0). Thus, our nonlinear model
implies more ’de-anchoring’of medium-term inflation expectations than the linearized model.
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shock. While the differences between the nonlinear and linear model are very large —as seen in

the upper left panel, as in Figure 6 — the differences essentially disappear when the underlying

shocks are considerably smaller. Thus, if cost-push shocks are small, a linearized variant captures

the transmission of the shock well and there is no need to work with the nonlinear model. But, if

the cost-push shock is large, it is crucial to work with the nonlinear model to capture the dynamic

effects of cost-push shocks quantitatively.
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Figure 8: Impulse responses of inflation in the nonlinear and linearized model for different sizes of
the cost-push shock.

4.2.1. Monetary Policy Rule

In addition to endogenous indexation, the forecast-based monetary policy reaction function markedly

amplifies the effects of the markup shock on inflation and output when agents initially misperceive

a persistent shock as transitory. Figure 9 provides a comparison of the impulse responses of the

nonlinear model to the cost-push shock under our baseline rule —in which the central bank reacts

to one-year ahead expected inflation in the simple Taylor-style rule (10) —to alternatives in which

it reacts to two-year ahead expected inflation (EtΠt+8/Π̄), or to the current inflation gap (Πt/Π̄),
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in the Taylor rule (10). When the central bank reacts to realized inflation, the real interest rises

substantially, causing output to contract while reducing both the size and persistence of the runup

in inflation. This response to inflation clearly has sizeable output costs, which help explains why

central banks are typically reluctant to react in this way. Even so, there are clear benefits of an

aggressive response when the shock is big enough that the endogenous amplification channels kick

in —such a response contains inflation and reduces vulnerability to additional shocks (as we explore

below). An ad hoc loss function weighting inflation and the output gap equally would in fact imply

a much smaller loss under the rule responding to contemporaneous inflation than under the forecast

based rule.13
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Figure 9: Impulse responses to a cost-push shock in the nonlinear model when the central bank
reacts to current inflation, one-year ahead expected inflation, or two-year ahead expected inflation
in the Taylor rule.

Conversely, the forecast rule responding to two-year ahead expected inflation allows real interest
13 The expected loss —measured as the sum of the squared deviations of annualized inflation from target plus the

sum of squared output gaps for the first 5 years —falls by about 30 percent from a loss value of about 255 under the
forecast-based rule to a loss of about 174 under a rule which responds to actual inflation.
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rates to decline much more sharply, inducing a considerably bigger runup in inflation and output

than under the baseline. Importantly, while agents see intrinsic persistence rising and come to

forecast higher medium-term inflation, the inertia in the policy rule slows the response of the

policy rate, and hence the central bank falls further “behind the curve.”

These implications suggest potential shortcomings of a forecast-based rule when shocks are large

and there is uncertainty about shock persistence. Even so, our model can also show the appeal of

a forecast-based rule in circumstances in which shocks are smaller and fairly transient —conditions

that typically prevailed in the Great Moderation period. Under these conditions, the forecast-based

rule is consistent with “looking through”the shock: because the inflation is short-lived, the central

bank doesn’t need to respond by tightening policy.

This situation is well-captured by our model, and shown in Figure 10. While inflation initially

rises to 4 percent, the central bank only raises the policy rate a tad. But even with real rates and

hence output remaining roughly unchanged, inflation comes back down quickly, reflecting there

is little intrinsic persistence in the Phillips Curve (i.e., indexation is close to zero). By contrast,

reacting aggressively to contemporaneous inflation would seem counterproductive —causing output

to contract sharply, but with little effect on the path of inflation —so that it is easy to see why

the forecast-based rule is appealing. Moreover, the forecast-based rule also performs reasonably

well in containing inflationary pressure in response to a persistent demand shock that is correctly

recognized as such.14 As illustrated in Appendix B.2, inflation is expected to run well above target

a year or two out, so that the policy is raised quickly enough to contain the inflationary pressure,

in part through contracting output via higher real rates.

All told, our results suggest caution against relying on inflation projections at longer forecast

horizons in the formulation of monetary policy when shocks are large and inflation persistence is

high (due to past shocks). In these circumstances, the central bank should be particularly wary

about the risk of treating shocks as temporary when they may in fact be much more persistent.

At the same time, the risks of misperceiving the shock and allowing inflation to get out of control

is much smaller when inflation has been running closer to target and intrinsic persistence lower, so

that forecast-based rules consistent with “looking through” can help avoid excessive volatility in

output.

14 Without the sizeable degree of interest rate smoothing (ρR = 0.85) that we assume in the interest rate rule (eq.
10), the difference between the rules would be further amplified.
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Figure 10: Impulse responses to a transient cost-push shock under alternative monetary policy
rules in the nonlinear model.

4.2.2. Role of Misperceptions

Misperceptions also play a critical role in driving the inflation and output dynamics in our model.

If the central bank and economic agents were able to correctly identify a persistent markup shock

as such when it occurred, interest rates would rise much more quickly even under a forecast-based

reaction function, and output would tend to contract. In Appendix B.3 and Appendix B.4 we

consider robustness to the ”signal to noise”ratio that determines how quickly agents learn about

the underlying shocks —which depends on the ratio of standard deviations (σP /σT ) of the persistent

and transitory components of the cost push shock. Notably, Figure B.4 shows the effects of assuming

alternative values for the ratio of standard deviations (σP /σT ) for the case in which the underlying

shock is highly persistent. If agents are more rapidly able to filter out that the cost-push shocks

is driven by the persistent component than in our baseline, firms would change prices more, the
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central bank would recognize more persistent upward price pressures and tighten their policy stance

more, and as a result output would decline notably more and inflation not rise nearly as much. As

might be expected, the problem of misperceptions for inflation control is much less acute when the

underlying shock is in fact transitory (as explored in Figure B.3 in Appendix B.3).

4.2.3. Implications for Identification of Shocks

An intriguing feature of our model simulations with misperceptions is that forecast-based rules

can imply persistent positive comovement between inflation and output. In other words, output

and inflation exhibit a pattern akin to demand shocks even though the driving force is an adverse

cost-push shock. Now, if the central bank reacts to contemporaneous inflation, output tanks while

inflation surges as reported in e.g. Clarida, Gali and Gertler (1999) and many others.

This implication calls into question the robustness of a standard empirical identification assump-

tion with sign restrictions in structural vector auto regressions (see e.g. Giannone and Primiceri,

2024 for a recent prominent study) that cost-push shocks drive output and inflation in opposite

directions, at least under some conditions. Relatedly, it calls into question the empirical identi-

fication assumption that demand shocks are the only driver of positive short-term co-movement

of output and inflation. Markup shocks can also cause activity to rise under some circumstances.

From the standpoint of the recent inflation surge, our model suggests that some of the strength in

activity —at least initially —may have come from the relatively muted response of monetary policy

to adverse supply shocks.

4.3. State-dependent Amplification of Cost-push Shocks

In this subsection, we illustrate that cost-push shocks have amplified effects in an environment in

which demand is initially strong —even before the shock occurs —and inflation already elevated.

To conduct this exercise, we first generate alternative baselines — shown in the first column of

Table 2 —that are constructed with progressively larger demand shocks. These demand shocks are

constructed with discount factor shocks, and hence affect the potential real interest rate but not

potential output. The first row show the smallest (zero) positive demand shock for which inflation

simply remains at its steady state value and output remains at potential, whereas the last row

shows the biggest demand shock that drives up peak inflation to 3.2 percent and the output gap to

5.4 percent.15 Although the increment of the underlying discount factor shock is the same in the

second to last row in the table, the peak impact on inflation increases with the size of the shock

15 In the table, the underlying discount factor shock varies from 0 (no shock), -0.5, -1, -1.5 and -2.0; i.e. the
increment of the underlying demand shock is constant. A fall in the discount factor implies a rise in demand.

26



given the nonlinear Phillips Curve (as seen in the second column in Table 2).

