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Abstract

How can central banks avoid losing control over inflation expectations? We reconsider the issue for

a large class of expectations beyond rational expectations. (1) Restricting monetary policy to a Taylor

rule, the Taylor principle does not prevent self-fulfilling inflation but inflation spirals, unless foresight is

unrealistically high. (2) Against inflation spirals, active monetary policy can be characterized beyond

Taylor rules, as a sufficient increase of a weighted average of present and future policy rates. Future rates

are weighted less, so delaying hikes requires larger hikes. (3) Yet, increasing rates slowly can be optimal

provided a large cost on output stabilization.
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Introduction

How can a central bank avoid losing control over inflation expectations in the face of a large supply shock?

The question has come back front and center following the Covid pandemic, as the world economy expe-

rienced supply shocks and inflation levels of magnitude not seen in 40 years. Standard monetary models

provide a well-known response to this question: Respecting the Taylor principle—i.e. increasing interest

rates more than one-for-one with inflation—prevents inflation from becoming self-fulfilling and defines an

active monetary policy (e.g. Woodford 2001).1 The last worldwide episode of high inflation—the Great In-

flation of the 1970s—has been linked to central banks’ failure to respect the Taylor principle (Clarida, Galí,

and Gertler 2000).

In standard models, the need to respect the Taylor principle is derived under the assumption of rational

expectations. In this paper, we revisit the question of how to keep control over inflation expectations when

expectations are instead boundedly rational.

What motivates us to move away from the particular case of rational expectations is a recent important

qualification to the need to respect the Taylor Principle. The Taylor principle is necessary to prevent self-

fulfilling inflation in baseline monetary models, but it no longer is in monetary models developed to solve the

shortcomings of the baseline models. Baseline New-Keynesian models find forward guidance (FG) to have

unrealistically large effects on inflation and output—the FG puzzle (Del Negro, Giannoni, and Patterson

2012, Carlstrom, Fuerst, and Paustian 2015). Several solutions to the FG puzzle have been proposed.

Some, such as cognitive discounting, consist in departures from rational expectations, while others, such as

household heterogeneity, do not.2 But virtually all work by adding discounting to the baseline model. Yet,

when adding enough discounting to the baseline model to solve the FG puzzle, a unique equilibrium with

no self-fulfilling inflation obtains even under an interest-rate peg—a fully passive monetary policy. This

would suggest that the need to adopt a sufficiently active monetary policy—to increase rates sufficiently

in response to an inflationary shock—is an artifact of unrealistically forward-looking models. Yet, recent

evidence confirms that too passive a monetary policy makes the central bank prone to losing control over

inflation (for instance the recent unfortunate experience of Turkey—see Gurkaynak, Kisacikoglu, and Lee

2022).

We consider how to keep control over inflation expectations away from rational expectations by con-

sidering instead a large set of boundedly rational expectations. Specifically, we rely on Woodford (2019)’s

model of bounded rationality, a generalization of the baseline New-Keynesian model under rational expec-

tations, which obtains as a particular case (section 1). Woodford’s model combines two forms of bounded

rationality: finite planning horizons and long-term learning. Finite planning horizons make expectations less

forward-looking than rational expectations, providing a solution to the FG puzzle. As such, they capture
1See e.g. chapter 2 of Woodford (2003) and section 2 of Castillo-Martinez and Reis (2022) for excellent introductions to the

Taylor principle and equilibrium determinacy under rational expectations.
2On household heterogeneity, see e.g. McKay, Nakamura, and Steinsson (2016), Bilbiie (2020, 2018), Werning (2015) and

Acharya and Dogra (2020). On bounded rationality, see e.g. Woodford (2019), Farhi and Werning (2019), Gabaix (2020),
Angeletos and Lian (2018), Dupraz, Le Bihan, and Matheron (2024).
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a larger class of models of bounded rationality introduced as solutions to the FG puzzle, such as cognitive

discounting (Gabaix 2020) and k-level thinking (Farhi and Werning 2019). Long-term learning makes expec-

tations about the long run backward-looking, a feature introduced by Woodford to highlight the fragility of

neo-Fisherianism predictions. Empirically, it is consistent with the persistent increase of long-term inflation

expectations following large inflation surges documented by Blanco, Ottonello, and Ranosova (2022) using

more than 100 inflation episodes worldwide. Long-term learning captures a departure from rational expecta-

tions common to other models of learning, such as least squares learning (Evans and Honkapohja 2001). The

combined FPH-learning model generalizes both cognitive discounting models and learning models, allowing

expectations to be both backward and forward-looking. As Gust, Herbst, and López-Salido (2023) show, it

does a very good job at capturing the dynamics of expectations in surveys. In particular it can replicate the

under and over-reaction of expectations to shocks that have been recently documented in surveys and used

to discriminate between models of expectation formation (Coibion and Gorodnichenko 2015, Kohlhas and

Walther 2021, Angeletos, Huo, and Sastry 2020).3

We show three results. First, we show that except for unrealistically high degrees of foresight, active

monetary policy does not prevent self-fulfilling inflation but inflation spirals. To do so, we restrict monetary

policy to a Taylor rule and study under which conditions it delivers a unique bounded solution (section

2). We show that, bar knife-edge calibrations that we argue are not economically relevant, the Taylor

principle remains necessary and sufficient for a unique bounded solution to exist under a Taylor rule. But

it prevents self-fulfilling inflation only for very high degrees of foresight under which the model is subject to

the FG puzzle. Whenever foresight is low enough to avoid the FG puzzle, the risk that the Taylor principle

prevents is instead the absence of bounded solutions: that the economy necessarily goes on an unbounded,

hyperinflation path. This generalizes Woodford (2019)’s result of instability under an interest-rate peg. It

also fills the gap between results on the Taylor principle obtained under rational expectations (i.e. purely

forward-looking expectations) and results on the Taylor principle obtained in models with purely backward-

looking expectations such as least squares learning (Bullard and Mitra 2002, Preston 2005).

What an active monetary policy prevents when the model is not subject to the FG puzzle is therefore

very different from what it prevents under rational expectations. The cause of the inflation spiral is a de-

anchoring of inflation expectations, as long-run inflation expectations gradually diverge away from target.4

It takes root in what Wicksell (1898) called the cumulative process. Under a passive monetary policy, a

burst of inflation increases households’ and firms’ long-run inflation expectations, which decreases real rates,

increases aggregate demand and further increases inflation even once the initial shock has dissipated, and

so on in a snowballing spiral. This alternative risk of passive monetary policy, arguably closer to the main
3For a review of the survey evidence against full-information rational-expectations, see e.g. Born, Enders, and Muller (2023).
4We therefore say that a policy anchors expectations if it prevents such divergence of inflation expectations by sufficiently

increasing interest rates. Note that a situation of anchored expectations can alternatively be understood as a situation in which
long-run expectations react little or not al all to recent realized inflation, even if the central bank does not increase rates. See
e.g. Carvalho et al. (2023) and Gáti (2023). Because the set-up we consider assumes constant-gain learning, such a situation
is excluded by assumption. The central bank can only keep inflation expectations close to target—anchor expectations—by
actively bringing them back to target through interest rate hikes.
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risk on central bankers’ minds, has an intellectual history that predates risks of equilibrium indeterminacy.5

Beyond Wicksell (1898), it underlies Friedman (1968)’s argument against pegging interest rates. It is also the

risk of concern in purely backward-looking models of expectation-formation, such as least squares learning

(Bullard and Mitra 2002, Evans and Honkapohja 2003b, Preston 2005).6 Our first result shows that it is the

risk that active monetary policy prevents not just in purely backward-looking models, but as soon as agents’

degree of foresight is low enough to avoid the FG puzzle.

Second, we move beyond Taylor rules (section 3). As is well-known, when expectations are rational and

the risk of passive monetary policy consists of equilibrium indeterminacy, monetary policy must necessarily

be implemented through some Taylor-like feedback rule. Specifying monetary policy as an exogenous path

for the policy rate results in equilibrium indeterminacy just like when the Taylor principle is not satisfied.

We show that when the degree of foresight is low enough to rule out the FG puzzle and the risk of concern is

instead inflation spirals, characterizing active monetary policy no longer requires to specify monetary policy

through a feedback rule. We define an active monetary policy as one that delivers a determinate bounded

equilibrium where inflation returns to its target in the long run and show that there exists a large class

of exogenous interest-rate paths that do so. This is summarized in Table 1. We characterize the class of

interest rate paths that deliver active monetary policy. The characterization states that a weighted average

of present and future expected policy rates must increase sufficiently. It captures the idea that inflationary

shocks must be met by interest rate hikes, either today or at some point in the future. As such, it captures

an intuition similar to the one behind the Taylor principle, but without restraining monetary policy to follow

a Taylor rule.

We show that this characterization allows to determine how much interest rate hikes at different horizons

matter for anchoring expectations. To this effect, we define what we call the relative anchoring effect of an

interest rate at a given horizon: how much it matters for bringing inflation down to target in the long run

relative to a contemporaneous interest rate hike. We show that the relative anchoring effect is the highest at

intermediary horizons, striking a balance between two opposite forces. First, rate hikes at very short horizons

matter little for bringing inflation down because short-term interest rates have by themselves little effect on

aggregate demand and therefore inflation. This first effect is present under rational expectations as well but

not in purely backward-looking models where aggregate demand does not depend on the entire yield curve

beyond present short-term rates. Second, rate hikes at very long horizons matter little for bringing inflation

down because, although they can always bring down inflation, it takes much larger future hikes to re-anchor
5Such explosive dynamics are also the dominant outcome in laboratory experiments by Assenza et al. (2021) when the

Taylor principle is not respected. To completely get rid of such explosive paths in their experiments, the response of policy
rates to inflation need to be significantly above one-for-one. For a response only marginally above one-for-one, many participants
extrapolate past trends, leading to explosive dynamics.

6In the models of Bullard and Mitra (2002) and Preston (2005) which feature decreasing-gain learning, respecting the Taylor
principle actually also guarantees convergence to the rational expectations equilibrium. It therefore wards off both inflation
spirals on the way to rational expectations, and self-fulfilling inflation once the economy has converged to rational expectations.
In our set-up under constant-gain learning, respecting the Taylor principle does not make the economy converge to rational
expectations and only prevent inflation spirals. Orphanides and Williams (2005a) and Milani (2007) highlight how constant-gain
learning generates endogenous persistence in macroeconomic models and in particular “inflation scares” as long-run inflation
expectations persistently depart from target.
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Table 1: Outcome Depending on Monetary Policy and the Degree of Foresight

High Foresight Low Foresight

Active Taylor Rule Unique Bounded Inflation Path Unique Bounded Inflation Path

Passive Taylor Rule Self-Fulfilling Inflation Inflation Spirals

Exogenous Interest-Rate Path Self-Fulfilling Inflation Depends on the Interest Rate Path

Note: The table sums up when the economy has a unique bounded equilibrium, is subject to self-fulfilling inflation,
or diverges into an inflation spiral, depending on agents’ degree of foresight and on how monetary policy is set. An
active (passive) Taylor rule is one that respects (does no respect) the Taylor principle.

expectations once expectations have had time to drift away. This second effect exists only when inflation

spirals are possible and is therefore absent under rational expectations. The horizon of interest rate hikes

that matters most for bringing inflation back to target is intermediary, long enough to affect long-term rates

for several quarters but not so long that it mostly cools the economy once expectations have de-anchored

much and there is much to re-anchor. In our main calibration, it is the short-term interest rate 5 quarters

ahead that has the highest relative anchoring effect.

The weighted average of present and future policy rates that comes out of the model provides a measure

of monetary tightening. We use this measure to assess when the Fed started to tighten its stance in the face

of the 2021-2022 inflation surge. According to it, the Fed started to tighten in early 2021 and stabilized its

stance in early 2022. This is a year ahead of what one would conclude looking at the Fed Funds rate, which

was lifted off the ZLB in March 2022 and reached its peak of 5.25-5.5% in July 2023.

That the weights on future policy rates decreases beyond the first few quarters suggests that when the

risk of passive monetary policy consists of inflation spirals, delaying interest rate hikes beyond the first few

quarters is always ill-advised. Hiking rates today comes at the cost of a lower output today, but delaying

hikes to tomorrow will require larger hikes, with a larger output cost. This suggests a trade-off between a

recession today and a larger recession tomorrow, a trade-off on which doves and hawks should agree to prefer

the former. This however is no longer a question about active and passive monetary policy, but a question

about optimal monetary policy.

So third and finally, we derive the optimal way to anchor expectations, i.e. we solve for the optimal

monetary policy, both under commitment and under discretion (section 4). Crucially, when the degree of

foresight is low and the risk of passive monetary policy consists of inflation spirals, the optimal policy problem

captures all that is relevant to determining the best way to anchor expectations. The optimal policy no longer

needs to be implemented by combining the optimal interest rate path with an active feedback interest rate

rule as it does under rational expectations. The risks of passive monetary policy do exist in the form of

inflation spirals, but the solution to the optimal policy problem already selects an interest rate path that

increases rates sufficiently to prevent such spirals.
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We characterize optimal policy through a target criterion which generalizes both the target criterion

under rational expectations and the target criterion derived by Molnár and Santoro (2014) in a model of

adaptive learning with fully backward-looking expectations. Relative to rational expectations, the target

criterion now features the cost of increasing long-run expectations, which can be expressed as the cost of

future higher inflation and output gaps. Relative to the case of purely backward-looking expectations the

target criterion under commitment still features the need to deliver on past policy promises, since the central

bank can still use its ability to commit to affect the forward-looking component of expectations.

We use the characterization of the optimal policy to assess how fast a central bank should increase interest

rates in response to a cost-push shock. We show that, contrary to what the relative anchoring effect of policy

rates at long horizons could suggest, the response strongly depends on the weight the central bank puts on

output stabilization. The more weight it puts on output, the less the central bank should increase policy

rates on impact, limiting the fall in output. While the risk of a inflation spiral implies that the lower policy

rate on impact must be compensated with higher policy rates in the future, it does not mean that the central

bank engineers a recession tomorrow instead of today. Instead, it counters the inflation spiral by keeping

rates high for longer, bringing down long-run expectations only slowly. While output is persistently lower in

the process, this avoids an outright recession.

