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Motivation

• Slope of Phillips curve a key ingredient in monetary policy analysis

• In sticky price models pinned down by fraction of price changes, n

• Data: fraction of price changes increases with inflation

– Gagnon (2009), Alvarez et al. (2018), Blanco et al. (2024)

• Our question: how does slope fluctuate in U.S. time series?

– answer using model that reproduces this evidence

2



Evidence from the U.S.
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• Source: Nakamura et al. (2018), Montag and Villar (2023). Fraction quarterly.

• Inflation computed using CPI without shelter (year-to-year changes).

extensive margin decomposition
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Motivation

• Slope of Phillips curve a key ingredient in monetary policy analysis

• In sticky price models, key determinant: fraction of price changes, n

• Data: fraction of price changes increases with inflation

– Gagnon (2009), Alvarez et al. (2018), Blanco et al. (2024)

• How does slope fluctuate in U.S. time series?

– answer using model that reproduces this evidence
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Existing Models
• Time-dependent models

– widely used due to their tractability

– constant fraction of price changes

• State-dependent (menu cost) models

– less tractable: state of the economy includes distribution of prices

– calibration consistent with micro price data: fraction nearly constant

• We develop tractable alternative with endogenously varying fraction

– multi-product firms choose how many, but not which, prices to change

– exact aggregation: reduces to one-equation extension of Calvo
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Our Findings

• Our model predicts highly non-linear Phillips curve

– slope fluctuates from 0.02 in 1990s to 0.12 in 1970s and 1980s

• Mostly due to a feedback loop between fraction and inflation

– inflation accelerator

– inflation more sensitive to changes in fraction when inflation is high

• Absent feedback loop slope increases to only 0.04 in 1970s and 1980s
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Model
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Consumers

• Life-time utility

Et

∞∑
t=0

βt (log ct − ht)

• Budget constraint

Ptct +
1

1 + it
Bt+1 = Wtht +Dt +Bt

• Monetary policy targets nominal spending Mt ≡ Ptct

logMt+1/Mt = µ+ εt+1, εt+1 ∼ N
(
0, σ2

)
• Log-linear preferences imply Wt = PtCt = Mt
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Technology

• Multi-product firms i sell continuum of goods k each

– final good sector competitive:

ct = yt =

(∫ 1

0

∫ 1

0

(yikt)
θ−1
θ dkdi

) θ
θ−1

– demand for individual variety:

yikt =

(
Pikt

Pt

)−θ

yt, Pt =

(∫ 1

0

∫ 1

0

(Pikt)
1−θ dkdi

) 1
1−θ

– each produced with DRS technology yikt = (likt)
η

9



Firm Problem

• Real discounted flow profits of firm i

1

Ptct

∫ 1

0

(Piktyikt − τWtlikt) dk =

(
Pit

Pt

)1−θ

− τ

(
Xit

Pt

)− θ
η

y
1
η

t

– flow profits depend on two moments of its price distribution

Pit =

(∫ 1

0

(Pikt)
1−θ dk

) 1
1−θ

and Xit =

(∫ 1

0

(Pikt)
− θ

η dk
)− η

θ

• Firm chooses fraction of price changes nit, cost ξ
2 (nit − n̄)

2 if nit > n̄

– but not which, so history encoded in two state variables, Pit−1 and Xit−1

– e.g. Pit =
(
nit (P

∗
it)

1−θ + (1− nit) (Pit−1)
1−θ
) 1

1−θ
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Symmetric Equilibrium
• Let p∗t = P ∗

t /Pt, xt = Xt/Pt, πt = Pt/Pt−1

• Optimal reset price similar to Calvo, except nt varies

(p∗t )
1+θ( 1

θ−1) =
1

η

Et

∞∑
s=0

βs (yt+s)
1
η

s∏
j=1

(1− nt+j) (πt+j)
θ
η

}
b2t

Et

∞∑
s=0

βs
s∏

j=1

(1− nt+j) (πt+j)
θ−1

}
b1t

• Fraction of price changes

ξ (nt − n̄) = b1t

(
(p∗t )

1−θ − (πt)
θ−1
)

︸ ︷︷ ︸
change price index

− τb2t

(
(p∗t )

− θ
η − (xt−1)

− θ
η (πt)