Table 2: Amplification of Cost-Push Shocks in Nonlinear Model

Baseline: Discount Scenario: Baseline+Same-Sized State-dependent
Factor Shock Cost-Push Shock Effects of Cost-Push Shock

Output Peak Inflation Peak Inflation Peak ∆ Inflation Peak
(Scenario-Baseline)

0.0% 2% (Steady State) 6.7% 4.7%
1.4% 2.2% 8.0% 5.8%
2.7% 2.4% 9.4% 7.0%
4.1% 2.7% 10.8% 8.1%
5.4% 3.2% 12.2% 9.0%

Against each of these alternative baselines, we add the same-sized (i.e., identical) adverse cost-

push shock. As a result, inflation surges even more in the scenario with the cost-push shock —

reported in the third column —compared to the baseline simulation. The last column of Table 2

calculates the marginal impact of the cost-push shock against the alternative baselines, and clearly

indicates how stronger initial demand conditions (columns 1 and 2) cause a given-sized cost shock

to have bigger inflationary effects. For instance, a cost-push shock that pushes up inflation by 4.7

percent when inflation is initially at target would cause inflation to rise by 9 percent if occurring

against the backdrop of an “overheated”economy in which inflation was 3.2 percent initially and

the output gap slightly over 5 percent. This state-dependence has important implications for the

conduct of monetary policy, which we will discuss in the next section.

4.4. Effects of Monetary Tightening

When inflation persistently exceeds the central banks’inflation target as in Figure 5, the central

bank must consider the the pros and cons of bringing inflation back to target more quickly. In this

subsection, we study the effects of more forceful monetary tightening than implied by our baseline

Taylor-style reaction function. Specifically, we let the monetary policy shock εR,t in the Taylor rule

(10) follow an AR(1) process with a persistence coeffi cient of 0.75. We size the monetary policy

shock in both the nonlinear and linearized models such that inflation is reduced by one percentage

point (APR) below its baseline path, which is constructed using the cost-push shock in Figure 5

plus a one percent discount factor shock. The monetary policy intervention is assumed to start
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when inflation attains its peak in the nonlinear model.16 In addition, we consider the case that

in the linear model, the slope of the price and wage Phillips curves is twice as large as in steady

state so that the slopes in the linear model are roughly equal to those in the nonlinear model under

conditions of strong demand.17
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Figure 11: Effects of more aggressive monetary policy (deviation from baseline) when inflation
peaks in nonlinear and linearized models.

Figure 11 shows the deviations of model variables from the baseline due to the additional dose of

monetary tightening. The figure shows that to attain a one percentage point (APR) lower trajectory

16 In Appendix B.5, we consider the implications when the central bank becomes more aggressive at different points
in time. Specifically, Figure B.5 shows the simulation results for more aggressive monetary policy in the nonlinear
model for different start dates of the monetary intervention. The key takeaway is that the earlier the central bank
intervenes, the larger the reduction in inflation for a given hike in the policy rate. Put differently, monetary policy
becomes more effective the higher inflation is to begin with. In this sense, the effi cacy of monetary tightening and
the associated sacrifice ratio are state-dependent in our model.
17 Finally, to put the nonlinear and linearized model on a more equal footing, we allow for endogenous indexation

in the linear model too, i.e. we work with what we call a pseudo-linearized model in which indexation is nonlinear
(and endogenous) but all other model equations are linearized in the linear model.
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for inflation, the nonlinear model implies that the nominal policy rate has to be tightened notably

more than in the linear model, and that this results in a considerably lower output path in the

former. Put differently, if the central bank needs to disinflate faster than implied by the baseline in

order to preserve credibility for the inflation target, our nonlinear model implies that the resulting

output costs are notably larger than implied by a standard linearized model with Phillips curve

intended to match the dynamics of inflation when it surged above the inflation target.

Figure 12 provides a graphical illustration of the intuition underlying our quantitative result that

additional monetary tightening goes hand in hand with larger economic costs in an environment

with nonlinear (kinked) Phillips curves. In Figure 12, the economy is initially in point A, i.e. at the

intersection of a Phillips curve and a monetary policy rule. In the figure, π stands for inflation and

u stands for the unemployment rate which is assumed to be proportional to the negative output

gap, say −x. For simplicity, we assume a monetary policy rule as in Clarida, Gali, and Gertler

(1999) in which the central bank conducts optimal monetary policy under discretion in response to

a cost-push shock, i.e. π = a ∗ u or, after substituting out for the unemployment rate, π = −a ∗ x.

Now, an adverse cost-push shock shifts the Phillips curve up persistently to point B.

𝜋
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Figure 12: Intuition for transition dynamics and economic costs of more monetary tightening than
embedded in the baseline.

If the central bank pursues its historical policy rule then the economy travels slowly back from

point B to point A, i.e. the baseline dynamics. However, if the central bank seeks to bring the

economy back to target inflation faster than implied by the baseline, the central bank can adapt a

more aggressive policy stance. Point C illustrates the outcome the central bank would expect under

this more aggressive rule if it erroneously based its assessment on the linear Phillips Curve as in
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Figure 11. Here the steep slope of the Phillips Curve —if it was linear at all levels of unemployment

—would ease the costs of disinflating. By contrast, point D illustrates the implications in the true

underlying nonlinear model in which a much stronger monetary tightening is required to bring

inflation back to target faster. The resulting economic costs can —depending on the slope of the

nonlinear Phillips curve — become very substantial as shown in Figure 11. All told, Figure 12

illustrates that the costs of additional monetary tightening than embedded in the baseline can be

substantial in a nonlinear framework while a linearized framework may suggest notably lower costs.

The left column of Figure 13 shows the implications for output and inflation when allowing for

stochastic cost-push shocks and discount factor shocks around the baseline. The resulting densities

shown in the figure are constructed as follows. Starting at the baseline path at t = 8, the economy

is hit by random unexpected cost-push and discount factor shocks in each period t ≥ 8.18 The

cost-push shocks follow the unobserved components specification embedded in the model, i.e. have

realizations of transitory and persistent shocks. The variances of cost-push and discount factor

shocks are chosen such that the model generates roughly the unconditional standard deviation of

core PCE inflation, the unconditional standard deviation of real consumption per capita growth,

and the correlation between consumption growth and inflation in post-war/pre-Covid U.S. data.

The density plots are then constructed by using 500 random sequences of these shocks, simu-

lating the model with each sequence separately and such that in each period agents are surprised

by new realizations of cost-push and discount factor shocks. The density plots in Figure 13 show

the {2.5, 10, 20, . . . ., 90, 97.5} percentiles and the median.

Strikingly, as seen in the left panel of Figure 13, the density plots are asymmetric for inflation.

There are more realizations of high inflation than low inflation in the stochastic simulations. The

reason for this result is due to the amplification effects of Kimball aggregation and endogenous

indexation. That is, to the extent that the economy is hit by cost-push and discount factor shocks

and inflation already runs above the central bank’s inflation target, our results indicate that the

economy will see bursts of inflation more often than inflation declines.

The right panel of Figure 13 illustrates the effects when a central bank adopts a more aggressive

stance toward inflation surges. Specifically, starting in period t = 8, the central bank increases the

weight of inflation in the Taylor rule by factor three and reduces the weight of the output gap

by factor of three.19 With this change to the systematic parts of the central bank’s interest rate

18 An alternative simulation setup would be to consider that the supply shock up to the time of the intervention is
actually driven by observationally equivalent draws of the transitory component. This would allow for a more rapid
post-intervention decay in inflation.
19 In this experiment, we have chosen to model monetary tightening with a more aggressive response coeffi cient to

expected inflation in the central bank’s reaction function. An alternative approach would be to switch from forecasted
inflation to current (observed) inflation in the policy rule whenever actual inflation exceeds a threshold inflation level.
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GDP (%) -- More Aggressive Monetary PolicyFigure 13: Distributions of inflation and output (dev from SS) with stochastic shocks for alternative

monetary policy rules.

feedback rule, the right panel of Figure 13 suggests two important implications. First, inflation

is lower on average than with the standard Taylor rule specification. Second, there is almost no

asymmetry in the distribution for inflation. However, the improved stabilization of inflation (i.e.

lower mean and less upward asymmetric inflation risks) comes with substantial economic costs as

illustrated by the bottom right subplot for output in Figure 13. The distribution of output displays

a significant lower mean and evident downside risks relative to the left panel with the historical

policy rule. These results highlight the costs of disinflating late in an economic cycle once inflation

and higher inflation expectations have become entrenched.

5. Related Literature

In addition to the literature discussed in the previous sections, our paper is also related to the

following body of work.