Finally, we use the characterization of optimal monetary policy to look back at the Fed’s response to

the inflation surge of 2021-2022. The model finds that a central banker who puts a small weight on output

stabilization should have raised rates much earlier than the Fed did, already in early 2021. But the model

finds that a central banker with a larger weight on output stabilization should have lifted rates at about the

same time as the Fed did, and should have followed a rate path close to the one the Fed implemented, albeit

peaking somewhat higher at 6.25%.

This paper is related to several branches of literature. We build crucially on Woodford (2019)’s model

of finite planning horizons and long-term learning, following up on a recent literature that has adopted the

framework. Gust, Herbst, and López-Salido (2022) show that it fits the dynamics of output and inflation

very well, generating macroeconomic persistence without resorting to consumption habits or mechanical in-

dexation. Gust, Herbst, and López-Salido (2023) show that it also fits the dynamics of inflation expectations

in the Survey of Professional Forecasters. Dupraz, Le Bihan, and Matheron (2024) use it to evaluate make-up

strategies. Woodford and Xie (2022) and Xie (2020) use it to investigate monetary/fiscal interactions. Na

and Xie (2022) show it can explain the deviations from the uncovered interest rate parity. We use it to study

de-anchoring risks.

While Woodford’s model is a rare example of a bounded rationality model that combines backward and

forward-looking elements, its version without learning connects to other models designed to solve the FG

puzzle through bounded rationality, such as Gabaix (2020) and Farhi and Werning (2019), or departure from

common knowledge, such as Angeletos and Lian (2018). Because they abstract from long-term learning, these

models eliminate the risk of equilibrium indeterminacy without creating a new risk of inflationary spirals.
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But this implies passive monetary policy presents no risk in these models.7

McKay, Nakamura, and Steinsson (2016) show that household heterogeneity and incomplete markets

can provide an alternative solution to the FG puzzle. In these models as well, equilibrium indeterminacy

disappears without the new risk of inflationary spirals appearing. But similarly, this implies that passive

monetary policy presents no risk in these models. Besides, Bilbiie (2020), Werning (2015) and Acharya and

Dogra (2020) show that household heterogeneity can either attenuate of amplify the FG puzzle, depending

on the cyclicality of idiosyncratic income.

The idea that too passive a monetary policy can lead to snowballing dynamics dates back to Wicksell

(1898)’s argument of the cumulative process, later developed by Friedman (1968), first formalized by Howitt

(1992), and studied in the least squares learning literature (e.g. Bullard and Mitra 2002, Evans and Honkapo-

hja 2003b, Preston 2005). Relative to these, we analyze de-anchoring risks in a model where expectations are

both forward and backward-looking, spanning all the intermediary cases between fully backward and fully

forward (rational) expectations. This allows to show that inflation spirals are the risk of concern not only in

models of fully backward-looking expectations, but as soon as expectations are not so forward-looking as to

send the model into the FG puzzle. Allowing for partly forward-looking expectations also allows to derive the

interest rate horizons that matter most to bring inflation to target in the long run. Carvalho et al. (2023) and

Gáti (2023) consider de-anchoring risks through learning models with endogenous state-dependent learning

gains, a dimension the FPH-learning model abstracts from.

Our results on optimal policy connect in particular to the part of the least squares learning literature

that considers optimal policy, in particular Molnár and Santoro (2014)—see also Eusepi and Preston (2018),

Gaspar, Smets, and Vestin (2010) and the references therein. This literature has emphasized that optimal

policy reacts more strongly to inflation than under rational expectations when the risk of inflation spirals

exists—a result that still holds in the FPH-learning model. We emphasize instead that whether to increase

policy rates strongly and quickly or through a smaller but more persistent increase depends strongly on the

weight put on output stabilization. Gáti (2023) shows that when the sensitivity of inflation expectations

to realized inflation is state-dependent—a feature from which our paper abstracts—the central bank reacts

aggressively when expectations de-anchor, allowing it to react less aggressively when they are anchored.

The FPH-learning framework we consider also connects to a series of recent models that capture how

imprecise memory can generate perpetual learning about the long-run, which in turn greatly helps in match-

ing expectations in randomized experiments (Afrouzi et al. 2023, Azeredo da Silveira, Sung, and Woodford

2020), expectations in surveys (Sung 2022), and asset returns Nagel and Xu (2022). While these models

are not nested in the present framework, their assumptions that agents learn about the long-run with an

imperfect memory shares important similarities with its assumption of constant-gain learning about the

long-run. Imperfect memory offers an alternative to the typical justification for constant-gain learning—that
7Retaining rational expectations, Angeletos and Lian (2021) show that infinitely small frictions in social memory also get

rid of equilibrium multiplicity under a passive monetary policy. Here as well, since there is no risk of inflationary spirals either,
it implies that passive monetary policy presents no risk of losing control over inflation expectations.
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structural changes make agents discount long-distant historical data.

Long-term learning also relates to models of long-term drifts that decompose the dynamics of macroeco-

nomic variables into a transitory cycle and a non-stationary trend, or “shifting endpoint” (e.g. Kozicki and

Tinsley 2001, Gürkaynak, Sack, and Swanson 2005, Crump et al. 2023). Such models typically interpret

the movements in long-term drifts away from learning however, for instance as long-term movements in the

objective inflation target of the central bank.

While the FPH-learning framework we consider embeds cognitive discounting and learning, there are

other departures from rational expectations that it does not embed. One is diagnosis expectations (Bordalo,

Gennaioli, and Shleifer 2018, Bordalo et al. 2019, 2020, L’Huillier, Singh, and Yoo 2023). Baseline versions

of diagnosis expectations models have the property that long-term expectations coincide with rational ex-

pectations ones and as such are not prone to generating diverging inflation spirals under passive monetary

policy.8 Beaudry, Carter, and Lahiri (2023) consider a setup where agents form expectations through level-k

thinking, which they show constitutes similarly a midpoint between fully rational and fully backward-looking

expectations. They show that in their setup it can be desirable for the central bank to discontinuously pivot

from looking through a supply shock to responding aggressively once inflation expectations cross a threshold.

The optimal policy that we derive in the FPH-learning model does not display brusque reversals resembling

a pivot.

1 Woodford’s Boundedly-Rational New-Keynesian Model

To study de-anchoring risks, we build on Woodford (2019)’s model of bounded rationality. We start by

laying out Woodford’s model and putting it in a tractable form. Woodford’s model is an generalization to

bounded rationality of the canonical three-equation New-Keynesian model under rational expectations

yt = −σ(it − Et(πt+1)) + Et(yt+1) + νyt , (1)

πt = κ(yt − yet ) + βEt(πt+1) + νpt , (2)

it = φππt + φyyt. (3)

where πt is inflation, yt is output, yet is efficient output which is a function of productivity, it is the short-term

policy rate, νyt and νpt are demand and cost-push shocks, and equations (1)-(2)-(3) are the Euler equation,

New-Keynesian Phillips curve, and the Taylor policy interest-rate rule.9 Denote it in matrix form

Yt = AEt(Yt+1) + bνt, (4)
8See e.g. Bordalo et al. (2020), p.2765.
9Contrary to Woodford (2019), we specify preference demand shocks as discount factor shocks so that they appear as a

time-t shock only in the Euler equation. This is simply to avoid having to write the model in bloc form with t + 1 shocks on
top of t shocks, a straightforward but cumbersome extension.
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where Yt = (yt, πt)′, νt = (νyt , ν
p
t − κyet ), and A and b are matrices given in appendix A.

1.1 Finite Planning Horizons

Woodford’s model embeds two forms of departures from rational expectations. First, firms and household

are assumed to have finite planning horizons. They are assumed to perceive future shocks and to reason

through their consequences on endogenous economic variables only until h periods ahead. To evaluate the

consequences of their choices beyond their planning horizon h however, they rely on an approximate value

function under which all variables that they take as exogenous, such as output and inflation, are equal to

their long-run values. When finite planning horizons are the only form of bounded rationality, their long-term

value functions is taken to be constant. Woodford shows that an agent with planning horizon h perceives

the economy to satisfy the recursion (4) up to its planning horizon h, and imposes the terminal condition

Yt+h+1 = 0 at the end of its planning horizon. As a consequence, its perception Y ht of output and inflation

at t solves

Y ht = Et

h∑
j=0

Ajbνt+j . (5)

Under the assumption that planning horizons are distributed according to a geometric distribution, with

a share (1−ρ)ρh of households and firms having planning horizon h, the model under FPH can be aggregated

into

Yt = ρAEt(Yt+1) + bνt, (6)

where ρ ∈ [0, 1] increases with the average planning horizon N = ρ/(1 − ρ) in the population and param-

eterizes the degree of foresight of firms and households. Rational expectations correspond to the limiting

case where planning horizons are infinite ρ = 1. Relative to rational expectations, finite planning horizons

make firms and household discount the future further, providing a solution to the FG puzzle. As such, finite

planning horizons capture a departure from rational expectations shared with other solutions to the FG

puzzle based on bounded rationality or departures from common knowledge, such as Gabaix (2020), Farhi

and Werning (2019), Angeletos and Lian (2018).

1.2 Long-Term Learning

Finite planning horizons can be combined with a second, distinct departure from rational expectations: long-

term learning. With long-term learning, households and firms do not take their long-term value function to

be constant, but adjust it to their evolving expectations of long-run inflation π∗t−1 and output y∗t−1, which
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they build from past realized inflation and output, according to the gain updating rules10

y∗t = µy∗t−1 + (1− µ)yt, (7)

π∗t = µπ∗t−1 + (1− µ)πt, (8)

where µ ∈ [0, 1].11 Denote it in matrix form

Y ∗t = µY ∗t−1 + (1− µ)Yt, (9)

where Y ∗t = (y∗t , π∗t )′.

Long-term learning captures a departure from rational expectations shared with other models of learning,

such as least squares learning (Bullard and Mitra 2002, Evans and Honkapohja 2003b, Preston 2005). It adds

a backward component to expectations that will be essential to capture de-anchoring risks. However, the

combined FPH-learning model differs from usual learning models in that firms and households only form their

long-run expectations in a backward-looking manner. Up to their planing horizons, their expectations remain

forward-looking—though of course affected by their expectations for the long run. Ultimately, expectations

in the FPH-learning model are partly forward and partly backward. This implies that policy announcements

about the future have an effect on expectations right away.

A low value of µ (a high gain 1 − µ) implies that long-run expectations react quickly and strongly to

recent realizations of inflation and output. A high value of µ in contrast implies that long-run expectations

drift only slowly and only as a consequence of persistent changes in realized inflation and output.12 At the

limit µ = 1, long-run expectations are constant so they cannot de-anchor. In this case, the model reverts to

the model under finite planning horizons only (6).13 The model assumes that µ is constant, i.e. abstracts

from time variation and state dependence in the learning gain. See e.g. Marcet and Nicolini (2003), Milani

(2014), Carvalho et al. (2023) and Gáti (2023) for examples of models with endogenous state-dependent
10Note that we assume that all households have the same long-run expectations regardless of their planning horizons. This

is in contrast to the presentation in Woodford (2019), which assumes that a household with planning horizon h bases its
expectations of the long run on its past nowcasts of inflation and output, which depend on its planning horizon. We make this
change for two reasons. First the assumption is equally meaningful: once output and inflation are realized, households can use
these realizations to form long-run expectations instead of their past nowcasts. Second, it simplifies the derivation. As we show
in Appendix B, we nevertheless fall exactly on the same aggregated model as in Woodford (2019).

11We index long-term expectations of inflation and output by t − 1 so underline that they are predetermined at t. Indeed,
long-run expectations π∗

t−1 and y∗h
t−1 use only past and not present realizations of inflation and output. Similarly, we index the

backward-looking component Y b below with the time index t− 1 to underline that it is a state variable. This is only a change
in notations however: the variables are defined in exactly the same way as in Woodford (2019). Another notation change is
that we use the AR(1) notation µ in equations (7) and (8) instead of the gain notation γ = 1 − µ.

12A higher value of µ can be interpreted as expectations that are better anchored, in the sense that the sensitivity of long-run
expectations to recent realizations of inflation is low. We refrain from using this terminology however, in order not to bring
confusing with the other meaning of anchoring expectations, which is the one we use in this paper. We will say the central
bank anchors expectations when it reacts enough to guarantee that long-run expectations are brought back to target at least
at some point in the future, even under a low µ. In Woodford (2019)’s set-up with an exogenous constant-gain parameter, the
central bank cannot anchor expectations in the alternative sense of making them less responsive to recent inflation even without
increasing rates ex post.

13Rigorously, at the limit µ = 1, inflation expectations are constant but not necessarily at the assumed stead-state. We
assume they are fixed at the assumed steady-state in this case, so that the model under FPH only corresponds to the limit of
the FPH-learning model at µ = 1.
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learning gains.

Woodford (2019) shows how the terminal value function of firms and households depend on long-run

inflation and output expectations in the FPH-learning model. In Appendix B we show that the FPH-learning

model can be rewritten in the following way. A firm or household with planning horizon h still perceives the

economy to satisfy the recursion (4) up to its planning horizon h, but now imposes the terminal condition

Yt+h+1 = Y ∗t−1 at the end of its planning horizon. As a consequence, its perception Y ht of output and inflation

at t now solves

Y ht = Et

h∑
j=0

Ajbνt+j +Ah+1Y ∗t−1. (10)

Under the assumption that planning horizons are distributed according to a geometric distribution, the

FPH-learning model aggregates into

Yt = Et

∞∑
j=0

(ρA)jbνt+j + (I − ρA)−1(1− ρ)AY ∗t−1. (11)

Define

Y bt−1 = (I − ρA)−1(1− ρ)AY ∗t−1, (12)

Y ft = Yt − Y bt−1, (13)

the backward-looking and forward-looking components of Yt.14 The FPH-learning model (11)-(9) can be

written as

Y ft = (ρA)Et(Y ft+1) + bνt, (14)

Y bt =
(
µI + (1− µ)(I − ρA)−1(1− ρ)A

)
Y bt−1 +

(
(1− µ)(I − ρA)−1(1− ρ)A

)
Y ft . (15)

2 The Taylor Principle in the Face of Two Risks

In this section, we show that active monetary policy is necessary to retain control over inflation expectations,

but that, as soon as the model is not subject to the FG puzzle, the risk it prevents is no longer self-fulfilling

inflation but inflation spirals. To do so, we assume that the central bank follows the Taylor rule (3) and

derive under which conditions it delivers a unique bounded solution.