θ
η

)
︸ ︷︷ ︸

reduce misallocation

11



Symmetric Equilibrium
• Inflation pinned down by the definition of price index

1 = nt (p
∗
t )

1−θ
+ (1− nt) (πt)

θ−1

• Losses from misallocation

(xt)
− θ

η = nt (p
∗
t )

− θ
η + (1− nt) (xt−1)

− θ
η (πt)

θ
η

• Model reduces to one-equation extension of Calvo

– as ξ → ∞, nt = n̄ so our model nests Calvo

• Unlike Calvo, important non-linearities so solve using global methods

– third-order perturbation reasonably accurate
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Steady-State Fraction of Price Changes
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Fraction of price changes increases with inflation
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Steady-State Output and Productivity
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• Inflation less distortionary in our model equations

– because more frequent price changes, as in menu cost models
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Slope of the Phillips Curve

15



Parameterization
• Assigned parameters

– period 1 quarter, β = 0.99, θ = 6, η = 2/3

• Calibrated parameters

– mean and standard deviation of nominal spending growth µ and σ

– fraction of free price changes n̄ , price adjustment cost ξ

• Calibration targets

Data Model

mean inflation 0.035 0.035
s.d. inflation 0.027 0.027
mean fraction 0.297 0.297
slope of nt on |πt| 0.016 0.016
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Fraction of Price Changes
• Use non-linear solution to recover shocks that reproduce U.S. inflation
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• Reproduces fraction well, except post-Covid

– many price decreases due to sectoral shocks extensive margin model
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Towards the Slope of the Phillips Curve
• First order perturbation around equilibrium point at each date t

– hats denote deviations from equilibrium at that date

• Aggregate price index:

π̂t =
1

(1− nt)π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
Mt

n̂t +
1− (1− nt)π

θ−1
t

(1− nt)π
θ−1
t︸ ︷︷ ︸

Nt

p̂∗t

• Elasticity Nt to reset price: identical to Calvo

– increases with nt, decreases with πt (lower weight on new prices)

• Elasticity Mt to frequency: zero if πt = 1, increases with inflation
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Intuition

• Why is inflation more sensitive to changes in nt when inflation is high?

Mt =
1

(1− nt)π
θ−1
t

πθ−1
t − 1

θ − 1

• Inflation ≈ average price change × fraction of price changes

– πt = 1: average price change = 0

◦ so fraction inconsequential

– πt is high: average price change is large

◦ so ∆nt increases inflation considerably
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Inflation Accelerator
• Recall aggregate price index

π̂t = Mtn̂t +Ntp̂
∗
t

– elasticity Mt increases with inflation, zero if πt = 1

• Optimal fraction of price changes

n̂t = Atπ̂t + Btp̂
∗
t − Ctx̂t−1 +

nt − n̄

nt
b̂1t

– elasticities At and Bt also increase with πt

• Feedback loop amplifies inflation response to changes in reset price

π̂t =
MtBt +Nt

1−MtAt
p̂∗t −

MtCt
1−MtAt

x̂t−1 +
Mt

1−MtAt

nt − n̄

nt
b̂1t
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Slope of the Phillips Curve
• Let m̂ct =

1
η ŷt aggregate real marginal cost

π̂t = Ktm̂ct + . . .

• Slope of the Phillips curve

Kt =
1

1 + θ
(

1
η − 1

)
︸ ︷︷ ︸
complementarities

× y
1
η

t

b2t︸︷︷︸
horizon

× MtBt +Nt

1−MtAt︸ ︷︷ ︸
reset price

• Absent endogenous frequency response (At = Bt = 0)

κt =
1

1 + θ
(

1
η − 1

) × y
1
η

t

b2t
× 1− (1− nt)π

θ−1
t

(1− nt)π
θ−1
t︸ ︷︷ ︸

Nt
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Time-Varying Slope of the Phillips Curve
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Ranges from 0.02 to 0.12, mostly due to inflation accelerator
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Sacrifice Ratio
• Calculate decline in annual output needed to reduce π by 1% over a year
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Ranges from 0.4% to 1.4%, opposite of Calvo
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Inflation and the Sacrifice Ratio
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Robustness
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Eliminate Strategic Complementarities
• Set η = 1, recalibrate model