That is, whenever the observed rate of inflation becomes too high, the central bank abandons its inflation forecast-
based policy rule in favor of a policy rule with actual inflaion. Given that actual inflation runs higher than the
inflation forecast in Figure 13 the results of this alternative experiment should be similar to our approach to model
more aggressive tightening.
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Many scholars are seeking to understand the causes of the recent inflation surge and the dy-

namics in the labor market. Bernanke and Blanchard (2023) develop a linear model of wage-price

dynamics for understanding inflation dynamics to decompose the sources of the pandemic-era infla-

tion. They show that supply and energy shocks were the main drivers behind the runup in inflation,

whereas labor market conditions accounted only for a small share of the inflation spike at an early

stage. However, according to their analysis, the influence of the product market shocks will fade,

while the tight labor market and associated persistent nominal wage increases will become the main

factors behind wage and price inflation going forward.

Gagliardone and Gertler (2023) develop a New Keynesian model that aims to account for

the inflation surge with emphasis on the role of oil price shocks and accommodative monetary

policy. An important feature of this model, which includes non-linearities, is that oil is treated as

a complementary good for households and as a complementary input for firms. With these model

features, a upward oil price shock which declines the oil intensity in production reduces the marginal

product of labor (given the strong complementarity between oil and labor) and thereby increases

marginal cost, which increases inflation . This, together with monetary policy accommodation,

helps to explain the inflation surge, even after allowing for demand and labor market tightness

shocks.

Lorenzoni andWerning (2023) discuss the concept of a wage-price spiral, highlighting the conflict

between workers and firms on relative prices of labor and goods as a proximate cause of inflation.

Notably, the model incorporates a scarce non-labor input with low substitutability in production

and both nominal and price wage rigidities. The paper explores how this conflict unfolds within

a New Keynesian framework, with a specific focus on the trajectory of real wages in response to

demand and supply shocks. Their findings demonstrate that both demand and supply shocks can

exhibit a similar three-phase pattern of adjustment in nominal prices, characterized by stronger

price inflation early on, followed by wage inflation catching up later on.

Ball, Leigh, and Mishra (2022) analyze the recent surge in U.S. inflation, with a special focus

on core and headline inflation. They argue that core inflation is influenced by a tighter labor

market and past shocks from headline inflation, particularly due to higher energy prices and supply

chain disruptions. The paper also explores future inflation scenarios, mainly focusing on one where

unemployment rises modestly as projected by the Federal Reserve. Their analysis suggests that

achieving the Fed’s inflation target hinges on optimistic assumptions about inflation expectations

and the relationship between unemployment and job vacancies. If these assumptions are not met,

inflation may remain above the Fed’s 2 percent target unless unemployment increases more than
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currently projected by the Federal Reserve.

Amiti et al. (2024) analyze how much the supply-side disruption and tight labor market con-

tributed to the recent inflation surge. The authors develop a two-sector New Keynesian model with

multiple input factors such as labor, domestic and foreign intermediate inputs, shocks to imported

intermediate input prices, foreign competition in domestic markets, and workers’willingness to

work. When all shocks hit at the same time, firms’ability to substitute between inputs is dimin-

ished, therefore the total effect on inflation is amplified and raises inflation by more compared to

the case when the shocks hit the economy in isolation.

Benigno and Eggertsson (2023, 2024) develop a model that features a non-linear Phillips curve.

The nonlinearity arises from asymmetries in wage setting. The authors provide evidence that the

Phillips curve has a higher slope coeffi cient when market tightness is exceptionally high, which

usually defines a labor shortage. They conclude that the key reason why policymakers failed to

foresee the large persistent inflation surge was because the Phillips curve was assumed to be flat.

An exceptionally tight labor market, which moved the economy on the steep segment of the Phillips

curve, is, according to Benigno and Eggertsson (2023, 2024) responsible for the increase in inflation

in the early 2020s.

Ferrante et al. (2023), Gudmundsson et al. (2024), Guerrieri et al. (2022), Guerrieri et al.

(2024) among others study the implications for inflation of switching expenditures from services to

goods during the pandemic followed by a switch back from goods to services in the aftermath of the

pandemic. These papers typically find that disruptions in one sector can be helpful to understand

inflation dynamics during and after the pandemic.

Hakamada and Walsh (2024) study the implications of a cost-push shock in a linear New Key-

nesian model when the central bank is assumed to keep the policy rate unchanged for some time.

The authors report that the accommodative stance of the central bank renders the model capable

of accounting for a surge in inflation and an expansion of economic activity.

Schmitt-Grohé and Uribe (2024) propose a model with heterogeneous downward nominal wage

rigidity. The model delivers a nonlinear wage Phillips curve linking current wage inflation with cur-

rent unemployment which the authors use to study the pattern of wage inflation and unemployment

observed in the United States over the past 40 years.

Blanco et al. (2024) develop a tractable sticky price model in which the fraction of price

changes evolves endogenously over time and increases with inflation. The model features an inflation

accelerator —a feedback loop between inflation and the fraction of price changes —which increases

the slope of the Phillips curve during periods of high inflation.
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Pfäuti (2024) estimates an inflation attention threshold by the public at an inflation rate of

4% and that attention doubles when inflation exceeds this threshold. He estimates that adverse

supply shocks become twice as inflationary in times of high attention. Using a model, he shows that

shocks that are usually short lived lead to a persistent surge in inflation if they induce an increase

in people’s attention. The attention threshold also implies that is takes more time for inflation to

return to low levels after an inflation surge.

Borio, Hofmann and Zakrajšek (2023) argues that the strength between money growth and

inflation depends on the inflation regime: it is one-to-one when inflation is high and virtually non-

existent when inflation is low. They argue that higher money growth preceded the recent inflation

surge, and that countries with stronger money growth saw markedly higher inflation.

Relative to the body of work cited above, our model combines a unique set of features whose

interplay allows us to account for the joint dynamics of inflation, output, interest rates and the

real wage in the post-Covid episode. The features highlighted in this paper are: i) nonlinear price

and wage Phillips curves, ii) an unobserved components representation for cost-push shocks, iii)

endogenous intrinsic price and wage indexation, and iv) an inflation forecast-based Taylor rule.

With these elements, we have shown that a steep surge in inflation, resilient economic activity, a

slow central bank response, as well as a fall of the real wage emerge endogenously in our model.

These features also imply that our model has novel implications for the amplification of cost-push

shocks and the conduct and effects of monetary policy. Moreover, our model not only applies to

the recent post-Covid episode but is also useful to understand deep recessions such as the Great

Recession as well as ’normal’business cycles. Specifically, given the boomerang-shaped nonlinear

price and wage Phillips curves embedded in our model, our framework can be used to resolve the

missing deflation puzzle, see HLT (2022).

6. Conclusion

We use a macroeconomic model with nonlinear Price and Wage Phillips curves, endogenous intrinsic

indexation and an unobserved components representation of a cost-push shock to explain the post-

COVID inflation surge. The cost push shock can be driven by a transitory or persistent component

but households, firms and the central bank can only observe the sum of both components, and

hence must solve a signal extraction problem to deduce which component drives the observed

markup shock. We consider the case when agents and the central bank expect cost-push shocks to

be transitory most of the time, but the realized cost-push shock in fact stems from the persistent

component. In this environment, when assuming a central bank which follows an inflation forecast-
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based policy rule to see through transient inflation movements, we show that a nonlinear formulation

of our model can explain the persistent inflation surge along with an initial expansion in economic

activity in response to an adverse cost-push shock. Put differently, in our model, an adverse cost-

push shock is expansionary in the short run. Our finding stems from the central bank misjudging

the persistence of the underlying inflationary pressures and abstains from hiking policy rates as it

(erroneously) expects inflationary pressures to dissipate quickly. Under identical assumptions, a

standard linearized formulation of our model does not generate an inflation cycle and the output

gap remains closed.

There are two important monetary policy implications of our nonlinear framework. First, while

“looking through” supply shocks may be good policy for small shocks when inflation is near the

central banks target, it may be quite risky when economic activity is strong and large adverse

shocks drive inflation well above target. Second, our model implies that the economic costs of

“going the last mile”— i.e. with a notably tighter stance than normal behavior would prescribe

attempt to returning inflation quickly to target —can be considerable.