2.1 Stability with Finite Planning Horizons but no Long-Term Learning

Before getting to this result, consider the stability of the economy under finite planning horizons alone,

abstracting temporarily from long-term learning. This corresponds to the particular case µ = 1 where long-
14For readability, we use the notations Y ft and Y bt−1 instead of Ỹt and Ȳt−1 in Woodford (2019).
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run expectations always remain on target. Appendix C shows that the FPH-only economy (6) has a unique

bounded equilibrium if and only if the smaller eigenvalue λ∗2(φ) of A−1 is greater than ρ,15

|λ∗2(φ)| > ρ. (16)

If the economy does not have a unique bounded solution, there is an infinity: inflation is self-fulfilling.

Under rational expectations ρ = 1, the determinacy condition (16) is equivalent to the Taylor principle

φπ + 1− β
κ

φy > 1. (17)

As the average planning horizons of agents decreases however, ρ decreases below 1 and the determinacy

condition (16) becomes easier and easier to satisfy. It holds for lower and lower values of φπ and φy, putting

a less demanding requirement on the responsiveness of monetary policy than the Taylor condition under

rational expectations (17). Appendix C shows that for ρ below the threshold

ρ∗ = λ∗2(0) =
1 + σκ+ β −

√
(1 + σκ+ β)2 − 4β
2β , (18)

the equilibrium is determinate even under a fully unresponsive monetary policy φπ = φy = 0—an interest

rate peg. For a standard calibration of the structural parameters β = 0.999, σ = 0.5, κ = 0.05, the threshold

value is ρ∗ = 0.85.

That not even a weakened version of the Taylor principle is necessary to ensure determinacy when ρ < ρ∗

questions the practical relevance of the Taylor principle in keeping control over inflation expectations. All the

more so that for higher values of ρ > ρ∗ for which some responsiveness of monetary policy remains necessary,

the New-Keynesian model yields widely unrealistic predictions on the effect of interest rate changes—the

forward guidance (FG) puzzle. Under rational expectations, and for degrees of foresight ρ > ρ∗, announcing

an interest rate cut n periods ahead has an effect on output and inflation that increases with the horizon

n of the announcement, and becomes infinitely strong as the horizon of the announcement increases. The

threshold on the degree of discounting ρ necessary to get rid of the FG puzzle turns out to be exactly

the same as the threshold (18) that guarantees determinacy under a peg (see e.g. Dupraz, Le Bihan, and

Matheron (2024) for a proof). Finite planning horizons—as well as related models of cognitive discounting

such as Gabaix (2020) and Farhi and Werning (2019)—solve the FG puzzle, but taken alone they suggest

monetary policy does not need to worry about losing control over inflation expectations.
15We spell out the dependence of the eigenvalues λ∗

2 in φ = (φπ , φy) in order to highlight that it depends on the responsiveness
of monetary policy.
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2.2 Stability with Finite Planning Horizons and Long-Term Learning

We now show that the risk of losing control over inflation expectations resurfaces when adding back long-

term learning. Crucially though, it resurfaces under a different form: inflation spirals. This risk, which is

arguably more present on central bankers’ mind, is distinct from the risk of indeterminate inflation. With

an inflation spiral, the risk is instead that inflation become very determinate in a very undesirable direction.

We map the risk of inflation spirals into Blanchard and Kahn (1980) arithmetic, like has long been done

for the risk of self-fulfilling inflation. While self-fulfilling inflation occurs when an economy has more roots

within the unit circle than it has state variables, inflation spirals occur when an economy has more roots

outside the unit circle than it has jump variables. In such a situation, the economy has no bounded solution:

all equilibria are explosive.16

Because long-run expectations are state variables, inflation spirals can occur. To determine when they

do, Appendix D derive the roots of the FPH-learning economy.

Lemma 1. The roots of the FPH-learning New-Keynesian economy (14)-(15) are the following direct func-

tion of the roots λ∗i (φ) of the economy under rational expectations

λfi (φ) = 1
ρ
λ∗i (φ), (19)

λbi (φ) = µ+ (1− µ)(1− ρ)
(

1
λ∗i (φ)− ρ

)
, (20)

for i = 1, 2.

With these closed-from expressions for the roots of the FPH-learning economy, it is possible to determine

its stability. Appendix E shows the following result.

Proposition 1. Consider the case with long-term learning µ < 1.

1. If the Taylor principle (17) is satisfied, then the FPH-learning economy has a unique bounded solution.

2. If the Taylor principle (17) is not satisfied, let 0 < λ∗2(φ) < 1 be the smaller root of the economy under

rational expectation. Unless (ρ, µ) satisfy:

ρ ∈
[
λ∗2(φ), 1

2 (1 + λ∗2(φ))
]
, (21)

µ ∈
[
0, λ

∗
2(φ) + 1− 2ρ
1− λ∗2(φ)

]
. (22)

the FPH-learning economy does not have a unique bounded solution. In this case

(a) If ρ > λ∗2(φ), then the equilibrium is indeterminate.
16While the absence of non-explosive path captures the idea of an inflation spiral, the infinity of explosive paths can also

suggest a form of indeterminacy among diverging inflation paths. Section 3 will however show that one particular diverging
inflation path stands out, on which temporarily explosive inflation dynamics can occur even when inflation eventually returns
to target.

12



(b) If ρ < λ∗2(φ), then there is no bounded equilibrium.

Proposition 1 first states that, up to the narrow exception (21)-(22), the Taylor principle remains neces-

sary and sufficient for a unique bounded solution to exist under a Taylor rule. We argue that the exception

is an unappealing knife-edge case, which can be treated as economically irrelevant. It is unappealing because

one of the roots of the system is then negative. It is a knife-edge case because it concerns only a very narrow

set of values for ρ and µ. For instance, in the calibration β = 0.996, κ = 0.05, σ = 0.5, for φπ = φy = 0,

which is the case most conducive to condition (21)-(22), the condition is only satisfied for ρ ∈ [0.85, 0.93],

each time for only a subset of values of µ. One way to get rid of this economically irrelevant case is to

consider that the FPH-learning economy under a given value of ρ is stable if and only if it has a unique

bounded solution for any value of µ ∈ [0, 1). Under this definition, Proposition 1 states that the economy is

stable if and only if the Taylor principle is satisfied.

Corollary 1. For a given value of ρ, the FPH-learning economy has a unique bounded solution for all

0 ≤ µ < 1 if and only if the Taylor principle (17) is satisfied.

But second, Proposition 1 states that when the Taylor principle is not satisfied, what the FPH-learning

economy runs into is not, in most cases, equilibrium indeterminacy but inflationary spirals. For ρ close

enough to 1, ρ > λ∗2(φ), equilibrium indeterminacy still obtains, as it does under rational expectations.

But such high values of ρ are also ones for which the model is subject to the FG puzzle, which occurs

whenever ρ > λ∗2(0) = ρ∗. When ρ is low enough to solve the FG puzzle, the model is no longer subject to

equilibrium indeterminacy. Both λf1 (φ) and λf2 (φ) are then outside the unit circle, like in the FPH model

without learning. Yet crucially, λb2(φ) is then necessarily outside the unit circle as well, so that the economy

has 3 roots outside the unit circle, and only one inside, the condition for an absence of bounded solution.

The economy necessarily falls into an explosive inflationary of deflationary spiral as expectations spiral out

of control. Pushing the risk of self-fulfilling inflation out the door, it comes back through the window in the

form of inflationary spirals.

Figure 1 gives a graphical illustration of Proposition 1. The diagram represents the 3 possible stability

cases as a function of the strength of the feedback in the Taylor rule φπ + 1−β
κ φy on the x-axis, and of the

degree of cognitive discounting ρ on the y-axis. On the diagram, we abstract from the economically irrelevant

border-line case associated to condition (21)-(22). Whether the economy has a unique bounded equilibrium

or not depends only on the strength of the feedback in the Taylor rule on the x-axis. But respecting the

Taylor principle cures very different ailments depending on the value of ρ. Except under very high ρ > ρ∗ for

which the model is subject to the FG puzzle, too passive a monetary policy does not lead to indeterminacy

but to the absence of bounded solution.

What makes the economy inherently unstable under passive monetary policy when ρ < λ∗2(φ)? The eco-

nomic mechanism is the one underlying Wicksell’s cumulative process argument against interest rate pegs,

later developed by Friedman (1968), first formalized by Howitt (1992), and studied in the least squares learn-
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ing literature (e.g. Bullard and Mitra 2002, Evans and Honkapohja 2003b, Preston 2005).17 When monetary

policy is not responsive enough, not responding strongly enough to inflation allows transitory shocks to send

the economy on a inflationary (or deflationary) spiral. Suppose a transitory demand shock (say) hits the

economy. Higher demand pushes inflation up, which increases long-term inflation expectations and therefore

all inflation expectations. Although the shock then dissipates, households’ inflation expectations are now

higher, which—absent a strong enough reaction from monetary policy—decreases ex ante perceived real

rates. This increases aggregate demand, which increases inflation further, and so on, in a self-feeding spiral.

As a consequence, there exists no bounded solution, the exact opposite problem of the infinity of bounded

solutions that arises under rational expectations, and more generally when ρ > λ∗2(φ).

Proposition 1 captures the logic of the cumulative process within a model that has both a forward-looking

component, and a backward-looking, learning component. By bridging the gap between the two polar cases

of fully rational expectations ρ = 1, and purely backward-learning expectations ρ = 0, it shows that the

generic risk of a passive monetary policy is inflationary spirals, not indeterminacy, unless for high values of

ρ that send the model into the FG puzzle.

2.3 Estimation

To assess in which region of Proposition 1 the US economy has been—and later on to speak to the recent

inflation surge—we estimate the model through Bayesian methods. Our estimation relies on quarterly data

from 1984 to 2007. We deliberately start the sample at the Great Moderation since the learning gain may

have been different during the stagflation of the 1970s. We end the estimation sample in 2007 to avoid the

zero lower bound.

The data we use are the CBO series for the output gap ydatat , inflation πdatat , the Fed Funds rate idatat , and

the average one-year-ahead inflation expectations in the Survey of Professional Forecasters (SPF) F datat .18

We use the CBO series for the output gap to avoid finding a large negative output gap in the 2020s. This

would give a dovish bias to our assessment of optimal monetary policy in Section 4. Using the CBO series

matters little for the values of the estimated parameters however. The estimation results are very similar

when we use as observable the growth rate of output per capita, as shown in Appendix G. We use SPF

data in the estimation to guarantee that the estimation of the learning parameter µ is informed by actual

expectations data. Appendix F derives the expression for the average inflation expectation Ft(πt+k) in the
17In the least squares literature, when learning is done with a decreasing gain the Taylor principle not only prevents the

cumulative process but also guarantees convergence to the rational expectations equilibrium, a stronger stability result. When
learning is done with a constant gain, there is no convergence to rational expectations. On the stronger requirements for
stability brought by a constant gain under adaptive learning, see e.g. Evans and Honkapohja (2009).

18Inflation (and inflation expectations in the SPF) are inflation of the GDP deflator. We construct one-year-ahead inflation
expectations as the expectations for the year ahead starting in the quarter of the survey.
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Figure 1: Existence of Solutions in the FPH-Learning New-Keynesian Economy
Note: The diagram represents the 3 possible situations that can arise as a function of the degree of bounded-rationality
discounting ρ and the strength of the response in the Taylor rule φπ+ 1−β

κ
φy. The frontier between the indeterminacy

region and the no-solution region plotted in bold is the one for φy = 0, which is the one for which the indeterminacy
region is the largest. In dashed lines are the frontiers for higher values of φy = 0.1, 0.2. The shaded region represents
the calibrations under which the model is subject to the FG puzzle: for ρ > λ∗

2(0) = ρ∗.

model. The observation equations are

ydatat = yt + ȳ, (23)

πdatat = 4πt + π̄, (24)

idatat = 4it + r̄ + π̄, (25)

F datat = Ft(πt+1) + Ft(πt+2) + Ft(πt+3) + Ft(πt+4) + π̄E , (26)

where ȳ, π̄, r̄ and π̄E are constants. We calibrate π̄ = 2% and r̄ = 0.5% and estimate ȳ and π̄E along with

the other parameters.19 For the estimation, we add a monetary policy shock νi to equation (3) and assume

that all three shocks νy, νp, νi follow AR(1) processes. We also add a measurement error νe to inflation

expectations, which we assume is iid.

The leftmost columns of Table 2 give the priors we use in the estimation. The rightmost columns provide

the posterior distributions. Results are overall close to the ones reported in Gust, Herbst, and López-Salido
19The discount parameter β is tied to r̄ through β = 1/(1 + r̄/400).
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Table 2: Prior and Posterior Distributions of Parameters

Parameter Prior Distribution Posterior Distribution
Distribution Parameter 1 Parameter 2 Mode Mean St. Dev.