Targeted Moments

Data θ = 6 θ = 3

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean fraction 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 0.016

Calibrated Parameters

θ = 6 θ = 3

µ mean spending growth rate 0.035 0.035
σ s.d. monetary shocks 0.019 0.018
n̄ fraction free price changes 0.232 0.227
ξ adjustment cost 0.365 0.109

• Smaller price adjustment costs because less curvature in profit function
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Slope of the Phillips Curve
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Larger absent complementarities, but fluctuates as much
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Taylor Rule

• Replace nominal spending target with Taylor rule

1 + it
1 + i

=

(
1 + it−1

1 + i

)ϕi
((πt

π

)ϕπ
(

yt
yt−1

)ϕy
)1−ϕi

ut

• Two versions

– ut shocks iid

– serially correlated with persistence ρ to match autocorrelation inflation

• Use Justiniano and Primiceri (2008) estimates

– ϕi = 0.65, ϕπ = 2.35, ϕy = 0.51
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Calibration of Economy with a Taylor Rule

Targeted Moments

Data ρ = 0 ρ > 0

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean fraction 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 0.016
autocorr. inflation 0.942 0.913 0.942

Calibrated Parameters

ρ = 0 ρ > 0

log π inflation target 0.040 0.037
σ s.d. monetary shocks ×100 2.626 0.551
ρ persistence money shocks – 0.685
n̄ fraction free price changes 0.241 0.241
ξ adjustment cost 1.671 1.688
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Slope of the Phillips Curve
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Our results robust to assuming a Taylor rule
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Conclusion

• Data: fraction of price changes increases with inflation

• Developed tractable model consistent with this evidence

– firms choose how many, but not which prices to change

– reduces to one-equation extension of Calvo

• Implies slope of Phillips curve increases considerably with inflation

– partly because more frequent price changes

– primarily due to endogenous frequency response – inflation accelerator
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Losses from Misallocation

(Xit+s)
− θ

η = nit+s (P
∗
it+s)

− θ
η + (1− nit+s)nit+s−1 (P

∗
it+s−1)

− θ
η + · · ·

+
s∏

j=1

(1− nit+j)nit (P
∗
it)

− θ
η +

s∏
j=1

(1− nit+j) (1− nit) (Xit−1)
− θ

η

back
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Steady-State Output and Productivity

y
1
η = η

1− β (1− n)π
θ
η

1− β (1− n)πθ−1

(
n

1− (1− n)πθ−1

) 1+θ( 1
η

−1)
θ−1

xθ =

(
1− (1− n)π

θ
η

n

)η (
1− (1− n)πθ−1

n

)− θ
θ−1

back
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Role of Extensive Margin

• Decompose πt = ∆tnt into two components

– ∆t : average price change conditional on adjustment

– nt : fraction of price changes

• Isolate role of each using Klenow and Kryvtsov (2008) decomposition

– intensive margin: πi
t = ∆tn̄

– n̄ : mean fraction of price changes

– extensive margin: πe
t = ∆̄nt

– ∆̄ : mean average price change
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Role of Extensive Margin: Data
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Montag and Villar (2024)

• Argue that extensive margin plays no role post Covid

• Same decomposition but set n̄ and ∆̄ equal to January 2020 values

– due to seasonality, unusually large n and low ∆

• Illustrate fixing n̄ and ∆̄ at January 2020 values
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Role of Extensive Margin using January 2020
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Role of Extensive Margin: Our Model
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Model
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Model Overview

• Continuum of multi-product firms

– each sells continuum of goods

– decreasing returns labor-only technology

– cost of changing prices

• Monetary policy targets nominal spending

– only source of aggregate uncertainty

• Golosov-Lucas log-linear assumptions on preferences
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Consumers
• Life-time utility

Et

∞∑
t=0

βt (log ct − ht)

• Budget constraint

Ptct +
1

1 + it
Bt+1 = Wtht +Dt +Bt

• Monetary policy targets nominal spending Mt ≡ Ptct

logMt+1/Mt = µ+ εt+1, εt+1 ∼ N
(
0, σ2

)

• Log-linear preferences imply Wt = Mt
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Final Goods Producer