We leave several interesting issues for future research. First, the degree of indexation to past

inflation in price- and wage-setting evolves as a function of the aggregate rate of inflation which

is an endogenous variable in our nonlinear model. It would be very interesting to consider a

version of our model in which firms are allowed to choose a desired rate of indexation and compare

the implications of this in a nonlinear vs. linear model. Second, future research might consider

allowing to switch from an “intensive margin”interpretation of indexation to an “extensive margin”

interpretation —i.e., rather than allowing all non-re-optimizers to partially index to past inflation,

one could allow a state-dependent fraction of non-re-optimizers to (fully) index to past inflation.

In this case, the indexation rule could be calibrated to match differences in the observed frequency

of price adjustment across high- and low-inflation episodes, or to match more refined estimates of

the empirical relationship between the frequency of price adjustment and the prevailing inflation

rate. It might also be worthwhile to consider using separate indexation rules for prices and wages,

in which case the parameterization of the wage rule could be disciplined to match the prevalence

of cost-of-living-adjustment clauses observed during high-inflation episodes.

All told, our analysis suggests that the interaction of nonlinearities and unexpectedly persistent

shocks are crucial to understand the 2021-23 post-COVID episode and are critical to formulate

good policy.
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Appendix A. Derivations, Equilibrium Equations, and Additional Results

A.1. Households

Let Λt denote the Lagrange multiplier on the household budget constraint. The first order condi-

tions for consumption and bonds can be written as (in scaled form):

ct :
1

ct − hCt−1
= λt

Bt : λt = βδtEt
Rt

Πt+1
λt+1

where Πt = Pt/Pt−1 and λt = ΛtPt. Note that in steady state R = Π/β and that in equilibrium,

ct = Ct.

A.2. Labor Contractors

Optimization:

Wt,j

Wt
= ϑwt

dGw

(
nt,j
nt

)
d
nt,j
nt

Calculate derivative and rearrange:

Wt,j

Wt
= ϑwt

[
(1 + ψw)

nt,j
nt
− ψw

] 1−ωw
ωw

nt,j
nt

=
1

1 + ψw

([
1

ϑwt

Wt,j

Wt

] ωw
1−ωw

+ ψw

)

nt,j
nt

=
1

1 + ψw

[Wt,j

Wt

]− (1+θw)(1+ψw)
θw

[ϑwt ]
(1+θw)(1+ψw)

θw + ψw


Substitute into aggregator which gives the aggregate price index resp. definition of lagrange

multiplier:

1 =

∫
Gw

(
nt,j
nt

)
dj

1 =

∫ (
ωw

1 + ψw

[
(1 + ψw)

nt,j
nt
− ψw

] 1
ωw

− ωw
1 + ψw

+ 1

)
dj

1 =

∫
ωw

1 + ψw

[
(1 + ψw)

nt,j
nt
− ψw

] 1
ωw

dj −
∫

ωw
1 + ψw

dj +

∫
1dj

1 =

∫ [
(1 + ψw)

nt,j
nt
− ψw

] 1
ωw

dj

ϑwt =

∫ [Wt,j

Wt

]− 1+ψw+θwψw
θw

dj

−
θw

1+ψw+θwψw
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Note that after imposing zero profits for labor contractors (free entry), we can write

1 =
1

1 + ψw
ϑwt +

ψw
1 + ψw

∫
Wt,j

Wt
dj

ϑwt = 1 + ψw − ψw
∫
Wt,j

Wt
dj

A.3. Wage Setting

Substituting labor demand into the objective and re-arranging gives:

max
W̃j,t

Et

∞∑
i=0

(βξw)i
ςt+int+iλt+i

1 + ψw


Wt+i

Pt+i
ϑεw,t+i

[
(Π̃wt+i×...×Π̃wt+1)

Wt+i

]1−ε
W̃ 1−ε
j,t + ψw

(Π̃wt+i×...×Π̃wt+1)
Pt+i

W̃j,t

−mrst+iϑεw,t+i
[

(Π̃wt+i×...×Π̃wt+1)
Wt+i

]−ε
W̃−εj,t − ψwmrst+i


where

mrst+i =
1

Λt+iPt+i
=

1

λt+i

ε =
(1 + θw) (1 + ψw)

θw

Differentiating:

Et

∞∑
i=0

(βξw)i
ςt+int+iλt+i

1 + ψw


(1− ε) Wt+i

Pt+i
ϑεw,t+i

[
(Π̃wt+i×...×Π̃wt+1)

Wt+i

]1−ε
W̃−εj,t + ψw

(Π̃wt+i×...×Π̃wt+1)
Pt+i

+εmrst+iϑ
ε
w,t+i

[
(Π̃wt+i×...×Π̃wt+1)

Wt+i

]−ε
W̃−ε−1
j,t

 = 0

All wage adjusters choose the same wage, i.e. W̃j,t = W̃t. Re-arranging:

Et

∞∑
i=0

(βξw)i
ςt+int+iλt+i

1 + ψw


(1− ε)wt+iϑεw,t+i

[
(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i

]1−ε
w̃1−ε
t + ψwwt+i

(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i
w̃t

+εmrst+iϑ
ε
w,t+i

[
(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i

]−ε
w̃−εt

 = 0

where

w̃t =
W̃t

Wt
, wt =

Wt

Pt

Note that we can write the first-order condition as:

0 = Et
∑∞

i=0 (βξw)i ςt+int+iλt+iwt+iϑ
ε
w,t+i

[
(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i

]1−ε
w̃t

− ε
ε−1Et

∑∞
i=0 (βξw)i ςt+int+iλt+imrst+iϑ

ε
w,t+i

[
(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i

]−ε
− ψw
ε−1Et

∑∞
i=0 (βξw)i ςt+int+iλt+iwt+i

(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i
w̃1+ε
t
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Or

0 = Et
∑∞

i=0 (βξw)i ςt+int+iλt+iwt+iϑ
(1+θw)(1+ψw)

θw
w,t+i

[
(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i

]− 1+ψw+θwψw
θw

w̃t

− (1+ψw)(1+θw)
1+ψw+θwψw

Et
∑∞

i=0 (βξw)i ςt+int+iλt+imrst+iϑ
(1+θw)(1+ψw)

θw
w,t+i

[
(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i

]− (1+θw)(1+ψw)
θw

− θwψw
ψw+θwψw+1Et

∑∞
i=0 (βξw)i ςt+int+iλt+iwt+i

(Π̃wt+i×...×Π̃wt+1)Wt

Wt+i
w̃

1+
(1+θw)(1+ψw)

θw
t

Or

Swt = Fwt w̃t −Awt w̃
1+

(1+θw)(1+ψw)
θw

t

or in scaled terms

Swt
ςt

=
Fwt
ςt
w̃t −

Awt
ςt
w̃

1+
(1+θw)(1+ψw)

θw
t

swt = fwt w̃t − awt w̃
1+

(1+θw)(1+ψw)
θw

t

where

Fwt = Et

∞∑
i=0

(βξw)i ςt+int+iλt+iwt+iϑ
(1+θw)(1+ψw)

θw
w,t+i


(

Π̃w
t+i × ...× Π̃w

t+1

)
Wt

Wt+i

−
1+ψw+θwψw

θw

w̃t

Awt =
θwψw

ψw + θwψw + 1
Et

∞∑
i=0

(βξw)i ςt+int+iλt+iwt+i

(
Π̃w
t+i × ...× Π̃w

t+1

)
Wt

Wt+i
w̃

1+
(1+θw)(1+ψw)

θw
t

Swt =
(1 + ψw) (1 + θw)

1 + ψw + θwψw
Et

∞∑
i=0

(βξw)i ςt+int+iλt+imrst+iϑ
(1+θw)(1+ψw)

θw
w,t+i


(

Π̃w
t+i × ...× Π̃w

t+1

)
Wt

Wt+i

−
(1+θw)(1+ψw)

θw
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Writing recursively:

Fwt = ςtntλtwtϑ
(1+θw)(1+ψw)

θw
w,t + βξwEt

[
Π̃w
t+1

Πw,t+1

]− 1+ψw+θwψw
θw

Fwt+1

or in scaled terms

fwt = ntλtwtϑ
(1+θw)(1+ψw)

θw
w,t + βξwδtEt

[
Π̃w
t+1

Πw,t+1

]− 1+ψw+θwψw
θw

fwt+1

Awt =
θwψw

ψw + θwψw + 1
ςtntλtwt + βξwEt

Π̃w
t+1

Πw,t+1
Awt+1

or in scaled terms

αwt =
θwψw

ψw + θwψw + 1
ntλtwt + βξwδtEt

Π̃w
t+1

Πw,t+1
αwt+1

Swt =
(1 + ψw) (1 + θw)