ȳ Normal 0.00 5.00 -0.37 -0.37 0.38
π̄E Normal 2.00 1.00 1.66 1.72 0.14
σ Gamma 2.00 0.50 3.19 3.51 0.55
κ Gamma 0.05 0.10 0.04 0.05 0.03
φπ Gamma 1.50 0.10 1.42 1.45 0.10
φy Gamma 0.25 0.25 0.92 0.95 0.22
ρ Uniform 0.00 1.00 0.61 0.54 0.10
µ Uniform 0.00 1.00 0.95 0.95 0.01
ρξ Beta 0.50 0.10 0.93 0.92 0.02
ρi Beta 0.50 0.10 0.88 0.88 0.03
ρp Beta 0.50 0.10 0.52 0.55 0.08
σξ InvGamma 1.00 4.00 0.54 0.61 0.09
σi InvGamma 1.00 4.00 0.47 0.50 0.10
σp InvGamma 1.00 4.00 0.14 0.14 0.01
σe InvGamma 1.00 4.00 0.32 0.34 0.03

Note: The table gives the prior and posterior distributions of the model’s parameters. The model is quarterly.
The parameters Par(1) and Par(2) refer to: the mean and standard deviation for the Normal, Beta, and Gamma
distributions; the lower and upper bounds of the support for the Uniform distributions; the shape and scale parameters
for the Inverse Gamma distributions.

(2022, 2023), who estimate the model over the longer 1966-2007 sample. Of particular interest are the values

of new expectations parameters ρ and µ. We estimate a posterior mean of ρ = 0.54, corresponding to an

average planning horizon of about 1.2 quarters.20 This is very close to the value ρ = 0.50 estimated in Gust,

Herbst, and López-Salido (2022). We estimate a posterior mean of µ = 0.95, corresponding to a learning gain

of 0.05. This is higher than the value µ = 0.86 estimated in Gust, Herbst, and López-Salido (2022), consistent

with the fact that our estimation sample excludes the great inflation of the 1970s when the learning gain

was likely higher. Our estimated gain of 0.05 is however at the upper end of typical estimates of constant

learning gains in the literature. Milani (2007) and Orphanides and Williams (2005b) find lower gains of 0.02,

and Nagel (2024) of 0.016. Our assessment of optimal monetary policy in Section 4 will therefore embed the

conservatively hawkish assumption that inflation expectations were quite sensitive to realized inflation when

the inflationary shocks of 2021-2022 hit the US economy.

For the estimated parameter values, the threshold value for being subject to the forward guidance puzzle

is ρ∗ = 0.65, above the estimated value of ρ = 0.54. The risk of too passive a monetary policy is therefore

found to be inflation spirals. The Taylor principle is however found to have been satisfied.
20Given the assumption of a geometric distribution of planning horizons, the average planning horizon is ρ/(1 − ρ).
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3 Beyond Taylor Rules

Proposition 1 states that when restricting monetary policy to the Taylor rule (3), keeping control over

inflation expectations requires to respect the Taylor principle (17). But is following a Taylor rule necessary

to keep control over inflation expectations? Under rational expectations, it is: Interest-rate policy must

necessarily be specified as a feedback rule—a Taylor rule of some form (McCallum 1981). Specifying monetary

policy as an exogenous interest rate path results in indeterminacy, just like it does under an interest rate

peg. The result extends to the FPH-learning economy when the degree of foresight is high enough that the

risk of passive monetary policy lies in equilibrium indeterminacy.

In this section, we show that when the degree of foresight is low enough that the risk of concern is

inflation spirals, following a feedback rule is no longer necessary to keep control over inflation expectations.

To be sure, many interest-rate paths fail to keep inflation expectations in check. For instance, a constant

interest rate—an interest rate peg—results in a inflation spiral since it is a particular case of Proposition 1 for

φπ = φy = 0. But for a large class of exogenous paths for the policy rate, the equilibrium is determinate and

bounded, and inflation returns to its target in the long run. We characterize all the interest rate paths that

bring inflation back to target in the long run. We show that this characterization allows to determine how

powerful interest rate hikes of different horizons are at bringing inflation expectations back to target. And

we use this characterization to assess whether, at any point in time, the Fed was doing enough to counter

the inflation surge of 2021-2022.

3.1 All the Anchoring Interest Rate Paths

We assume that monetary policy is no longer set as the Taylor feedback rule (3), but as an exogenous interest

rate path (it+n(ν))n≥0. An interest-rate path is exogenous if is not specified as a function of endogenous

variables such as inflation and output today or tomorrow (yt+n, πt+n)n≥0. But it can be a function of the

exogenous process ν, something we highlight through the notation it(ν).21 It can also depend on the lagged

endogenous state (ybt−1, π
b
t−1) at t, since it is predetermined at t. What we exclude is a dependence on

current and future inflation and output, i.e. the one dependence that is critical to ensure determinacy under

rational expectations, by stipulating a response of monetary policy off the equilibrium path.22

The FPH-learning economy is then described by (14)-(15) for φπ = φy = 0, only adding the new non-
21Our specification of monetary policy is similar to the one advocated by Beaudry, Portier, and Preston (2023) as an alternative

to Taylor rules. Relative to them, we allow monetary policy to adjust its entire future expected path for the policy rate in
response to changes in fundamentals.

22What we restrict to is therefore, in the terminology of Evans and Honkapohja (2003b, 2006, 2003a), fundamentals-based
policy rules. Our point is not to dismiss feedback rules—e.g. Evans and honkapohja’s expectations-based policy rules—which
can have the benefit of simplicity and robustness. Instead, the point is that implementability is no longer an issue away from
rational expectations, so that a comparison of various policies within a given model can be done without the need to restrict
to a class of policies.
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homogeneous term in it(ν)

Y ft = (ρA0)Et(Y ft+1) + b0νt − bi0it(ν), (27)

Y bt =
(
µI + (1− µ)(I − ρA0)−1(1− ρ)A0

)
Y bt−1 +

(
(1− µ)(I − ρA0)−1(1− ρ)A0

)
Y ft , (28)

where A0 and b0 denote the matrices A and b for φπ = φy = 0 and the expression of matrix bi0 is given in

appendix A.

We consider the case where the model is not subject to the FG puzzle ρ < ρ∗. From Proposition 1, the

root λb2(0) is then outside the unit circle λb2(0) > 1 and there is no bounded solution if the nominal interest

rate is kept constant. Yet, Appendix H shows that a large class of non-constant interest rate paths can

deliver a bounded determinate solution, characterized in the following proposition.

Proposition 2.

Assume that the exogenous shocks converge back to steady-state in expectations limk→∞Et(νt+k) = 0.

The FPH-learning economy (27)-(28) has an unique equilibrium where inflation and output remain bounded

and the economy returns to steady-state in the long run if and only if:

(i) The interest rate path converges back to steady-state in expectations limn→∞Et(it+n) = 0.

(ii) The following condition is satisfied

zb2,t−1 +
(

1− µ

λb2(0)

)( ∞∑
n=0

γ(n)Et(v2,t+n − ci2it+n(ν))
)

= 0,

where zb2,t = e′2Y
b
t−1 for e′2 the left eigenvector associated to the root λ∗2(0) < 1 of A−1

0 ,

γ(n) =

(
1

λf
2 (0)

)n+1
−
(

1
λb

2(0)

)n+1

1
λf

2 (0)
− 1

λb
2(0)

, (29)

and vt and ci2 are a function of the shocks νt and a constant given in appendix H.

Proposition 2 captures the following intuition. Appendix H shows that the economy returns to steady

state in the long run if and only if the variable zb2,t returns to steady-state in the long run. In turn, zb2 at

t+ k is given by

Et(zb2,t+k) = λb2(0)k+1

(
zb2,t−1 +

(
1− µ

λb2(0)

)( ∞∑
n=0

γ(n)Et(v2,t+n − ci2it+n(ν))
))

+ ok→∞(1). (30)

Because the root λb2(0) is larger than 1, the FPH-learning economy (27)-(28) has a natural tendency to make

inflationary shocks snowball into more and more inflation. This is Wicksell’s cumulative process. Whenever

long-run expectations are not exactly equal to their steady-state values zb2,t−1 6= 0—for instance because
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an inflationary shock has recently caused them to increase—inflation (and output) is expected to diverge

exponentially even absent any future shock. Under an interest-rate peg, this necessarily results in inflation

diverging to infinity.

Yet an interest rate path that sufficiently increases interest rates can counter the inflationary shock and

bring inflation back to target. Given current values of long-term expectations and given expectations on

future shocks, condition (29) assesses whether a given expected path for the policy rate does enough to

counter the default tendency of inflation to spiral into more and more inflation. The countering effect of

monetary policy can come from interest rate rises either now or in the future, but the size of the necessary

increase in rates is different depending on when it occurs. It is captured by the weights γ(n) on the interest

rate at horizon n.

The idea that sufficiently strong interest rates hikes are necessary to stabilize inflation expectations

captures an intuition similar the Taylor principle when monetary policy is restricted to a Taylor rule. As

such, it characterizes the paths for the policy rate that constitute active monetary policy. Yet Proposition

2 characterizes what interest rate hikes are necessary without first restraining monetary policy to a given

class of interest rate rules.

We now show that the weights γ(n) in condition (29) allow to capture the horizon of interest rate hikes

that matter most for bringing inflation back to target. We first argue that Taylor rules and the Taylor

principle provide little guidance on this issue.

3.2 What Horizons of Rates Matter? The Limited Guidance of Taylor Rules

Under rational expectations, a Taylor rule that respects the Taylor principle wards off self-fulfilling inflation

and allows to keep control over inflation expectations. Following such a Taylor rule appears therefore to be

a sound advice for central banks, and a natural benchmark to assess whether a central bank is doing enough

to counter an inflationary shock. In effect, when in 2021-2022 inflation in the US and many other countries

started reaching levels not seen in 40 years, several central bankers and outside observers use Taylor rule

benchmarks to assess whether the Federal Reserve and other central banks were lagging behind the curve in

their response to inflation.23

As far as ensuring equilibrium determinacy is concerned however, Taylor rules provide little practical

guidance on how fast to increase interest rates. While in the previous section we considered the simple

Taylor rule (3) that responds to current inflation and output only, the interest-rate feedback rules that

guarantee determinacy is considerably larger. In particular, the typical Taylor rule considered in applied

work generalizes the rule (3) to include interest-rate inertia

it = ρT it−1 + (1− ρT )(i∗ + φπ(πt − π∗) + φxxt). (31)
23Examples of policy-makers and commentators using Taylor rules to make the case that the Fed was lagging behind include

for instance Bullard (2022) and Buiter and Sibert (2022). Both use a Taylor rule with no inertia. Bullard notes that the Fed
did not look as far behind when using the 2-year Treasury yield instead of the short-term policy rate.
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The rule (31) has the policy rate respond to deviations of year-on-year inflation πt from the inflation target

π∗ and to the output gap xt, with inertia captured by the coefficient ρT on the lagged policy rate it−1. Large

enough values of the coefficients φπ and φx still guarantees determinacy in standard New-Keynesian models,

but crucially do so for all values of ρT between 0 and 1. For example, in the baseline New-Keynesian model

(1)-(2), the condition for determinacy is the Taylor principle (17) for all value of ρ between 0 and 1. As a

result, a central bank seeking to ensure equilibrium determinacy has an infinitely of Taylor rules to choose

from, with widely different recommendations as to the size and timing of interest-rate hikes

To illustrate this, Figure 2 plots the policy rate paths that the rule (31) would have recommended the

Fed to follow in February 2022, right before the Fed’s first interest-rate hike of March 2022, setting the

coefficients φπ and φx to standard values that guarantee equilibrium determinacy, but varying the inertia

coefficient ρT to 0, 0.85 and 0.95. While all three rules prevent equilibrium indeterminacy, they offer widely

different recommendations as to how fast to raise interest rates.24

Whether using Taylor rule benchmarks or not, the question of whether a central bank is lagging behind

the curve is typically assessed by looking at whether interest rates have increased enough. But in doing

so, beyond the issue of assessing what level of interest rates is sufficiently restrictive, a key issue is what

maturity of interest rates is the relevant one to look at.25 On the one hand, many consumption and investment

decisions depend on rather long-term rates. On the other hand, tightening only through a commitment to

raising short-term rates in the future runs the risk of letting expectations de-anchor, requiring higher hikes

in the future.

What horizon of interest rates matters most to bringing inflation down then? We argue that the rational-

expectations set-up is ill-suited to answering this question. Because it assimilates the risks of losing the

inflation anchor to self-fulfilling inflation and not to inflation spirals, it does not capture the idea that

waiting too long to increase interest rates will give time for inflation expectations to de-anchor. But the

FPH-learning model allows to make sense of the trade-off between these two opposing forces.

3.3 The Relative Anchoring Effect of Interest Rates of Different Horizons

From Proposition 2, there are infinitely many interest rate paths that guarantee inflation returns to target

in the long run. The tightening (or loosening) effect that they deliver is however the same, measured by

Et

( ∞∑
n=0

γ(n)it+n(ν)
)
. (32)

24Of course, the recommendations of different Taylor rules can be evaluated and compared through a loss function. We will
precisely turn to evaluating policies using the central bank’s loss function in Section 4, but without restricting policy to belong
to a particular class.

25This was again debated in Spring 2022 concerning the Federal Reserve in the US. For instance, on April 5, 2022, Larry
Summers argued against Paul Krugman’s argument that “only future rates are relevant to spending”, reminding the “decades-
long tradition of using real Treasury bill or Fed Fund rates to index monetary policy” (Summers 2022).

20



Apr 2022 Jul 2022 Oct 2022 Jan 2023

Years

0

1

2

3

4

5

6

P
ol

ic
y 

R
at

e

Figure 2: Interest Rate Paths Recommended by Various Taylor Rules in February 2022
Note: The three interest rate paths correspond to the paths that the Taylor rule (31) would have recommended for
the Fed to follow in February 2022, for φπ = 1.5, φx = 0.5 and various calibrations of the inertia parameter ρT .
The forecasted paths for the nominal interest rate are calculated using the SPF median expectation for the path of
inflation and unemployment in February 2022. The steady-state nominal rate i∗ is taken to be 1.8% (a real rate of
-0.2%), its average from 2000 to 2019. Inflation πt is taken to be year-on-year PCE core inflation, and the inflation
target π∗ = 2%. The output gap is proxied with (minus) twice the unemployment gap, in accordance with an Okun’s
coefficient of 2. The unemployment gap is calculated as the difference between the SPF median expectation of the
unemployment rate and the CBO expectation of the natural rate of unemployment.