• Final good used for consumption, produced using CES aggregator

ct = yt =

(∫ 1

0

∫ 1

0

(yikt)
θ−1
θ dkdi

) θ
θ−1

– yikt output of good k produced by firm i, sold at price Pikt

• Demand for individual product

yikt =

(
Pikt

Pt

)−θ

yt, where Pt =

(∫ 1

0

∫ 1

0

(Pikt)
1−θ dkdi

) 1
1−θ
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Intermediate Goods Producers
• Individual goods produced with decreasing returns technology

yikt = (likt)
η

– η ≤ 1: micro-strategic complementarities in price setting

• Nominal flow profits of firm i from producing product k

Piktyikt − τWtlikt

– subsidy to eliminate markup distortion τ = 1− 1/θ

• Real flow profits of firm i∫ 1

0

((
Pikt

Pt

)1−θ

yt − τ
Wt

Pt

(
Pikt

Pt

)− θ
η

y
1
η

t

)
dk
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Price Adjustment Costs

• Firm chooses fraction of prices to change nit ∈ [0, 1]

– but not which prices to change (similar to Greenwald 2018)

• Price adjustment cost, denominated in units of labor

ξ

2
(nit − n̄)

2
, if nit > n̄

– when ξ → ∞, model collapses to Calvo with constant frequency n̄

• If adjust Pikt = P ∗
it, otherwise Pikt = Pikt−1
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Within-Firm Misallocation
• Firm-level output yit and labor lit

yit =

(∫ 1

0

(yikt)
θ−1
θ dk

) θ
θ−1

and lit =

∫ 1

0

liktdk

• Firm production function

yit =

(
Xit

Pit

)θ

(lit)
η

• Depends on firm price index Pit and losses from misallocation Xit

Pit =

(∫ 1

0

(Pikt)
1−θ dk

) 1
1−θ

and Xit =

(∫ 1

0

(Pikt)
− θ

η dk
)− η

θ

• Absent price dispersion Xit/Pit = 1, otherwise Xit/Pit < 1
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Firm Problem
• Choose reset price P ∗

it and fraction of prices to change nit to maximize

Et

∞∑
s=0

βs


(
Pit+s

Pt+s

)1−θ

︸ ︷︷ ︸
sales

− τ

(
Xit+s

Pt+s

)− θ
η

y
1
η

t+s︸ ︷︷ ︸
labor costs

− ξ

2
(nit+s − n̄)2︸ ︷︷ ︸

repricing costs



• Choices at t affect firm price index and misallocation at all future dates

(Pit+s)
1−θ = nit+s (P

∗
it+s)

1−θ
+ (1− nit+s)nit+s−1 (P

∗
it+s−1)

1−θ
+ · · ·

+

s∏
j=1

(1− nit+j)nit (P
∗
it)

1−θ
+

s∏
j=1

(1− nit+j) (1− nit) (Pit−1)
1−θ

misallocation profit

• History encoded in two state variables: Pit−1 and Xit−1

– exact aggregation because adjustment hazard does not depend on Pikt−1
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Optimal Reset Price
• Optimal reset price intuition

P ∗
it

Pt
=

(
1

η

b2it
b1it

) 1

1+θ( 1
η

−1)

• Depends on present value of revenue and marginal costs

– weighted by the probability that a price is still in effect at a future date

b1it = Et

∞∑
s=0

βs
s∏

j=1

(1− nit+j)

(
Pt+s

Pt

)θ−1

b2it = Et

∞∑
s=0

βs
s∏

j=1

(1− nit+j)

(
Pt+s

Pt

) θ
η

(yt+s)
1
η

• Similar to Calvo, except nit time-varying
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Optimal Fraction of Price Changes

• Equate marginal cost to marginal benefit

ξ (nit − n̄) = b1it

((
P ∗
it

Pt

)1−θ

−
(
Pit−1

Pt

)1−θ
)
−τb2it

((
P ∗
it

Pt

)− θ
η

−
(
Xit−1

Pt

)− θ
η

)

• Marginal benefit

– changes firm price index

– and reduces misallocation

– weighted by the same terms b1it and b2it that determine P ∗
it
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Symmetric Equilibrium
• Since firms are identical, in equilibrium P ∗

it = P ∗
t , nit = nt, . . .