1 + ψw + θwψw
ςtntλtmrstϑ

(1+θw)(1+ψw)
θw

w,t + βξwEt

[
Π̃w
t+1

Πw,t+1

]− (1+θw)(1+ψw)
θw

Swt+1

or in scaled terms

swt =
(1 + ψw) (1 + θw)

1 + ψw + θwψw
ntλtmrstϑ

(1+θw)(1+ψw)
θw

w,t + βξwδtEt

[
Π̃w
t+1

Πw,t+1

]− (1+θw)(1+ψw)
θw

swt+1

and the optimality condition in scaled terms

swt = fwt w̃t − αwt w̃
1+

(1+θw)(1+ψw)
θw

t

A.4. Final Goods Producers

Optimization:

Pt,i
Pt

= ϑt
dG
(
yt,i
yt

)
d
yt,i
yt

Calculate derivative and rearrange:

Pt,i
Pt

= ϑt

[(
1 + ψp

) yt,i
yt
− ψp

] 1−ωp
ωp

yt,i
yt

=
1

1 + ψp

([
Pt,i
Pt

ϑ−1
t

] ωp
1−ωp

+ ψp

)

yt,i
yt

=
1

1 + ψp

[Pt,i
Pt

]− 1+θp
θp

(1+ψp)
ϑ

1+θp
θp

(1+ψp)
t + ψp


Substitute into aggregator which gives the aggregate price index resp. definition of lagrange
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multiplier:

1 =

∫  ωp
1 + ψp

[Pt,i
Pt

]− 1+θp
θp

(1+ψp)
ϑ

1+θp
θp

(1+ψp)
t

 1
ωp

− ωp
1 + ψp

+ 1

 di

ϑt =

∫ [Pt,i
Pt

]1− 1+θp
θp

(1+ψp)
di

 1

1− 1+θp
θp

(1+ψp)

Note that after imposing zero profits, we can write

1 =
1

1 + ψp
ϑt +

ψp
1 + ψp

∫
Pt,i
Pt

di

ϑt = 1 + ψp − ψp
∫
Pt,i
Pt

di

A.5. Intermediate Goods Producers

Substituting the demand function into the profit function gives:

max
P̃t,i

Et

∞∑
j=0

(
βξp
)j
ςt+jΛt+j

yt+j
1 + ψp


Pt+j

[
(Π̃t+j×...×Π̃t+1)P̃t,i

Pt+j

]− 1+θp
θp

(1+ψp)+1

ϑ

1+θp
θp

(1+ψp)
t+j

+
(

Π̃t+j × ...× Π̃t+1

)
P̃t,iψp

−MCt+j

[
(Π̃t+j×...×Π̃t+1)P̃t,i

Pt+j

]− 1+θp
θp

(1+ψp)
ϑ

1+θp
θp

(1+ψp)
t+j − ψpMCt+j


Differentiate

0 = Et

∞∑
j=0

(
βξp
)j
ςt+jΛt+j

1 + ψp + θpψp
1 + ψp

(
Π̃t+j × ...× Π̃t+1

)
P̃t,i

×


(

Π̃t+j × ...× Π̃t+1

)
P̃t,i

Pt+j

−
1+θp
θp

(1+ψp)

ϑ

1+θp
θp

(1+ψp)
t+j yt+j

−Et
∞∑
j=0

(
βξp
)j
ςt+jΛt+j

ψp
1 + ψp

θp

(
Π̃t+j × ...× Π̃t+1

)
P̃t,iyt+j

−Et
∞∑
j=0

(
βξp
)j
ςt+jΛt+j (1 + θp)MCt+j

×


(

Π̃t+j × ...× Π̃t+1

)
P̃t,i

Pt+j

−
1+θp
θp

(1+ψp)

ϑ

1+θp
θp

(1+ψp)
t+j yt+j
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Define

p̃t,i =
P̃t,i
Pt

, mct+j =
MCt+j
Pt+j

Using the above definitions and after rearranging:

0 = Et

∞∑
j=0

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j

−
ψp+θpψp+1

θp

ϑ

1+θp
θp

(1+ψp)
t+j︸ ︷︷ ︸

≡Ft

p̃t,i

−Et
∞∑
j=0

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j

−
1+θp
θp

(1+ψp)

ϑ

1+θp
θp

(1+ψp)
t+j

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
mct+j︸ ︷︷ ︸

≡St

−
ψpθp

1 + ψp + θpψp
Et

∞∑
j=0

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j


︸ ︷︷ ︸

≡At

p̃
1+

1+θp
θp

(1+ψp)
t,i

Or

St = Ftp̃t,i −Atp̃
1+

1+θp
θp

(1+ψp)
t,i

Note that, in each period, all firms that reset prices face the same problem and therefore set

the same price, p̃t,i = p̃t,

St = Ftp̃t −Atp̃
1+

1+θp
θp

(1+ψp)
t

It is convenient to scale the above equation by ςt

St
ςt

=
Ft
ςt
p̃t −

At
ςt
p̃

1+
1+θp
θp

(1+ψp)
t

st = ftp̃t − αtp̃
1+

1+θp
θp

(1+ψp)
t

Consider the expressions for St, Ft and At :

St = Et

∞∑
j=0

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j

−
1+θp
θp

(1+ψp)

ϑ

1+θp
θp

(1+ψp)
t+j

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
mct+j

Ft = Et

∞∑
j=0

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j

−
ψp+θpψp+1

θp

ϑ

1+θp
θp

(1+ψp)
t+j

At =
ψpθp

1 + ψp + θpψp
Et

∞∑
j=0

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j


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Note that

St = ςtλtytϑ

1+θp
θp

(1+ψp)
t

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
mct

Et

∞∑
j=1

(
βξp
)j
ςt+jλt+jyt+j


(

Π̃t+j × ...× Π̃t+1

)
Pt

Pt+j

−
1+θp
θp

(1+ψp)

ϑ

1+θp
θp

(1+ψp)
t+j

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
mct+j

So that

St =

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
ςtλtytϑ

1+θp
θp

(1+ψp)
t mct + βξpEt

(
Π̃t+1/Πt+1

)− 1+θp
θp

(1+ψp)
St+1

st =

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
λtytϑ

1+θp
θp

(1+ψp)
t mct + βξpEtδt+1

(
Π̃t+1/Πt+1

)− 1+θp
θp

(1+ψp)
st+1

Similarly,

ft = λtytϑ

1+θp
θp

(1+ψp)
t + βξpEtδt+1

(
Π̃t+1/Πt+1

)− (1+ψp+ψpθp)
θp ft+1

Finally,

αt =
ψpθp

1 + ψp + θpψp
ytλt + βξpEtδt+1

(
Π̃t+1/Πt+1

)
αt+1

A.6. Aggregate Resources

ysumt =

∫
yt,idi

=

∫
nt,idi

ysumt = nt

Also,

ysumt = yt

∫  1

1 + ψp

[
Pt,i
Pt

]− 1+θp
θp

(1+ψp)
ϑ

1+θp
θp

(1+ψp)
t +

ψp
1 + ψp

 di

So that

yt =
1∫ (

1
1+ψp

[
Pt,i
Pt

]− 1+θp
θp

(1+ψp)
ϑ

1+θp
θp

(1+ψp)
t +

ψp
1+ψp

)
di

nt

yt = (p∗t )
−1 nt

where
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p∗t =
ϑ

1+θp
θp

(1+ψp)
t

1 + ψp
∆
− 1+θp

θp
(1+ψp)

t,1 +
ψp

1 + ψp

∆t,1 =

∫ [Pt,i
Pt

]− 1+θp
θp

(1+ψp)
di

−
θp

(1+θp)(1+ψp)

∆t,1 =

∫ [Pt,i
Pt

]− 1+θp
θp

(1+ψp)
di

−
θp

(1+θp)(1+ψp)

∆t,1 =

(1− ξp) p̃− (1+θp)(1+ψp)
θp

t + ξp

[
Π̃t

Πt
∆t−1,1

]− (1+θp)(1+ψp)
θp


− θp

(1+θp)(1+ψp)

Denote aggregate hours worked by households by lt. Then,

lt =

∫
nj,tdj

=
1

1 + ψw
nt

∫ [Wt,j

Wt

]− (1+θw)(1+ψw)
θw

[ϑwt ]
(1+θw)(1+ψw)