The weights γ(n) therefore play an essential role in assessing how much each horizon of the yield curve

matters is delivering a given amount of tightening. The weight γ(n) captures how powerful the policy rate

it+n at horizon n is at bringing inflation down. We call it the relative anchoring effect of it+n.

Definition 1. We call the weight γ(n) the relative anchoring effect of interest rate it+n at horizon n,

γ(n) =

(
1

λf
2 (0)

)n+1
−
(

1
λb

2(0)

)n+1

1
λf

2 (0)
− 1

λb
2(0)

. (33)

It is equal to the effect it+n on Et(z2,t+k) relative to the effect of the current interest rate it, for all k ≥ n,

γ(n) =

(
∂Et(z2,t+k)

∂it+n

)
(
∂Et(z2,t+k)

∂it

) . (34)
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We call γ(n) the relative anchoring effect of it+n because it is defined relative to the anchoring effect of

the current policy rate it. Accordingly and by construction, γ(0) = 1. Key to seeing γ(n) as defined by (34)

is the property that the relative effect of it+n on zb2,t+k does not depend on the horizon k for k ≥ n. This

is because past t + n, the effect of it+n only manifests itself through the effect it left on the state at t + n,

zb2,t+n. Beyond that date, any departure of zb2,t+n from zero diverges exponentially with k at the rate of the

explosive root λb2(0) > 1. Because this rate of divergence is the same for the effect of the contemporary policy

rate it, the divergence at rate λb2(0) cancels out in the relative anchoring effect (34). Since γ(n) captures

the relative anchoring effect of it+n for all k ≥ n, it also captures the relative anchoring effect of it+n at the

limit when k tends to infinity. As a result, it is the weight with which it+n enters condition (29).

Figure 3 plots the relative anchoring effect γ(n) as a function of the horizon n, for various values of

the cognitive discounting parameter ρ and the expectations persistence parameter µ. Crucially, the relative

anchoring effect γ(n) is a single-peaked function of the horizon and peaks at an intermediary horizon. This

intermediary peak horizon strikes a balance between two opposite forces.

First, short-horizon rates do not affect aggregate demand for many period, so they have a moderate power

to cool down the economy. As the horizon n increases, an increase in it+n affects aggregate demand at all

periods between t and t+n and is therefore better able to cool down the economy. This first effect is present

under rational expectations as well but not in purely backward-looking models where aggregate demand

does not depend on the entire yield curve beyond present short-term rates. Accordingly, if in the model

expectations are purely backward-looking ρ = 0, the relative anchoring effect γ(n) is a strictly decreasing

function of γ. Current policy rates are then the ones that matter most. But when ρ > 0, the relative

anchoring function γ is at first increasing in the horizon n.

Yet, as n increases, a second force becomes dominant and makes γ decreasing. The more the increase in

rates is delayed, the more expectations de-anchor, requiring a stronger rate hike in the future to re-anchor

expectations. This second effect exists only when inflation spirals are possible and is therefore absent under

rational expectations. It is also absent at the limit where long-run expectations are fixed µ = 1, as there is

then no risk of de-anchoring.

The horizon of interest rate hikes that matters most for re-anchoring expectations is intermediary, long

enough to affect long-term rates but not so long that it mostly cools the economy once expectations have

de-anchored much and there is much to re-anchor. It increases when expectations are more forward-looking

(higher ρ) and when long-run expectations react less to recent inflation (higher µ). For the values of the

parameters we estimated (Table 2), in which ρ = 0.54 and µ = 0.95, the horizon of short-term interest

rates with the highest relative anchoring effect is 5 quarters ahead, which matters about 2.5 times as much

as current short-term rates. For the values of ρ and µ plotted on the figure, the horizon with the highest

relative anchoring effect varies between 2 and 6 quarters ahead.

Figure 4 illustrates the relative anchoring effect of interest rates at different horizons through the following

thought experiment. We assume that the economy is hit in period 0 by a transitory cost-push shock, and
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Figure 3: The Relative Anchoring Effect of Interest Rates of Different Horizons
Note: Both panels plot the relative anchoring effect γ(n) of the interest rate at horizon n as a function of the horizon
n. On the left panel, each curve plots the relationship for a different value of the cognitive discounting parameter ρ,
keeping the expectations persistence parameter fixed to µ = 0.95. On the right panel, each curve plots the relationship
for a different value of the expectations persistence parameter µ, keeping the cognitive parameter fixed to ρ = 0.5.
The calibration for the structural parameters is β = 0.9988, σ = 3.51, κ = 0.053, following the posterior means of
the estimation given in Table 2.

consider the response of the economy under various responses of monetary policy. The thick black line

corresponds to the case where monetary policy is fully passive: it does not increase interest rates at any

horizon. As a result, while the inflationary shock quickly fades away and inflation falls back strongly in period

1, the shock has shifted long-term inflation expectations, however slightly. Because monetary policy is fully

passive, the cumulative process sets in and inflation slowly but inexorably drifts up, at a rate determined by

the root λb2(0). The thin blue curves correspond to different cases where monetary policy reacts sufficiently

to bring the economy back to its stable trajectory. On each curve, the central bank increases the policy rate

in a single quarter. The different curves correspond to different choices of the horizon at which it does so,

each spaced by one year. The required size of the increase in the policy rate is smaller when done one year

after the shock than when done on impact, but increases steadily afterwards. As a consequence, beyond the

first two years, the more delayed the hike is, the larger the fall in output that it causes.

3.4 Was the Fed Lagging Behind?

Did the Fed react too little and/or too late to the inflation surge of 2021-2022? Endowed with the charac-

terization of active monetary policy in Proposition 2, we calculate the measure of monetary tightening (32)
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Figure 4: Hiking Now vs. Hiking Tomorrow
Note: The figure gives the response of the economy to a transitory cost-push shock in period 0 under various responses
of monetary policy. On the thick black line the central bank does not react at any horizon. On the thin blue curves
the central bank responds by increasing its policy rate in a single period, by the amount just necessary to bring the
economy back to its stable trajectory. The parameter values are the posterior means from the estimation of the model
in Table 2.

in any period t using financial markets’ expectations of future policy rates at time t. We extract forward

rate expectations from a Nelson-Siegel estimation of the yield curve, using OIS swaps with maturities up to

ten years ahead.26 Accordingly, we truncate the infinite sum in equation (32) at the ten-year horizon.

Figure 5 plots the measure of monetary tightening (32) over time. Since in itself the measure is up to a

constant, the figure plots the scaled measure∑∞
n=0 γ(n)Et(it+n(ν))∑∞

n=0 γ(n)
. (35)

to facilitate comparison with the timing of the rise in the contemporaneous Fed Funds rate. Figure 5 shows

that the Fed’s tightening occurred much earlier when assessed through the index of monetary tightening (32)
26We are very grateful to Sarah Mouabbi for sharing her code with us.
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Figure 5: The Timing of the Fed’s Tigthening
Note: The figure plots the measure of monetary tightening (35) over time. The parameter values are the posterior
means from the estimation of the model in Table 2. Expectations of future policy rates are obtained through a
Nelson-Siegel estimation of the yield curve using OIS rates up to 10 years ahead. The infinite sum in equation (35)
is therefore truncated to 10 years ahead. The contemporaneous effective Fed Funds rate is plotted for comparison, as
well as the one, five, and ten-year yields.

than when assessed through the contemporaneous Fed Funds rate. The index steadily grew from mid-2020

to mid-2022 in steps with the rise in inflation, as expectations of higher future policy rates increased. It

reached a first peak in October 2022, soon after inflation peaked in the second quarter of 2022. In contrast,

the Fed Funds rate was not lifted off the ZLB until March 2022 and did not reach its peak of 5.25-5.5% until

July 2023. Figure 5 also displays the evolution of some long-term yields. For the calibration at hands, the

model’s index of monetary tightening is rather well proxied by a five-year yield. This is consistent with the

fact that most of the weights on Figure 3 are concentrated on maturities 0 to 20 quarters ahead. In contrast,

the one-year yield follows too closely the dynamics of the Fed Funds rate, while the ten-year yield misses

some of the dynamics of the Fed’s tightening in 2021.

4 Optimal Anchoring Policy

That delaying rate hikes beyond the first few quarters increases the size of the required hikes suggests that

delaying hikes beyond these first quarters is always ill-advised. Hiking rates today comes at the cost of a

lower output today, but hiking tomorrow instead will require larger hikes, with a larger output cost. This

suggests a trade-off between a recession today and a larger recession tomorrow, on which doves and hawks
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should agree to prefer the former. This however is no longer a question about active and passive monetary

policy, but a question about optimal monetary policy. In this section, we therefore solve the central bank’s

optimal policy problem to find the best path of interest rates among those that bring inflation back to target

in the long run.

4.1 Characterization: A Generalized Target Criterion

We solve for the optimal monetary policy under commitment in the FPH-learning model (14)-(15). We

assume the central bank has a dual mandate to stabilize inflation and the output gap, with a given weight

ω on the output gap so that its loss function is27

E0

∞∑
t=0

1
2β

t
(
π2
t + ωx2

t

)
. (36)

where xt = yt − yet is the output gap. We assume that the central bank has rational expectations, i.e. that

it fully understands the way in which firms and households form expectations, and therefore the associated

de-anchoring risks of failing to react to the shocks that hit the economy. The program of the central bank is

therefore to minimize the loss (36) subject to the constraint of the dynamics of the FPH-learning economy

(14)-(15).

Appendix I derives the following characterization of the optimal policies under commitment and under

discretion in the FPH-learning model.

Proposition 3. Let M0 = (I − ρA0)−1(1− ρ)A0 and Ω = [ω, 0; 0, 1].

The optimal policy under commitment is characterized by the following target criterion

ζπt + 1
κ

(ζyt − ρζ
y
t−1) = 0, (37)

while the optimal policy under discretion is characterized by

ζπt + 1
κ
ζyt = 0, (38)

27We take this objective as given by the central bank’s mandate. It can be shown that in the model under rational expectations,
under Calvo price-setting the loss function derived from the representative household’s preferences are of the form (36) with
ω = κ/θ, where θ is the elasticity of substitution across goods (Woodford 2003, , chapter 6). For a small slope of the Phillips
curve κ this puts little weight on output relative to inflation stabilization. The welfare costs under Calvo price-setting are
however known to be suspiciously large (Nakamura et al. 2018), so we treat ω as an exogenous parameter. In the version of
the FPH-learning model that we consider where planning horizons are heterogeneous among the population, the loss function
derived from households’ preferences under Calvo pricing is no longer of the form (36) as it is under rational expectations—see
Woodford and Xie (2022).
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where

ζyt = ωxt + (1− µ)γy
∗

t is the marginal cost of higher output at t, (39)

ζπt = πt + (1− µ)γπ
∗

t is the marginal cost of higher inflation at t, (40)

(γy
∗

t , γπ
∗

t )′ = Et

∞∑
k=0

(β(µI + (1− µ)M0)′)kβM ′0Ω(Yt+k+1 − Y et+k+1) (41)

is the marginal cost of higher long-term expectations at t.

Together with the dynamics of the economy (14)-(15), both (37) and (38) define a unique equilibrium path

for inflation, output and the policy rate.

To understand the target criterion (37), it is useful to see how it generalizes the target criterion under

rational expectations. When expectations are rational ρ = 1, M0 = 0 and so γ∗t = 0. The target criterion

under commitment (37) reduces to the classic target criterion

πt + ω

κ
(xt − xt−1) = 0. (42)

The rational expectations target criterion under commitment sets to zero the sum of the marginal cost of

higher inflation, plus ω
κ times the change in the marginal cost of a higher output gap. The marginal cost of

higher inflation is simply πt and the marginal cost of a higher output gap is simply xt. The fact that the

marginal cost of a higher output gap yesterday is subtracted to the criterion is the mark of optimal policy

under commitment. It is absent under discretion, with monetary policy under discretion characterized as

πt + ω

κ
xt = 0. (43)

This history-dependence captures the fact that the optimal monetary policy must deliver on the past promises

that it made yesterday in order to move forward-looking expectations yesterday.

The generalized target criterion (37) modifies the one under rational expectations in two ways. First, the

cost ζπt of higher inflation at t now includes the cost γπ∗t of causing higher long-term inflation expectations

from tomorrow on—and similarly for the cost of higher output.28 The cost of higher long-term expectations

corresponds itself to the higher inflation and higher output that higher long-term expectations will cause in

the future, all else being equal. They can therefore be expressed as a discounted sum of future inflation and

future output gaps—equation (41). Because the central bank’s ability to commit makes no difference to its

ability to affect the backward-looking component of expectations, the expression of (41) is the same under

discretion as it is under commitment.

The second modification relative to rational expectations is specific to the policy under commitment.
28Since a one-percentage point increase in inflation at t increases long-term expectations of inflation by 1 − µ percentage

points, γπ∗
t enters with the coefficient 1 − µ in equation (40).
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Because expectations are less forward-looking, the term ζyt that captures the commitment of the central

bank to past promises is now discounted at the rate ρ. The less forward-looking expectations are, the less

the central bank can use its ability to commit to move the forward-looking component of expectations—and

so the less it needs to fulfill past promises. When expectations are purely backward-looking ρ = 0, there is

no role for commitment and so no constraint from past promises. The policy under commitment does not

differ from the policy under discretion in this case. Whenever expectations are partly forward-looking ρ > 0,

a role for commitment and past promises is restored, although it is weaker than under rational expectations.

If the target criterion (37) generalizes the one under rational expectations, il also generalizes the one

derived in the adaptive learning model of Molnár and Santoro (2014) where expectations are purely backward-

looking. Indeed, Appendix J shows that in the case of purely backward-looking expectations ρ = 0, the target

criterion (37) reduces to

πt + ω

κ

(
xt − (1− µ)Et

( ∞∑
k=0

(βµ)kβ2xt+k+1

))
= 0, (44)

which is the target criterion in the model of Molnár and Santoro (2014).29

4.2 Self-Implementing Policy

The characterization of the optimal policy in Proposition 3 holds for any value of ρ ∈ [0, 1]. There is however

a key difference depending on whether the degree of foresight ρ is above or below the threshold ρ∗. When

foresight ρ is greater than ρ∗ and passive monetary policy leads to equilibrium indeterminacy, conducting

monetary policy by announcing the interest rates path defined by Proposition 3 together with the dynamics

of the economy (14)-(15) does not define a unique equilibrium. To avoid equilibrium indeterminacy, the

optimal allocation needs to be implemented through a feedback rule, as it does under rational expectations

ρ = 1 (Giannoni and Woodford 2003).