• Going forward: pt = Pt/Mt, p∗t = P ∗
t /Mt, xt = Xt/Pt and πt = Pt/Pt−1

• Equilibrium conditions

– reset price: p∗t
pt

=
(

1
η

b2t
b1t

) 1

1+θ( 1
η

−1)

– fraction of price changes:

ξ (nt − n̄) = b1t

((
p∗t
pt

)1−θ

−
(

1
πt

)1−θ
)
− τb2t

((
p∗t
pt

)− θ
η −

(
xt−1

πt

)− θ
η

)

– price index: 1 = nt

(
p∗t
pt

)1−θ

+ (1− nt)π
θ−1
t

– losses from misallocation: x
− θ

η
t = nt

(
p∗t
pt

)− θ
η
+ (1− nt)x

− θ
η

t−1π
θ
η
t
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Computation
• Model collapses to one-equation extension of Calvo

– the additional equation determines the fraction of price changes

– as ξ → ∞, nt = n̄ so our model nests Calvo

• Two state variables

– previous period price: st = Pt−1/Mt = pt−1/ exp(µ+ εt)

– previous period misallocation: xt−1

• Do not need to keep track of joint distribution of these variables

– because firms are ex-post identical

• Solve the model globally, but third-order perturbation reasonably accurate
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Parameterization
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Calibration Strategy
• Assigned parameters

– period 1 quarter so β = 0.99

– demand elasticity θ = 6 and span of control η = 2/3

• Calibrated parameters

– mean and standard deviation of nominal spending growth µ and σ

– fraction of free price changes n̄ and price adjustment cost ξ

• Calibration targets

– mean and standard deviation of inflation

– mean fraction of price changes

– slope of fraction of price changes on absolute value of inflation
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Calibrated Parameters
Targeted Moments

Data Our model Calvo

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean fraction 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 –

Calibrated Parameters

Our model Calvo

µ mean spending growth rate 0.035 0.035
σ s.d. monetary shocks 0.022 0.022
n̄ fraction free price changes 0.241 0.297
ξ adjustment cost 1.767 –

• Price adjustment costs account for 0.65% of all labor costs
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Steady State Analysis
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Overview

• Show how steady-state outcomes vary with trend inflation

• Responses to monetary shocks

• Derive Phillips curve
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Fraction of Price Changes
• Let π = exp (µ) denote level of trend inflation

– variable without t subscript is value in non-stochastic steady state

• Steady state fraction of price changes n

ξ (n− n̄) =
1

1− β (1− n)πθ−1

1

n

(
1− πθ−1 − τη

1− (1− n)πθ−1

1− (1− n)π
θ
η

(
1− π

θ
η

))

• Marginal cost linearly increasing in n

• Marginal benefit

– absent trend inflation (i.e. π = 1), marginal benefit is zero and n = n̄

– when π > 1, decreasing in n
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Fraction of Price Changes

0.2 0.25 0.3 0.35 0.4 0.45 0.5

n

0

0.1

0.2

0.3

0.4

0.5
marginal cost
marginal bene-t, : = 3%
marginal bene-t, : = 6%

Fraction of price changes increases with inflation
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Output and Productivity
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• Inflation less distortionary in our model equations

– because more frequent price changes, as in menu cost models
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Real Effects of Monetary Shocks

• Response to 1% monetary shock

– in economies with 0 and 10% trend inflation

– compare to economy with steady-state frequency as our model, but ξ = ∞

• Focus on output response

– Mt = Ptyt, so output response depends on how sticky prices are
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Response to 1% Monetary Shock
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Understanding the Result
• Small jump in frequency has large effect on price level

• To see why, log-linearize expression for aggregate price index

π̂t =
1

(1− n)πθ−1

πθ−1 − 1

θ − 1︸ ︷︷ ︸
M

n̂t +
1− (1− n)πθ−1

(1− n)πθ−1︸ ︷︷ ︸
N

(p̂∗t − p̂t)

• Elasticity N to reset price changes: identical to Calvo

– decreases with inflation (lower weight on new prices)

• Elasticity M to frequency: zero if π = 1, increases with inflation

– so price level more responsive to changes in n at high inflation
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Intuition

• Why is price level more responsive to changes in n at high inflation?