θw + ψw

 dj

= nt

∫  1

1 + ψw

[
Wt,j

Wt

]− (1+θw)(1+ψw)
θw

[ϑwt ]
(1+θw)(1+ψw)

θw +
ψw

1 + ψw

 dj

Or

nt = (w∗t )
−1 lt

where

w∗t =

∫  1

1 + ψw

[
Wt,j

Wt

]− (1+θw)(1+ψw)
θw

[ϑwt ]
(1+θw)(1+ψw)

θw +
ψw

1 + ψw

 dj

w∗t =
[ϑwt ]

(1+θw)(1+ψw)
θw

1 + ψw

[
∆w
t,1

]− (1+θw)(1+ψw)
θw dj +

ψw
1 + ψw

∆w
t,1 =

∫ [Wt,j

Wt

]− (1+θw)(1+ψw)
θw

dj

−
θw

(1+θw)(1+ψw)

∆w
t,1 =

(1− ξw) [w̃t]
− (1+θw)(1+ψw)

θw + ξw

[
Π̃w
t

Πw
t

∆w
t−1,1

]− (1+θw)(1+ψw)
θw

dj


− θw

(1+θw)(1+ψw)

So that the aggregate resource constraint reads as follows:

ct = yt = (p∗t )
−1 (w∗t )

−1 lt
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The zero profit condition for final goods producers can be written as:

ϑt = 1 + ψp − ψp
∫
Pt,i
Pt

di

ϑt = 1 + ψp − ψp∆t,2

where

∆t,2 =

∫
Pt,i
Pt

di

∆t,2 =
(
1− ξp

)
p̃t + ξp

(
Π̃t/Πt

)
∆t−1,2

Further, the aggregate price index equation can be rewritten as follows:

Ptϑt =

[∫
P
− 1+ψp+ψpθp

θp

t,i di

]− θp
1+ψp+ψpθp

ϑt = ∆t,3

∆
− 1+ψp+ψpθp

θp

t,3 = (1− ξp)p̃
− 1+ψp+ψpθp

θp

t + ξp

((
Π̃t/Πt

)
∆t−1,3

)− 1+ψp+ψpθp

θp

The zero profit condition for labor contractors can be written as:

ϑwt = 1 + ψw − ψw
∫
Wt,j

Wt
dj

ϑwt = 1 + ψw − ψw∆w
t,2

∆w
t,2 =

∫
Wt,j

Wt
dj

∆w
t,2 = (1− ξw) w̃t + ξw

(
Π̃w
t /Π

w
t

)
∆w
t−1,2

The aggregate wage index can be written as follows:

Wtϑ
w
t =

[∫
W
− 1+ψw+θwψw

θw
t,j dj

]− θw
1+ψw+θwψw

ϑwt = ∆w
t,3[

∆w
t,3

]− 1+ψw+ψwθw
θw = (1− ξw)w̃

− 1+ψw+ψwθw
θw

t + ξw

((
Π̃w
t /Π

w
t

)
∆w
t−1,3

)− 1+ψw+ψwθw
θw
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Notice the following relation between the real wage, price inflation and wage inflation

Πw
t =

Wt

Wt−1

Πw
t =

Pt
Pt

Pt−1

Pt−1

Wt

Wt−1

Πw
t =

Pt
Pt−1

Pt−1

Wt−1

Wt

Pt

Πw
t = Πt

wt
wt−1

A.7. Solution and Implementation

We use the nonlinear (’simul’) solver in Dynare to solve the model. Specifically, we will use the

two-point boundary value solver that is implemented in dynare. In stylized form, the model can

be written as follows:

f(y−1, y0, y1; a0) = 0 in period t = 0

f(y0, y1, y2; a1) = 0 in period t = 1

f(y1, y2, y3; a2) = 0 in period t = 2

....

f(yT−1, yT , yT+1; aT ) = 0 in period t = T

Where y0 denotes the vector of endogenous variables of the model. Dynare’s <simul> command

solves this set of equations for periods t = 0, ..., T using a Newton algorithm.

y−1 and yT+1 are given, and most often equal the steady state of the model.

For each realization of shocks from their stochastic processes, we solve the above system of

equations in which the agents form expectations using the Kalman filter.A.1

More precisely, say in period t = 0 a shock is observed. Then, we solve the system of equations

from t = 0 to t = T with agents forecasting future realizations of shocks from the Kalman filter.

Then, we move one period forward, i.e. t = 1. There, a new shock is realized. We take the state

y0 from the previous simulation as an initial value and solve the system of equations from t = 1 to

t = T + 1. And so on until no new shocks are realized.

A.1 Note that we solve the model under certainty equivalence, i.e. in each simulation period, we solve for the
deterministic solution of the model. Put differently, the solution method that we are using does not take possible
interactions between non-linearities and uncertainty about future shocks into account, i.e. Jensen’s inequality plays
no role in shaping expectations. In future work, it might be worthwile to consider the effects of shock uncertainty.
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A.8. Nonlinear Equilibrium Equations

The nonlinear equilibrium equations can be written as:

Marginal utility (n1) :
1

ct − hct−1
= λt

MRS (n2) : mrst = 1/λt

Euler equation (n3) : λt = βEtδt+1
Rt

Πt+1
λt+1

Resource Constraint (n4) : ct = yt

Production (n5) : yt = (p∗t )
−1 (w∗t )

−1 lt

Non.lin. pricing 1 (n6) : st =

(
1 + ψp

)
(1 + θp)

1 + ψp + θpψp
λtytϑ

1+θp
θp

(1+ψp)
t mct

+βξpEtδt+1

(
Π̃t+1/Πt+1

)− 1+θp
θp

(1+ψp)
st+1

Non.lin. pricing 2 (n7) : ft = λtytϑ

1+θp
θp

(1+ψp)
t + βξpEtδt+1

(
Π̃t+1/Πt+1

)− (1+ψp+ψpθp)
θp ft+1

Non.lin. pricing 3 (n8) : αt =
ψpθp

1 + ψp + θpψp
ytλt + βξpEtδt+1

(
Π̃t+1/Πt+1

)
αt+1

Non.lin.pricing 4 (n9) : st = ftp̃t − αtp̃
1+

1+θp
θp

(1+ψp)
t

Zero profit condition prices (n10) : ϑt = 1 + ψ − ψ∆t,2

Aggregate price index (n11) : ϑt = ∆t,3

Overall price dispersion (n12) : p∗t =
ϑ

1+θp
θp

(1+ψ)

t

1 + ψp
∆
− 1+θp

θp
(1+ψp)

t,1 +
ψp

1 + ψp

Price dispersion 1 (n13) : ∆
− (1+θp)(1+ψp)

θp

t,1 =
(
1− ξp

)
p̃
− (1+θp)(1+ψp)

θp

t + ξp

[(
Π̃t/Πt

)
∆t−1,1

]− (1+θp)(1+ψp)
θp

Price dispersion 2 (n14) : ∆t,2 =
(
1− ξp

)
p̃t + ξp

(
Π̃t/Πt

)
∆t−1,2

Price dispersion 3 (n15) : ∆
− 1+ψp+ψpθp

θp

t,3 = (1− ξp)p̃
− 1+ψp+ψpθp

θp

t + ξp

((
Π̃t/Πt

)
∆t−1,3

)− 1+ψp+ψpθp

θp
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Wage inflation (n16) : Πw
t = Πt

wt
wt−1

Non.lin. wage setting 1 (n17) : swt = fwt w̃t − αwt w̃
1+

(1+θw)(1+ψw)
θw

t

Non.lin. wage setting 2 (n18) : fwt = (w∗t )
−1 ltλtwtϑ

(1+θw)(1+ψw)
θw

w,t + βξwδtEt

[
Π̃w
t+1

Πw,t+1

]− 1+ψw+θwψw
θw

fwt+1

Non.lin. wage setting 3 (n19) : αwt =
θwψw

ψw + θwψw + 1
(w∗t )

−1 ltλtwt + βξwδtEt
Π̃w
t+1

Πw,t+1
αwt+1

Non.lin. wage setting 4 (n20) : swt =
(1 + ψw) (1 + θw)

1 + ψw + θwψw
(w∗t )

−1 ltλtmrstϑ
(1+θw)(1+ψw)