But when foresight ρ is lower than ρ∗ and passive monetary policy manifests itself as inflation spirals, the

issue of equilibrium indeterminacy no longer arises. Announcing the interest rate path defined by Proposition

3 and equations (14)-(15) defines a unique equilibrium. The risk of losing control over inflation expectations

still very much exist in the form of inflation spirals. But the optimal policy has already selected an interest

rate path that increase rates sufficiently to prevent such spirals. The optimal policy problem captures all

that is relevant to determining the best way to anchor expectations.

Corollary 2. When ρ < ρ∗, the optimal policy is self-implementing: Setting the interest rate path defined

by Proposition 3 and the dynamics of the economy (14)-(15) determines a unique equilibrium.
29Equation (44) does not appear explicitly in Molnár and Santoro (2014) but can be easily derived from their equations (10)

to (16). See also equation (41) in Eusepi and Preston (2018) (written for ω = κ/θ) and equation (24) in Gaspar, Smets, and
Vestin (2010) (written for β = 1).
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4.3 How Fast to Hike?

With this characterization of optimal monetary policy in hands, we return to the question of how fast to

hike in response to a supply shock. As Section 3 showed, the relative anchoring effect of policy rates soon

decreases with the horizon of the policy rate. Does it imply that the central bank only faces a trade-off

between creating a recession today, and creating a worse recession tomorrow? If so, the former may be

preferable regardless of a policy-maker’s preferences over inflation and output.

Figure 6 plots the response of the economy to a cost-push shock under the optimal policy under commit-

ment for two values of the weights ω on output stabilization: a small one ω = 0.01 and a large one ω = 0.1.30

The cost-push shock is assumed to follow an AR(1) shock with persistence ρp = 0.55, the posterior mean

from the estimation in Table 2. As is apparent from the figure, the paths for inflation, output and the policy

rate depend heavily on the weight put on output stabilization. When it cares more about output, the central

bank increases policy rates much less on impact. As a result, the size of the fall in output is considerably

less on impact. To prevent an inflation spiral, the smaller increase in rates early on must be compensated by

higher rates later on, in order to bring long-term inflation expectations down. Yet to bring down long-term

expectations the central bank does not engineer a recession tomorrow. Instead it keeps the policy rate where

it has lifted it for a long time. This leaves output persistently below its steady-state but avoids an outright

recession. The persistent tightening does bring long-term expectations back to steady-state in the long run,

but it does so slowly.

How does the optimal path for the policy rate compare to the one under rational expectations? The

effect of a higher output weight on the optimal way to adjust interest rates is actually qualitatively the same

under rational expectations. Figure 7 plots the optimal response under commitment to the same cost-push

shock νpt in the rational expectations economy, for the same weights on output stabilization. The larger the

weight on output, the smaller the increase in policy rates early on.

There are however reasons to be suspicious of this result when it is derived under rational expectations.

First, under rational expectations optimal policy under commitment heavily relies on the strong forward-

lookingness of rational expectations. In particular, very forward-looking expectations allow the central bank

to deliver higher real interest rates not through higher nominal rates but through below-target inflation

in the future. Indeed, under rational expectations, the optimal policy (42) is a form of NGDP targeting,

which seeks to compensate the inflation on impact with subsequent below-target inflation. This can be seen

on Figure 7, where for the large weight ω = 0.1 on output, the nominal policy rate quickly falls below its

steady-state value. The increase in real rates is achieved instead through below-target inflation, without

above steady-state nominal rates.

Second, rational expectations assume away the risk that letting inflation drift away from target will require

a costly drop in output tomorrow in order to disinflate the economy. Indeed, under rational expectations,
30We consider the optimal policy under commitment from a timeless perspective, i.e. respecting the commitment to past

promises (42) already in the first period (see Woodford 2003, chapter 7). Since we assume that the steady-state level of output
is efficient and since we start the IRF in Figure 7 from steady-state, this does matter however.
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Figure 6: Optimal Response to a Cost-push Shocks in the FPH-Learning Model
Note: The figures gives the impulse response to a cost-push shock in FPH-learning economy (14)-(15), when monetary
policy is set to minimize the loss function (36) under commitment. The IRF is given for two different values of the
weight ω on the output gap in the loss function. The values of the other parameters are the posterior means from the
estimation in Table 2. The real interest rate that is plotted is the rationally expected ex-ante real rate rt = it−Etπt+1.

a credible shift in monetary policy brings inflation down at no output cost. Instead, it can easily create an

economic boom (Ball 1994). This leaves no room for the argument that hiking early can be beneficial in

order to prevent a costly disinflation in the future.

The FPH-learning economy addresses both concerns over rational expectations. First, it makes expecta-

tions less foward-looking. Second, it makes disinflation costly. As shown in section (3), in the FPH-learning

economy, delaying hikes beyond the first few quarters requires to hike more tomorrow, for a higher cost on

output.

Departing from rational expectations does have important consequences for the optimal path of policy

rates. For a given weight on output, the central bank increases rates more promptly in the FPH-learning

model than under rational expectations. As emphasized in Molnár and Santoro (2014), Eusepi and Preston

(2018), Gaspar, Smets, and Vestin (2010), the threat of a de-anchoring of inflation expectations forces the

30



central bank to react more aggressively to a cost-push shock than it does under rational expectations—

keeping in mind that the rational expectations benchmark is one in which the increase in rates is extremely

gradual for substantial weights on output stabilization.

However, in the FPH-learning economy a higher weight on output stabilization still justifies a slower

increase in policy rates, as it does under rational expectations. A large weight on output is of course to be

judged excessive by policy-makers with a higher weight on inflation—doves are doves. But the recommen-

dation to increase rates strongly and quickly in the face of a large supply shock does not follow mechanically

from the possibility of inflation spirals. A relatively lower weight on output stabilization is required for the

strong and quick hike to be preferred to a smaller but more persistent one.
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Figure 7: Optimal Response to a Cost-push Shocks under Rational Expectations
Note: The figures gives the impulse response to a cost-push shock in the rational expectations economy (4), when
monetary policy is set to minimize the loss function (36) under commitment. The IRF is given for two different
values of the weight ω on the output gap in the loss function. The values of the other parameters are the posterior
means from the estimation in Table 2.
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4.4 How Fast and How Much Should the Fed Have Hiked?

We use the characterization of optimal monetary policy in Proposition 3 to address the question of how fast

and how much the Fed should have hiked its policy rates in the face of the inflation surge of 2021-2022. We

proceed as follows. Given our estimation of the model—made under the assumption that monetary policy

was following the Taylor rule (3)—we recover the demand and supply shocks νy and νp that hit the US

economy up to the first quarter of 2024. Starting from 2021Q1, we then calculate the counterfactual that the

economy would have taken had it been subjected to the same shocks but had the Fed followed the optimal

monetary policy characterized in Proposition 3. We do so for two weights ω on output stabilization: a small

weight ω = 0.01 and a large weight ω = 0.1. Recall from the estimation in Section 2.3 that our measure

of the output gap is the one provided by the CBO. This guarantees that we do not assess monetary policy

under the assumption that the output gap was very negative at the start of 2021, as would be the case if we

estimated the model using output growth as the observable (Appendix G). A very negative output gap at

the start of 2021 would make the recommendations of optimal policy more dovish.

Figure 8 provides the results. Compared to the optimal policy with a small weight on output stabilization,

the Fed appears to have been clearly behind the curve. The optimal policy would have started raising rates

in early 2021, a year before the Fed did. As a result, inflation would have been significantly lower, peaking

at 5.5% instead of 8.7%. This would have come at the cost of a severe recession, with output contracting to

-8.1% below potential in 2022Q2.

The optimal policy with a large weight on output stabilization is however quite different. It starts raising

rates in 2022Q2 (after a small rise in 2021Q4, quickly reverted the following quarter), exactly when the Fed

actually did. The pace of the increase in policy rates is similar to the one the Fed implemented, but peaks

higher, at 6.25%.31 Because policy rates increase later that under the optimal policy with a small weight on

output, inflation is higher. It peaks at 7.5%, only 1.2 percentage point below the actual peak of inflation.

But the delayed increase in policy rates essentially avoids any significant recession, with output contracting

only to -2.0% below potential.

Overall the optimal policy with a large weight on output is relatively close to the policy the Fed

implemented—although it precludes a positive output gap, as the CBO estimates has been the case in

the second half of 2021. The delayed hike does imply a larger increase in long-term inflation expectations,

but it is justified by the benefit of avoiding a large recession.

5 Conclusion

To keep control over inflation expectations in the face of large supply shocks, a central bank must tighten

monetary policy enough. At this broad level the intuition is consistent with the result in rational expectations
31The ex post increase in the policy rate under the optimal policy is not gradual due to the estimated resorption of the

negative pandemic demand shocks in 2022. The ex ante optimal policy in 2022Q1 called for a much more gradual increase in
the Fed Funds rates, as shown in Appendix K.

32



2020 2021 2022 2023 2024 2025
-10

-8

-6

-4

-2

0

2
Output Gap

2020 2021 2022 2023 2024 2025
-2

0

2

4

6

8

10
Inflation

2020 2021 2022 2023 2024 2025
0

1

2

3

4

5

6

7
Nominal Interest Rate

2020 2021 2022 2023 2024 2025
-2.5

-2

-1.5

-1

-0.5

0
Long-Term Output Gap Exp.

2020 2021 2022 2023 2024 2025
1.5

2

2.5

3

3.5
Long-Term Inflation Exp.

2020 2021 2022 2023 2024 2025
-5

0

5
Real Interest Rate

Figure 8: Optimal Response to the Great Inflation Surge of 2021-2022
Note: The figure gives the path of the US economy under optimal monetary policy for the shocks that hit the US
economy over 2021-2024. The parameters values are the posterior means from the estimation of the model in Table
2. The underlying shocks are recovered assuming that the Fed follows the Taylor rule (3) (with coefficients estimated
over the period 1984-2007). The optimal monetary policy is given for two values of the weight ω on the output gap
in the loss function. The expected path of the economy until 2025Q1 under the optimal policies is plotted in dashed
lines.

models that the Taylor principle rules out self-fulfilling inflation. In this paper we have argued that this

leaves out important elements of this intuition however. Studying how to stabilize inflation expectations in a

bounded-rationality model that captures both forward and backward-looking elements of expectations allows

to capture these elements. It captures the risks of passive monetary policy in the form of both self-fulfilling

inflation and inflationary spirals. It allows to identify at what horizons interest rate hikes matter most for

anchoring expectations. And it allows to derive policy recommendations directly from the study of optimal

policy, since when firms and households’ foresight is low enough a Taylor-type feedback rule is no longer

necessary to implement the optimal monetary policy. The optimal monetary policy highlights that while not

increasing policy rates today necessarily imposes to increase them later, it does not follow that increasing
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rates slowly only sets the stage for a worse recession tomorrow. Increasing rates slowly to avoid a recession

today can be justified by a large weight on output stabilization, provided policy rates are then kept high for

longer.
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A Matrix Expressions

Injecting the Taylor rule into the Euler equation, the New Keynesian model under rational expectations can

be written in 2-by-2 matrix form as

BYt = CEt(Yt+1) + aνt, (A.1)

where Yt = (yt, πt)′, νt = (νyt , ν
p
t − κyet )′, and B, C, a are

B =

1 + σφy σφπ

−κ 1

 , (A.2)

C =

1 σ

0 β

 , (A.3)

a =

1 0

0 1

 . (A.4)

It can be rewritten as equation (4) with A = B−1C and b = B−1a, i.e.

A = 1
1 + σ(φy + κφπ)

1 σ(1− βφπ)

κ σκ+ β(1 + σφy)

 , (A.5)

b = 1
1 + σ(φy + κφπ)

1 −σφπ
κ 1 + σφy

 . (A.6)

For further reference, the inverse of matrix A is:

A−1 =

1 + σφy + σκ
β σφπ − σ

β

−κ
β

1
β

 . (A.7)

In sections 3 and 4, we use the matrix bi0 = B−1
0 (σ, 0)′ which is equal to:

bi0 =

 σ

σκ

 . (A.8)

B Rewriting of the FPH-Learning Model

We show that the FPH-learning model of Woodford (2019) can be put in the form (11). Note that in contrast

to the presentation in Woodford (2019) we assume that all households and firms have the same long-run

value functions and long-run expectations regardless of their planning horizons. This simplifies the derivation

and is equally meaningful: once output and inflation are realized, households can use these realizations to
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form long-run expectations instead of their past nowcasts. We show at the end of the Appendix that we

nevertheless fall exactly on the same aggregated model as in Woodford (2019).