• Inflation ≈ average price change × fraction of price changes

– π = 0: average price change = 0 so fraction inconsequential

– π = 10%: average price change is large

◦ so ∆n increases price level considerably

◦ mechanism in Caplin and Spulber (1986) menu cost model

• Prices even more responsive to large shocks large shock

– strong non-linearities, as in menu cost model
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Inflation Accelerator
• Expression for price index: higher frequency increases inflation

π̂t = Mn̂t +N (p̂∗t − p̂t)

– elasticity M increases with inflation, zero if π = 1

• Optimal frequency increases with inflation

n̂t = Aπ̂t + B (p̂∗t − p̂t)− Cx̂t−1 +
n− n̄

n
b̂1t

– elasticities A and B increase with inflation, zero if π = 1 equations

• Feedback loop amplifies inflation response to changes in reset price

π̂t =
MB +N
1−MA

(p̂∗t − p̂t)−
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t
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Phillips Curve
• Let m̂ct =

1
η ŷt, can derive Phillips curve: π̂t = Km̂ct + . . . Phillips Curve

• Slope of the Phillips curve

K =
1

1 + θ
(

1
η − 1

)
︸ ︷︷ ︸
complementarities

×
(
1− β (1− n)π

θ
η

)
︸ ︷︷ ︸

horizon effect

× MB +N
1−MA︸ ︷︷ ︸
reset price

• If ξ = ∞, reduces to slope in Calvo

κ =
1

1 + θ
(

1
η − 1

) ×
(
1− β (1− n)π

θ
η

)
× 1− (1− n)πθ−1

(1− n)πθ−1︸ ︷︷ ︸
N

• Difference between K and κ captures inflation accelerator
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Slope of the Phillips Curve
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Much steeper at high inflation, mostly due to inflation accelerator
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Phillips Curve in the Time-Series
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Approach

• Use non-linear solution to back out shocks that match U.S. inflation series

πt = π

(
pt−1

exp (µ+ εt)
, xt−1

)

– initialize 1962 in stochastic steady state

• Derive Phillips curve by perturbing equilibrium conditions at each date
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Fraction of Price Changes
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output gap extensive margin model
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Perturbation of Equilibrium at Each Date

• First-order perturbation around equilibrium point at each date t

– nominal spending growth rate at t is µt = µ+ εt

– consider additional shock ε̃t, so that µ̃t = µt + ε̃t

– let π̂t = log π̃t − log πt be log-deviation from original equilibrium point

• Log-linearize aggregate price index

π̂t =
1

(1− nt)π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
Mt

n̂t +
1− (1− nt)π

θ−1
t

(1− nt)π
θ−1
t︸ ︷︷ ︸

Nt

(p̂∗t − p̂t) .

• Log-linearize expression for optimal fraction of price changes

n̂t = Atπ̂t + Bt (p̂
∗
t − p̂t)− Ctx̂t−1 +

nt − n̄

nt
b̂1t
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Slope of the Phillips Curve

• Slope of the Phillips curve

Kt =
1

1 + θ
(

1
η − 1

) × y
1
η

t

b2t
× MtBt +Nt

1−MtAt

• Absent endogenous frequency response

κt =
1

1 + θ
(

1
η − 1

) × y
1
η

t

b2t
× 1− (1− nt)π

θ−1
t

(1− nt)π
θ−1
t︸ ︷︷ ︸

Nt

• The difference Kt − κt captures the inflation accelerator
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Time-Varying Slope of the Phillips Curve
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Time-Varying Slope of the Phillips Curve
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In Calvo model slope falls in periods of high inflation
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Implication 1: Time-Varying Responses to Shocks

• Consider response to 1% shock in 1995 (low πt) and 1980 (high πt)

• Build intuition by computing log-linear approximation details

– repeat setting Mt = 0 to isolate inflation accelerator
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Implication 2: Sacrifice Ratio

• Time-varying slope: reducing inflation less costly when inflation is high

• Calculate average drop in output needed to reduce π by 1pp over a year
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Inflation and the Sacrifice Ratio
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Robustness
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Two Robustness Exercises

• Eliminate strategic complementarities

– set η = 1 and recalibrate model with θ = 6 and θ = 3 calibration

– slope of Phillips curve is larger, but fluctuates as in baseline Phillips curve

• Taylor Rule monetary policy

– replace nominal spending target with Taylor rule calibration

– slope of Phillips curve as in baseline Phillips curve
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