θw
w,t

+βξwδtEt

[
Π̃w
t+1

Πw,t+1

]− (1+θw)(1+ψw)
θw

swt+1

Zero profit condition wages (n21) : ϑwt = 1 + ψw − ψw∆w
t,2

Agg. wage index (n22) : ϑwt = ∆w
t,3

Overall wage disperision (n23) : w∗t =
[ϑwt ]

(1+θw)(1+ψw)
θw

1 + ψw

[
∆w
t,1

]− (1+θw)(1+ψw)
θw +

ψw
1 + ψw

Wage dispersion 1 (n24) :
[
∆w
t,1

]− (1+θw)(1+ψw)
θw = (1− ξw) [w̃t]

− (1+θw)(1+ψw)
θw

+ξw

[
Π̃w
t

Πw
t

∆w
t−1,1

]− (1+θw)(1+ψw)
θw

Wage dispersion 2 (n25) : ∆w
t,2 = (1− ξw) w̃t + ξw

(
Π̃w
t /Π

w
t

)
∆w
t−1,2

Wage dispersion 3 (n26) :
[
∆w
t,3

]− 1+ψw+ψwθw
θw = (1− ξw)w̃

− 1+ψw+ψwθw
θw

t

+ξw

((
Π̃w
t /Π

w
t

)
∆w
t−1,3

)− 1+ψw+ψwθw
θw

Indexation 1 (n27) : Π̃t = Π̄1−κtΠκtt−1

Indexation 2 (n28): Π̃w
t = Π̃t

Indexation 3 (n29) : κt = e
− %

max(Π∗t−Π, 0.0001) − e−
%

0.0001

Indexation 4 (n30) : Π∗t =
(
Π∗t−1

)ω
(Πt−1)1−ω

Marginal cost (n31) : mct = τ
1/κ
t wt

Taylor rule (n32) : Rnott /R =
{
Rnott−1/R

}ρ {Et [Πt+4/Π]}(1−ρ)γπ

{
yt
y
/
ypott

ypot

}(1−ρ)γx

eεR,t

ZLB (n33) : Rt = max(1, Rnott )

Flex-price-flex-wage (potential) economy: version of the model when prices and wages are flex-

ible, i.e. ξp = ξw = 0. Also, we set the cost-push shock to zero in the potential economy. The
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potential economy can be summarized by the following two equations:

Real potential rate, pot. econ (n34) :
1

ypott − hy
pot
t−1

= βEtδt+1rr
pot
t

1

ypott+1 − hy
pot
t

Potential output, pot. econ (n35) : ypott − hy
pot
t−1 =

1

1 + θp

1

1 + θw

Note that potential output is constant and only the real potential rate moves in response to the

discount factor shock.

We have 35 equations in the following 35 endogenous variables:

ct λt wt Rt R
not
t Πt yt p

∗
t lt st ϑt Π̃t mct

ft αt p̃t ∆t,1 ∆t,2 ∆t,3 Π∗t κt Π̃w
t w∗t Πw

t

∆w
t,1 ∆w

t,2 ∆w
t,3 w̃t s

w
t fwt αwt ϑwt mrst rr

pot
t ypott

The variables δt, τ t − 1 = at and εR,t are exogenous.

A.9. Steady State

The following set of equations solve for the steady state of the model. Assume the central bank

chooses a level of steady state inflation Π. Then:

(n3) : R =
1

β
Π

(n27) : Π̃ = Π

Π∗ = Π

Note that:

(n10) : ϑ = 1 + ψ − ψ∆2

(n11) : ∆3 = ϑ

(n12) : p∗ =
ϑ

1+θp
θp

(1+ψ)

1 + ψp
∆
− 1+θp

θp
(1+ψp)

1 +
ψp

1 + ψp

(n13) :
∆1

p̃
= 1

(n15) :
∆3

p̃
= 1

Then, using n10, n11, n14 and n15 we get:

p̃ = 1
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(n14) : ∆2 = p̃

(n10):ϑ = 1 + ψ − ψ∆2

(n11) : ∆3 = ϑ

(n13):∆1 = p̃

(n12):p∗ =
ϑ

1+θp
θp

(1+ψ)

1 + ψp
∆
− 1+θp

θp
(1+ψp)

1 +
ψp

1 + ψp

Use n6-n9:

mc =

(
ϑ

1+θp
θp

(1+ψp)p̃−
ψpθp

1 + ψp + θpψp
p̃

1+
1+θp
θp

(1+ψp)
)
× 1

(1+ψp)(1+θp)

1+ψp+θpψp
ϑ

1+θp
θp

(1+ψp)

(n31):w = mc

Use n1, n2, n4, n5 and mrs = 1/λ = w/(1 + θw) to get:

y =
1

1− h
w

1 + θw

(n4):c = y

(n1):λ =
1

(1− h)c

(n6) : s =

(1+ψp)(1+θp)

1+ψp+θpψp
λyϑ

1+θp
θp

(1+ψp)

1− βξp
mc

(n7) : f =
λyϑ

1+θp
θp

(1+ψp)

1− βξp

(n8) : α =

ψpθp
1+ψp+θpψp

yλ

1− βξp

w∗ = 1

l = n
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w̃ = 1

∆w
1 = 1

∆w
2 = 1

∆w
3 = 1

ϑw = 1

Πw = Π

mrs = 1/λ

fw =
1

1− βξw
nλw

αw =
1

1− βξw
θwψw

ψw + θwψw + 1
nλw

sw =
1

1− βξw
(1 + ψw) (1 + θw)

1 + ψw + θwψw
nλmrs

sw = fw − αw

τ = 1

δ = 1

Flex-price flex-wage (potential) economy: version of the model when prices are flexible, i.e. ξp =

ξw = 0.

(n34) rrpot =
1

β

(n35) ypot =
1

1− h
1

1 + θp

1

1 + θw

A.10. Log-Linearized Equilibrium Equations

Equations n10-15 can be expressed in log-linearized form as follows:

ϑ̂t = 0, p̂∗t = 0, ∆̂t,1 = 0, ∆̂t,2 = 0, ∆̂t,3 = 0, ̂̃pt =
ξp

1− ξp

(
Π̂t − ̂̃Πt

)
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After some tedious math, n6-n9 can be written as:

Non.lin. pricing 1 (n6) : ŝt =
(
1− βξp

) [
ŷt + λ̂t + m̂ct

]
+βξpEt

[
δ̂t+1 +

(1 + θp)
(
1 + ψp

)
θp

(
Π̂t+1 − ̂̃Πt+1

)
+ ŝt+1

]

Non.lin. pricing 2 (n7) : f̂t =
(
1− βξp

) (
ŷt + λ̂t

)
+ βξpEt

[
δ̂t+1 +

(
1 + ψp + ψpθp

)
θp

(
Π̂t+1 − ̂̃Πt+1

)
+ f̂t+1

]
Non.lin. pricing 3 (n8) : α̂t =

(
1− βξp

) (
ŷt + λ̂t

)
+ βξpEt

[
δ̂t+1 −

(
Π̂t+1 − ̂̃Πt+1

)
+ α̂t+1

]
Non.lin.pricing 4 (n9) : ŝt =

1 + ψp + θpψp
1 + ψp

f̂t −
ψpθp

1 + ψp
α̂t +

ξp
(
1− ψp − ψpθp

)
1− ξp

(
Π̂t − ̂̃Πt

)
Premultiply n7 and n8 by

1+ψp+θpψp
1+ψp

and
ψpθp
1+ψp

,respectively. Add n8 and substract n7 from n6:

ŝt −
1 + ψp + θpψp

1 + ψp
f̂t +

ψpθp

1 + ψp
α̂t =

(
1− βξp

)
m̂ct

+βξpEt

 ŝt+1 −
1+ψp+θpψp

1+ψp
f̂t+1 +

ψpθp
1+ψp

α̂t+1

+
(
1− θpψp − ψp

) (
Π̂t+1 − ̂̃Πt+1

) 
Use equation n9 to get:

ξp
(
1− ψp − ψpθp

)
1− ξp

(
Π̂t − ̂̃Πt

)
=

(
1− βξp

)
m̂ct

+βξpEt

[
ψp + θpψp − 1

ξp − 1

](
Π̂t+1 − ̂̃Πt+1

)
Or

Π̂t − ̂̃Πt = βEt

(
Π̂t+1 − ̂̃Πt+1

)
+

(
1− βξp

) (
1− ξp

)
ξp

1

1− (1 + θp)ψp
m̂ct

The coeffi cient 1
1−(1+θp)ψp

is identical to the one in Levin, Lopez-Salido and Yun (2007).