Throughout this appendix we refer to the equation numbers in Woodford’s paper, rewriting them with

our notations whenever they slightly differ from Woodford (2019). Woodford (2019) shows that a household

with planning horizon h links its expectations at t of output from t to t+ h through the standard recursion

(equation (2.15))

j = 0, ..., h, yh−jt+j = −σ(ih−jt+j − Et(π
h−j−1
t+j+1 )) + Et(yh−j−1

t+j+1 ) + νyt+j , (B.1)

and at t+ h to its long-term value function vt−1 through (equation (4.12))

y0
t+h = −σi0t+h + vt−1 + νyt+h, (B.2)

where the superscript h− j takes note of the number of periods until the end of the planning horizon of the

agent. The long-term value function vt satisfies (equation (4.6))

vt = µvt−1 + (1− µ)vestt (B.3)

and (equation (4.3))

vestt = yt + σπt. (B.4)

Combining equations (B.2), (B.3) and (B.4) gives

y0
t+h = −σi0t+h + (y∗t−1 + σπ∗t−1) + νyt+h. (B.5)

On the firm’s side, Woodford shows (equation (4.15)) that a firm with planning horizon h that gets to

reset its price at t sets it to

ph∗t = Eht

 h∑
j=0

(αβ)j(πt+j + (1− αβ)mt+j) + (αβ)h+1ṽt−1

 (B.6)

where ṽt−1 is the firm long-term value function, m denotes marginal cost, and Eht denotes firm h’s subjective

beliefs. The long-term value function ṽt satisfies (equation (4.9))

ṽt = µṽt−1 + (1− µ)ṽestt (B.7)

and (equation (4.11))

ṽestt = πt
1− α. (B.8)
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Knowing that πht = (1− α)ph∗t , and mt = ζ(yt − yet ), this can be rewritten

πht = Eht

 h∑
j=0

(1− α)(αβ)j(πt+j + (1− αβ)ζ(yt+j − yet+j) + (αβ)h+1π∗t−1

 (B.9)

It can be written recursively as

j = 0, ..., h− 1, πh−jt+j = κ(yh−jt+j − y
e
t+j) + βEt(πh−j−1

t+j+1 ), (B.10)

π0
t+h = κ(y0

t+h − yet+h) + βπ∗t−1. (B.11)

where κ = (1−α)(1−αβ)
α ζ is the slope of the NKPC.

Equations (B.1) and (B.10) write in matrix form

j = 0, ..., h− 1, Y h−jt+j = AY h−j−1
t+j+1 + bνt+j , (B.12)

while equations (B.5) and (B.11) write in matrix form

Y 0
t+h = AY ∗t−1 + bνt+h. (B.13)

Iterating forward gives equation (10) in the text.

Aggregating across horizons h for the geometric distribution of planning horizons where the fraction of

households and firms with planning horizon h is (1− ρ)ρh gives equation (11) in the text.

We now show that despite our slight change in assumption that the all households and firms have the same

long-run value function and long-run expectations regardless of their planning horizons, the representation

of the aggregate economy (9)-(11) (equivalently, the representation (14)-(15)) is exactly equivalent to the

representation of the aggregate economy in Woodford (2019).

Equation (14) for the forward-looking component of the economy is simply (4.24) in Woodford (2019),

so the forward-looking component is the same. As for the backward-looking component of the economy,

Woodford (2019) shows that (equations (4.25) and (4.26)):

ybt−1 = ρybt−1 − σ(ibt−1 − ρπbt−1) + (1− ρ)(y∗t−1 + σπ∗t−1), (B.14)

πbt−1 = κybt−1 + βρπbt−1 + β(1− ρ)π∗t−1. (B.15)

This writes in matrix form

Y bt−1 = ρAY bt−1 + (1− ρ)AY ∗t−1, (B.16)
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which is exactly equation (12). So the backward-looking components is the same.

C Derivation of the Taylor Principle under FPH only

The FPH-only economy (6) has a unique bounded equilibrium if and only if both eigenvalues of the matrix

(ρA)−1 are outside the unit circle. These two eigenvalues are the eigenvalues λ∗1(φ) and λ∗2(φ) of the matrix

A−1—i.e. of the model under rational expectations—but scaled up by a factor 1/ρ

λfi (φ) = λ∗i (φ)
ρ

. (C.1)

The two eigenvalues λ∗1(φ) and λ∗2(φ) of A−1 are the solutions of the quadratic equation

P (λ) = λ2 − tr(A−1)λ+ det(A−1). (C.2)

where from the expression (A.7) of A−1

det(A−1) = 1
β

(1 + σφy + σκφπ) > 0, (C.3)

tr(A−1) = 1
β

+ σκ

β
+ 1 + σφy > 0. (C.4)

One of the two roots—λ∗1 without loss of generality—is always outside the unit circle. Indeed, if the roots

are real, then det(A) > 0, tr(A) > 0 implies that both roots are positive, and since det(A) > 1 one of them

is necessarily greater than one, i.e. outside the unit circle. If the roots are complex, then their common

modulus is
√
det(A) > 1 so they are both outside the unit circle.

As a result, λf1 (φ) is always outside the unit circle and the condition (C.1) is equivalent to the smaller

root λf2 (φ) being outside the unit circle. Therefore, there exists a unique bounded solution if and only if

λ∗2(φ) is greater than ρ, which is condition (16) in the text.

Under rational expectations ρ = 1, condition (16) is that λ∗2 is outside the unit circle. If the roots are

real, this is equivalent to P(1)>0, which is equivalent to the Taylor principle (17). In the case of two complex

roots, in which case both roots are outside the unit circle, P(1)>0 so the Taylor principle is also satisfied.

Consider now the case φπ = φy = 0. Denote A0 the matrix A when φπ = φy = 0. The roots of the

matrix A−1
0 are then both real, and the smaller root is

λ∗2(0) =
tr(A−1

0 )−
√

(tr(A−1
0 ))2 − 4det(A−1

0 )
2 . (C.5)

The condition λf2 (0) = 1
ρλ
∗
2(0) > 1 is equivalent to ρ < ρ∗ = λ∗2(0), which is the expression (18) once

replacing the expressions for the trace (C.4) and determinant (C.3).
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D Proofs of Lemma 1

The system (11) can be written backward and in matrix form as

Et(Y ft+1)

Y bt

 =

 (ρA)−1 0(
(1− µ)(I − ρA)−1(1− ρ)A

) (
µI + (1− µ)(1− ρ)(I − ρA)−1A

)
 Y ft

Y bt−1

−
(ρA)−1b

0

 νt

(D.1)

This is a triangular system, whose 4 roots are therefore the eigenvalues of the 2-by-2 matrices (ρA)−1 and

(µI + (1 − µ)(I − ρA)−1(1 − ρ)A). We already encountered the eigenvalues of (ρA)−1, which we denoted

λfi , i = 1, 2, and whose expression as function of the eigenvalues λ∗i of A−1 is given in (C.1). We denote λbi ,

i = 1, 2 the eigenvalues of the matrix (µI + (1− µ)(I − ρA)−1(1− ρ)A).

Diagonalize A as:

A = QΛQ−1, (D.2)

where Λ = diag(1/λ∗i ). We have that:

(I − ρA)−1A = (Q(I − ρΛ)Q−1)−1QΛQ−1 (D.3)

= Q(I − ρΛ)−1ΛQ−1 (D.4)

= Qdiag

(
1

λ∗i − ρ

)
Q−1. (D.5)

So that:

(µI + (1− µ)(1− ρ)(I − ρA)−1A) = Qdiag

(
µ+ (1− µ)(1− ρ)

(
1

λ∗i − ρ

))
Q−1. (D.6)

So (µI+ (1−µ)(1−ρ)(I−ρA)−1A) is diagonalizable in the same basis as A and its eigenvalues are the ones

given in (20).

E Proof of Proposition 1

We first show the following lemma.

Lemma 2. For a given i = 1, 2,

• If λ∗i (φ) is outside the unit circle, then λfi and λbi (φ) are on opposite sides of the unit circle: λfi (φ)

outside and λbi (φ) inside.
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• If λ∗i (φ) is inside the unit circle—in which case it is necessarily real—distinguish two cases. If

ρ ∈
[
λ∗i (φ), 1

2 (1 + λ∗i (φ))
]
, (E.1)

µ ∈
[
0, λ

∗
i (φ) + 1− 2ρ
1− λ∗i (φ)

]
. (E.2)

then λfi (φ) and λbi (φ) are on opposite sides of the unit circle: λfi (φ) inside and λbi (φ) outside. Both

λfi (φ) and λbi (φ) are then real and λbi (φ) is negative.

If condition (E.1)-(E.2) is not satisfied, then λfi (φ) and λbi (φ) are on the same side of the unit circle.

1. If ρ > λ∗i (φ), then both λfi (φ) and λbi (φ) are inside the unit circle.

2. If ρ < λ∗i (φ), then both λfi (φ) and λbi (φ) are outside the unit circle.

Proof. Assume first that λ∗i (φ) is outside the unit circle, |λ∗i (φ)| > 1. Then λfi (φ) = 1/ρλ∗(φ) is outside the

unit circle. Besides, since from equation (20)

λbi (φ)− µ = (1− ρ)(1− µ)
λ?i (φ)− ρ (E.3)

and

|λ?i (φ)− ρ|≥ |λ?i (φ)|−ρ ≥ 1− ρ, (E.4)

we have that

|λbi (φ)| ≤ |λbi (φ)− µ|+ µ <
(1− ρ)(1− µ)
|λ?i (φ)− ρ| + µ ≤ 1.

Assume now that λ∗i (φ) is inside the unit circle |λ∗i (φ)| < 1. Because when the λ?i (φ) are complex they

have modulus
√
det(A−1) ≥ 1/

√
β and are therefore necessarily outside the unit circle, λ∗i (φ) inside the unit

circle is necessarily real. Furthermore, if the λ∗i (φ) are real, since det(A−1) > 0 and tr(A−1) > 0 they are

necessarily positive, so 0 < λ∗i (φ) < 1. Equation (20) implies that

sign(λbi (φ)− 1) = −sign(λ∗i (φ)− 1)× sign(λfi (φ)− 1), (E.5)

so λfi (φ) and λbi (φ) are on the same side of 1. It remains possible for them to be on opposite signs of the

unit circle however, if λbi (φ) < −1 so that λfi (φ) is inside the unit circle and λbi (φ) outside it. This is the

case if and only if condition (E.1)-(E.2) is satisfied.

If condition (E.1)-(E.2) is not satisfied, then λfi (φ) and λbi (φ) are on the same side of the unit circle, and

the side of the unit circle they are on is the side of 1 they are on. If ρ > λ∗i (φ), then both λfi (φ) and λbi (φ)

are inside the unit circle. If ρ < λ∗i (φ), then both λfi (φ) and λbi (φ) are outside the unit circle.

We now use this lemma to show Proposition 1. We know that one of the two roots λ∗1(φ) is necessarily

outside the unit circle, and only the other root λ∗2(φ) may be inside or outside the unit circle. From the
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lemma, it follows that λf1 (φ) = λ∗1(φ)ρ is always outside the unit circle and λb1(φ) is always inside the unit

circle. We now distinguish cases for the roots λf2 (φ) and λb2(φ).

Assume first that the Taylor principle (17) is satisfied, i.e. λ∗2(φ) is also outside the unit circle. From the

lemma, it follows that λf2 (φ) is outside the unit circle and λb2(φ) is inside the unit circle. The system has 2

roots outside the unit circle and two roots inside, so the system has a unique bounded solution.

Assume now that the Taylor principle is not satisfied, i.e. λ∗2(φ) is inside the unit circle. Consider first

the case where condition (21)-(22) is not satisfied. Then from the lemma, λf2 (φ) and λb2(φ) are necessarily

on the same side of the unit circle, so the system has either 3 roots outside the unit circle and one inside, or

3 roots inside the unit circle and one outside. Either way it has no unique bounded solution. If ρ > λ∗2(φ),

then both λfi (φ) and λbi (φ) are inside the unit circle, so the system has 3 roots inside the unit circle and the

system is indeterminate. If ρ < λ∗i (φ), then both λfi (φ) and λbi (φ) are outside the unit circle, so the system

has no bounded solution.

Consider now the case where condition (21)-(22) is satisfied. The system has then 2 roots outside the

unit circle and 2 roots inside, so the system has a unique bounded solution.

F Expression for Average Forecasts

In this appendix we derive the expression for the average forecast among the population of agents with

different planning horizons. The expectations at t of Yt+i (ie. the i period-ahead forecast) by an agent with

planning horizon h is

• For h ≥ i:

Y h−it+i = Et

h−i∑
j=0

Ajbνt+i+j

+Ah+1−iY ∗t−1. (F.1)

• For h < i:

Y h−it+i = Y ∗t−1. (F.2)

Averaging over the planning horizons distributed geometrically, the average forecast i periods ahead is

Ft(Yt+i) = Et

 ∞∑
h=i

(1− ρ)ρh
h−i∑
j=0

Ajbνt+i+j

+
(
i−1∑
h=0

(1− ρ)ρhY ∗t−1 +
∞∑
h=i

(1− ρ)ρhAh+1−iY ∗t−1

)

= Et

ρi ∞∑
j=0

(ρA)jbνt+i+j

+
(

(1− ρi)I + ρi(1− ρ)(I − ρA)−1A

)
Y ∗t−1

= ρiEt(Y ft+i) +
(

(1− ρi)I + ρi(1− ρ)(I − ρA)−1A

)
Y ∗t−1. (F.3)
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Table 3: Prior and Posterior Distributions of Parameters

Parameter Prior Distribution Posterior Distribution
Distribution Parameter 1 Parameter 2 Mode Mean St. Dev.

ḡY Normal 0.50 0.10 0.50 0.50 0.01
π̄E Normal 2.00 1.00 1.77 1.80 0.12
σ Gamma 2.00 0.50 3.16 3.46 0.55
κ Gamma 0.05 0.10 0.02 0.03 0.02
φπ Gamma 1.50 0.10 1.40 1.43 0.10
φy Gamma 0.25 0.25 0.80 0.84 0.21
ρ Uniform 0.00 1.00 0.64 0.58 0.09
µ Uniform 0.00 1.00 0.94 0.94 0.01
ρξ Beta 0.50 0.10 0.93 0.92 0.02
ρi Beta 0.50 0.10 0.88 0.88 0.03
ρp Beta 0.50 0.10 0.48 0.51 0.08
σξ InvGamma 1.00 4.00 0.55 0.61 0.09
σi InvGamma 1.00 4.00 0.46 0.49 0.11
σp InvGamma 1.00 4.00 0.14 0.15 0.01
σe InvGamma 1.00 4.00 0.32 0.33 0.03

Note: The table gives the prior and posterior distributions of the model’s parameters in the estimation that use
output-per-capita growth instead of the CBO estimate of the output gap as observable. The model is quarterly.
The parameters Par(1) and Par(2) refer to: the mean and standard deviation for the Normal, Beta, and Gamma
distributions; the lower and upper bounds of the support for the Uniform distributions; the shape and scale parameters
for the Inverse Gamma distributions.