Finally, Π̃t = Π1−κtΠκtt−1 can be log-linearized to yield:

̂̃Πt = κΠ̂t−1.

So, the log-linearized New Keynesian Phillips curve reads:

Π̂t =
κ

1 + βκ
Π̂t−1 +

β

1 + βκ
EtΠ̂t+1 + κm̂ct

where

κ =
1

1 + βκ

(
1− βξp

) (
1− ξp

)
ξp

1

1− (1 + θp)ψp

The nonlinear wage setting equations can be log-linearized to obtain:
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f̂wt = (1− βξw)
(
n̂t + λ̂t + ŵt

)
+ βξwEt

(
δ̂t +

1 + ψw + θwψw
θw

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ f̂wt+1

)
α̂wt = (1− βξw)

(
n̂t + λ̂t + ŵt

)
+ βξwEt

(
δ̂t −

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ α̂wt+1

)
ŝwt = (1− βξw)

(
n̂t + λ̂t + m̂rst

)
+ βξwEt

(
δ̂t +

(1 + θw) (1 + ψw)

θw

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ ŝwt+1

)
ŝwt =

1 + ψw + θwψw
1 + ψw

fwt −
θwψw

1 + ψw
α̂wt + (1− ψw − θwψw) ̂̃wt

Also:

̂̃wt =
ξw

1− ξw

(
Π̂w,t − ̂̃Πw

t

)
So that

1 + ψw + θwψw
1 + ψw

f̂wt =
1 + ψw + θwψw

1 + ψw
(1− βξw)

(
n̂t + λ̂t + ŵt

)
+

1 + ψw + θwψw
1 + ψw

βξwEt

(
δ̂t +

1 + ψw + θwψw
θw

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ f̂wt+1

)
θwψw

1 + ψw
α̂wt =

θwψw
1 + ψw

(1− βξw)
(
n̂t + λ̂t + ŵt

)
+

θwψw
1 + ψw

βξwEt

(
δ̂t −

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ α̂wt+1

)
ŝwt = (1− βξw)

(
n̂t + λ̂t + m̂rst

)
+ βξwEt

(
δ̂t +

(1 + θw) (1 + ψw)

θw

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ ŝwt+1

)
ŝwt =

1 + ψw + θwψw
1 + ψw

fwt −
θwψw

1 + ψw
α̂wt + (1− ψw − θwψw)

ξw
1− ξw

(
Π̂w,t − ̂̃Πw

t

)
Substract first and add second equation to third equation and substitute last equation to get:

(1− ψw − θwψw)
ξw

1− ξw

(
Π̂w,t − ̂̃Πw

t

)
= (1− βξw) (m̂rst − ŵt)

+βξwEt

(
(1 + θw) (1 + ψw)

θw

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ ŝwt+1

)
+
θwψw

1 + ψw
βξwEt

(
−
(

Π̂w,t+1 − ̂̃Πw
t+1

)
+ α̂wt+1

)
−1 + ψw + θwψw

1 + ψw
βξwEt

(
1 + ψw + θwψw

θw

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+ f̂wt+1

)
Or :

(1− ψw − θwψw)
ξw

1− ξw

(
Π̂w,t − ̂̃Πw

t

)
= (1− βξw) (m̂rst − ŵt)

+βξw (1− ψw − θwψw)

(
1 +

ξw
1− ξw

)
Et

(
Π̂w,t+1 − ̂̃Πw

t+1

)
Or: (

Π̂w,t − ̂̃Πw
t

)
= βEt

(
Π̂w,t+1 − ̂̃Πw

t+1

)
+

(1− ξw) (1− βξw)

ξw

1

1− (1 + θw)ψw
(m̂rst − ŵt)
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where

m̂rst = −λ̂t

So, the set of log-linearized equilibrium equations can be written as:

Euler equation (l1) : ŷt =
1

1 + h
Etŷt+1 +

h

1 + h
ŷt−1 −

1− h
1 + h

Et

[
R̂t − Π̂t+1 + δ̂t+1

]
Marginal cost (l2) : m̂ct =

1

κ
τ̂ t + ŵt

Marg. rate of subst.(l3) : m̂rst =
1

1− h (ŷt − hŷt−1)

Taylor rule (l4) : R̂nott = ρR̂t−1 + (1− ρ)
[
γπEtΠ̂t+4 + γx

(
ŷt − ŷpott

)]
+ εR,t

ZLB (l5) : R̂t = max(− lnR, R̂nott )

Price Phillips Curve (l6) : Π̂t − ̂̃Πt = βEt

(
Π̂t+1 − ̂̃Πt

)
+ (1 + βκ)κm̂ct

Wage Phillips Curve (l7) : Π̂w,t − ̂̃Πt = βEt

(
Π̂w,t+1 − ̂̃Πt

)
+ κw (m̂rst − ŵt)

Wage inflation (n8) : Π̂w,t = Π̂t + ŵt − ŵt−1

Real potential rate (l9) : r̂rpott = −Etδ̂t+1

Potential output (l10) : ŷpott = 0

Log-linearizing the indexation equations gives:

Indexation (l11): ̂̃Πt = 0

Finally, the slopes of the Phillips curves are defined as:

κ =

(
1− βξp

) (
1− ξp

)
ξp

1

1− (1 + θp)ψp

1

1 + βκ

κw =
(1− ξw) (1− βξw)

ξw

1

1− (1 + θw)ψw

We have 13 equations in the following 13 endogenous variables:

R̂t R̂
not
t Π̂t

̂̃Πt ŷt ŵt m̂ct m̂rst Π̂w,t r̂r
pot
t ŷpott

The variables δ̂t, τ̂ t = τ t − 1 = at and εR,t are exogenous.
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Appendix B. Additional Results

This appendix contains additional results cited in the main text.

B.1. Data-Model Comparison in Linearized Model

Figure B.1 provides a comparison between the data and the linearized model.
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Figure B.1: Comparison of data vs. linear model.

B.2. Transmission of Discount Factor Shock

Specification: discount factor shock of εδ,0 = −0.01, i.e. fall in discount factor of 1 percent (quar-

terly) or 4 percent (annualized). Fall in discount factor implies rise in demand (but no effects on

potential output).
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Figure B.2 provides the impulse responses of the nonlinear model to a discount factor shock.
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Figure B.2: Impulse responses to a discount factor shock in the nonlinear model.

B.3. Transmission of Transitory Cost-push Shock

Here, we consider the case when the cost push shock is transitory, i.e. εT0 = 0.0025 shock to the

transitory component of the cost push shock. I.e. 1/4 percent (quarterly) or 1 percent (annualized)

cost-push shock. This analysis could be extended to show (or argue based on the the results below)

that it is more optimal to ’look through’transitory cost push shocks.

Figure B.3 in the appendix provides the impulse responses of the nonlinear model to a cost-push

shock when the latter is driven by the transitory (iid) component.

B.4. Further Details on the Unobserved Components Representation

Figure B.4 shows the effects of assuming alternative values for the ratio of standard deviations

(σP /σT ) of the persistent and transitory components of the unobserved components representation

of the cost push shock in the nonlinear model.
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Figure B.3: Impulse responses to a transitory (iid) cost-push shock in the nonlinear model.

B.5. Timing of Monetary Policy Intervention

Here, we consider the implications when the central bank becomes more aggressive at different

points in time. Specifically, Figure B.5 shows the simulation results for more aggressive monetary

policy in nonlinear model for different start dates of the monetary policy intervention. All impulse

responses are displayed in deviations from baseline. The key takeaway is that the earlier the

central bank intervenes, the larger the reduction in inflation for a given hike in the policy rate.

Put differently, monetary policy becomes less effective the higher inflation is to begin with. In this

sense, the effi cacy of monetary tightening and the sacrifice ratio are state-dependent in our model.
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Figure B.4: Effects of alternative values for the ratio of standard deviations of the persistent and

transitory components of the unobserved components representation of the cost push shock in the

nonlinear model.
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Figure B.5: Simulation results for more aggressive monetary policy in nonlinear model with different

start dates for the monetary policy intervention. All responses in deviations from baseline.
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