Note that as i→∞, the average forecast tends to the long-term forecast Y ∗t−1.

G Estimation Results using Output Growth

Table 3 gives the results when estimating the model with the growth rate of per capita output instead of the

CBO estimate of the output gap as observable, as in Table 2. Equation (23) is replaced by

ydatat = yt − yt−1 + ḡy. (G.1)

Results are very similar.

H Proof of Proposition 2

We first show the following two lemmas.

Lemma 3. Let e′2 be the left eigenvector associated to the root λ∗2(0) < 1 of A−1
0 , and zb2,t = e′2Y

b
t−1.

The FPH-learning economy (27)-(28) has an unique equilibrium where inflation and output remain

bounded and the economy returns to steady-state in the long run if and only if the interest rate path

(it+n(ν))n≥0 is such that Et(zb2,t+k)→ 0 as k →∞.
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The variable Et(zb2,t+k) depends on the interest rate path (it+n(ν))n≥0 through:

Et(zb2,t+k) = λb2(0)k+1zb2,t−1 + (λb2(0)− µ)
(

k∑
n=0

φk(n)Et(v2,t+n − ci2it+n(ν)) +
∞∑

n=k+1
ψk(n)Et(v2,t+n − ci2it+n(ν))

)
,

(H.1)

where φk(n) = λb2(0)k

(
1

λf
2 (0)

)n+1
−
(

1
λb

2(0)

)n+1

1
λf

2 (0)
− 1

λb
2(0)

, (H.2)

ψk(n) = λb2(0)k+1 − λf2 (0)k+1

λb2(0)− λf2 (0)

(
1

λf2 (0)

)n
, (H.3)

where, defining, c = Q−1b0, vt is the function of the shocks vt = cνt and ci is a constant vector given by

ci = Q−1bi0.

Proof. Define

Zft = Q−1Y ft , (H.4)

Zbt = Q−1Y bt . (H.5)

The system (27)-(28) in Yt implies for Zt:

Zft = diag

(
1

λfi (0)

)
Et(Zft+1) + cνt − ciit, (H.6)

Zbt = diag

(
λbi (0)

)
Zbt−1 + diag

(
λbi (0)− µ

)
Zft . (H.7)

where c = Q−1b0 and ci = Q−1bi0.

Denote zf1,t and zb1,t the first components of Zft and Zbt . They satisfy

zf1,t = 1
λf1 (0)

Et(zf1,t+1) + v1,t − ci1it, (H.8)

zb1,t = λb1(0)zb1,t−1 + (λb1(0)− µ)zf1,t, (H.9)

where vt = cνt and v1,t is the first component of vt. Denote zf2,t and zb2,t the second components of Zft and

Zbt .

zf2,t = 1
λf2 (0)

Et(zf2,t+1) + v2,t − ci2it, (H.10)

zb2,t = λb2(0)zb2,t−1 + (λb2(0)− µ)zf2,t, (H.11)

where v2,t is the second component of vt.
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We first show that the FPH-learning economy (27)-(28) goes back to steady-state at infinite horizon if

and only if Et(zb2,t+n) to converge to 0. If the FPH-learning economy (27)-(28) is such that (EtY ft+n, EtY bt+n)

tends to 0 as n tends to infinity, then necessarily so does Et(zb2,t+n). Conversely, we show that a failure of

Et(zb2,t+n) to converge to 0 is the only thing that can prevent (EtY ft+n, EtY bt+n) from converging to zero, as

Et(zf1,t+n), Et(zb1,t+n) and Et(zf2,t+n) necessarily converge to 0.

From equation (H.8), a solution to (27)-(28) that converges to 0 as t tends to infinity is necessarily such

that:

zf1,t = Et

∞∑
n=0

(
1

λf1 (0)

)n
(v1,t+n − ci1it+n), (H.12)

which is well defined since λf1 (0) > 1. It further implies that Et(zf1,t+n) tends to 0 as n tends to infinity. In

addition, equation (H.9) implies that Et(zb1,t+n) tends to 0 as n tends to infinity, because λb1(0) < 1.

Just like for zf1,t, from equation (H.8), a solution to (27)-(28) that converges to 0 as t tends to infinity is

necessarily such that:

zf2,t = Et

∞∑
n=0

(
1

λf2 (0)

)n
(v2,t+n − ci2it+n), (H.13)

which is well defined since λf2 (0) > 1.

We now derive the expression (H.1) for Et(zb2,t+n). Iterating equation (H.11) backward gives, injecting

(H.13)

Et(zb2,t+k) = (λb2(0)− µ)
k∑
j=0

λb2(0)k−j
∞∑
n=j

(
1

λf2 (0)

)n−j
Et(vt+n − ci2it+n) + λb2(0)k+1zb2,t−1. (H.14)

for all k ≥ 0. Permuting the double summation (distinguishing the cases n ≤ k and n > k) this can be

rewritten as equation (H.1).

Lemma 4. Assume that the exogenous shocks converge back to steady-state in expectations limk→∞Et(νt+k) =

0, and that (i) holds. Then Et(z2,t+k) tends to zero as k →∞ if and only if condition (ii) is satisfied.

Proof. Let us rewrite the expression (H.1) of Et(z2,t+k) in Lemma (3) as

Et(z2,t+k) = ak + bk, where

ak = λb2(0)k+1zb2,t−1 + (λb2(0)− µ)
( ∞∑
n=0

φk(n)Et(v2,t+n − ci2it+n(ν))
)

bk = (λb2(0)− µ)
( ∞∑
n=k+1

(ψk(n)− φk(n))Et(v2,t+n − ci2it+n(ν))
)
.

We show that if (i) is satisfied, then (bk)k converges to zero. Let ε > 0. Since Et(v2,t+n − ci2it+n(ν)) tends
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to zero when n tends to infinity, there exists an integer K such that

∀n ≥ K, |Et(v2,t+n − ci2it+n(ν))| ≤ ε.

We therefore have that:

∀k ≥ K, |bk| ≤ (λb2(0)− µ)
∞∑

n=k+1
|ψk(n)− φk(n)||Et(v2,t+n − ci2it+n(ν))|

≤ (λb2(0)− µ)
∞∑

n=k+1
|ψk(n)− φk(n)| × ε

We can calculate

|ψk(n)− φk(n)| = −λf2 (0)
λb2(0)− λf2 (0)

(λb2(0)k−n − λf2 (0)k−n)

so that

∞∑
n=k+1

|ψk(n)− φk(n)| = −λf2 (0)
λb2(0)− λf2 (0)

∞∑
m=1

(λb2(0)−m − λf2 (0)−m)

= λf2 (0)
(λb2(0)− 1)(λf2 (0)− 1)

So:

∀k ≥ K, |bk| ≤ (λb2(0)− µ) λf2 (0)
(λb2(0)− 1)(λf2 (0)− 1)

× ε,

which proves that (bk)k tends to zero. It follows that Et(zb2,t+k) tends to zero when k tends to infinity if and

only if ak does. It can be written as

ak = λb2(0)k+1

(
zb2,t−1 +

(
1− µ

λb2(0)

)( ∞∑
n=0

γ(n)Et(v2,t+n − ci2it+n(ν))
))

The term in brackets does not depend on k, so for ak to tend to zero when k tends to infinity, it is necessary

that the therm in brackets is equal to zero, i.e. that condition (ii) holds.

With these two lemmas in hand, we now show Proposition 2. Accordingly, we maintain the assumption

that the exogenous shocks converge back to steady-state in expectations limk→∞Et(νt+k) = 0.

Necessary Condition: Assume that the economy Yt+k converges back to steady-state (i.e. zero) in

expectations as k tends to infinity. Then it must be that it+k converges back to steady-state (i.e. zero) in

expectations as well, i.e. condition (i). Indeed, from equation (9), Y = 0 in steady-state implies Y ∗ = 0 and
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so Y b = Y f = 0 (from equations (12) and (13)). So from equation (27) implies b0ν − b0i = 0, and under the

assumption that νt returns to steady-state implies that it returns to steady-state.

Let us now show condition (ii). From Lemma 3, if the economy returns to steady-state in expectations

then Et(z2,t+k) tends to zero. From Lemma 4, it implies that (ii) is satisfied.

Sufficient Condition: Assume now that condition (i) and (ii) are satisfied. From Lemma 3, we need

to show that Et(z2,t+k) tends to zero. Since condition (i) is satisfied, Lemma 4 states that this is equivalent

to condition (ii).

Finally, note that equation (34) is a corollary of Lemma 3. For k ≥ n, equation (H.1) implies that

∂Et(z2,t+k)
∂it+n

= −ci2(λb2(0)− µ)φk(n). (H.15)

Equation (34) follows.

I Proof of Proposition 3

We first derive the characterization of the optimal policy under commitment, then under discretion.

Optimal Policy under Commitment

The policy rate it shows up only in the first row of the forward-looking component of the economy (14)

so we can drop it and the first row of (14) from the optimization program. (It will give it residually.) The

second row of (14) writes

κyft − π
f
t + βρEtπ

f
t+1 + νpt = 0. (I.1)

For a more economically meaningful interpretation of the Lagrange multipliers, we use the representation

of the system in (Y ft , Y ∗t−1) instead of (Y ft , Y bt−1). The variables Y bt is simply the linear transformation of

Y ∗t :

Y bt−1 = M0Y
∗
t−1. (I.2)

where M0 = (I − ρA)−1(1− ρ)A. The backward-looking component of the economy (15) is then replaced by

the following recursion on Y ∗t :

Y ∗t = D0Y
∗
t−1 + (1− µ)Y ft . (I.3)

where D0 = µI + (1− µ)M0.

The program of the central bank can therefore be written as

min
Y f

t ,Y
∗

t

E0

∞∑
t=0

1
2β

t(Y ft +M0Y
∗
t−1 − Y et )′Ω(Y ft +M0Y

∗
t−1 − Y et ), (I.4)

s.t. (κ,−1)Y ft + β(0, ρ)EtY ft+1 + (0, 1)νt = 0, (I.5)

s.t. Y ∗t = D0Y
∗
t−1 + (1− µ)Y ft , (I.6)
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where Ω = [ω, 0; 0, 1].

Denote by γ̃t the univariate Lagrange multiplier associated to the forward constraint (I.1). Denote

γ∗t = (γy∗t , γπ∗t )′ the 2-dimensional multiplier associated to constraint (I.3). The first-order conditions of the

central bank’s optimality program are

Ω(Yt − Y et ) +

 κ

−1

 γ̃t +

 0

ρ

 γ̃t−1 + (1− µ)γ∗t = 0, (I.7)

γ∗t = βEt

(
M ′0Ω(Yt+1 − Y et+1)

)
+ βEt

(
D′0γ

∗
t+1

)
. (I.8)

Iterating (I.8) forward gives equation (41) in the text. The first 2-dimensional equations (I.7) can be rewritten

to eliminate γ̃t as

ζπt + 1
κ

(ζyt − ρζ
y
t−1) = 0, (I.9)

where

ζπt = πt + (1− µ)γπ
∗

t , (I.10)

ζyt = ω(yt − yet ) + (1− µ)γy
∗

t . (I.11)

Optimal Policy under Discretion

The optimal monetary policy under discretion can be obtained following the same steps as under com-

mitment. The only difference is that the central bank now takes as given the forward-looking component

of expectations EtY ft+1 in equation (I.5). (It however still takes into account the effect of its policy on

the backward-looking long-run component of expectations Y ∗.) The first-order conditions (I.7)-(I.8) under

commitment therefore become under discretion

Ω(Yt − Y et ) +

 κ

−1

 γ̃t + (1− µ)γ∗t = 0, (I.12)

γ∗t = βEt

(
M ′0Ω(Yt+1 − Y et+1)

)
+ βEt

(
D′0γ

∗
t+1

)
. (I.13)

Following the same steps as under commitment, equation (I.12) can be rewritten as equation (38).

J Target Criterion in the Purely Backward-Looking Case ρ = 0

This appendix shows that in the case of purely backward-looking expectations ρ = 0, the target criterion

(37) can be written as (44), like in the model of Molnár and Santoro (2014). To show this, we rewrite the

optimization program of the central bank this time in the variables (Yt, Y ∗t ). We denote by λt and γ∗t the
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associated Lagrange multipliers. We get the following relations

Ω(Yt − Y et ) +

 κ

−1

λt + (1− µ)γ?t = 0

βM ′0

 κ

−1

λt+1 − γ?t + βµγ?t+1 = 0

Thus, we obtain

γ?t =
∞∑
k=0

(βµ)kβM ′0

 κ

−1

λt+k+1

Noticing that

M ′0

 κ

−1

 =

 0

−β


We finally obtain

γy,∗t = 0,

κλt + ωxt = 0

and

πt + ω

κ
xt + (1− µ)γπ,∗t = 0

γπ,∗t = −β2
∞∑
k=0

(βµ)k ω
κ
xt+k+1

Combining the two equations gives the target criterion (44).

K Optimal Policy Path Projected in 2022Q2

Figure K.1 plots the same exercise as Figure 8, but stopping in 2022Q2 at the time the Fed lift interest rates

off the ZLB, instead of 2024Q1. As is apparent, with the information on the shocks available at the time,

the optimal policy under a large weight on output was calling for a more gradual increase in the Fed Funds

rate.
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Figure K.1: Optimal Response to the Great Inflation Surge of 2021-2022, as from 2022Q1
Note: The figure gives the path of the US economy under optimal monetary policy for the shocks that hit the US
economy from 2021 to 2022Q1 (instead of 2024Q1 as on Figure 8). The parameters values are the posterior means
from the estimation of the model in Table 2. The underlying shocks are recovered assuming that the Fed follows the
Taylor rule (3) (with coefficients estimated over the period 1984-2007). The optimal monetary policy is given for two
values of the weight ω on the output gap in the loss function. The expected path of the economy from 2022Q1 under
the optimal policies is plotted in dashed lines.
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