Discussion of *The Inflation Attention Threshold and Inflation Surges* by Oliver Pfäuti

Joel P. Flynn Yale

Inflation: Drivers and Dynamics Conference at the Cleveland Fed October 24, 2024

This Paper: A Summary

A very nice paper on an important topic!

- 1. Clear conceptual framework for why attention should be time-varying and why that could matter:
 - 1.1 Economic idea: In regimes with more volatile inflation, households should acquire more information
 - 1.2 Key Implication: households' inflation expectations respond more aggressively to the level of inflation when inflation is volatile

This Paper: A Summary

A very nice paper on an important topic!

- 1. Clear conceptual framework for why attention should be time-varying and why that could matter:
 - 1.1 Economic idea: In regimes with more volatile inflation, households should acquire more information
 - 1.2 Key Implication: households' inflation expectations respond more aggressively to the level of inflation when inflation is volatile
- 2. Nice empirical evidence of this prediction:
 - 2.1 Clear evidence of more responsive inflation expectations with high inflation
 - 2.2 Inflation is more responsive to oil news shocks when inflation is high

This Paper: A Summary

A very nice paper on an important topic!

- 1. Clear conceptual framework for why attention should be time-varying and why that could matter:
 - 1.1 Economic idea: In regimes with more volatile inflation, households should acquire more information
 - 1.2 Key Implication: households' inflation expectations respond more aggressively to the level of inflation when inflation is volatile
- 2. Nice empirical evidence of this prediction:
 - 2.1 Clear evidence of more responsive inflation expectations with high inflation
 - 2.2 Inflation is more responsive to oil news shocks when inflation is high
- 3. Clear mapping between these findings and a standard macro model with important implications

1. The context of the paper in the cyclical attention literature

2. Is attention about levels or volatilities?

3. Where do regimes come from?

1. Discussion Point I: Context in the Cyclical Attention Literature

Bracha-Tang (2024): Less Inattention When Inflation is High

Figure 2: Share of Same-DK Responses versus Actual Inflation Rates

(a) United States, March 1982 through Nov 2021

(b) The Euro Area, Jan. 1997 through Nov. 2021

Sources: Haver Analytics/European Commission

Korenok et al. (2024): Nonlinear Attention Relationship in Online Traffic

Link et al. (2024): People Report Being More Attentive to Inflation When it Rose in the Recent Surge

Figure 2: Attention to different topics over time

Notes: This figure displays the evolution of the fractions of respondents that raise different topics in the open-needs survey question among households (Panel A) and firms (Panel B) across survey waves. The "Any macro topic" and "Any household-/firm-level topic" summarize all household-/firm-level topics related to the macroceconomy, respectively. The remaining lines refer to specific macroeconomic topics, i.e., inflation, monetary policy/interest rates, growth, and Covid-19.

Pfäuti's Key contribution I: Regime-Switching Behavior in *Expectations*

$$\begin{split} \tilde{E}_{t}\pi_{t+3} &= \mathbb{1}_{\pi_{t-1} \leq \tilde{\pi}} \left(\beta_{0,L} + \beta_{1,L} \tilde{E}_{t-3}\pi_{t} + \beta_{2,L} \left(\pi_{t} - \tilde{E}_{t-3}\pi_{t} \right) \right) \\ &+ \left(1 - \mathbb{1}_{\pi_{t-1} \leq \tilde{\pi}} \right) \left(\beta_{0,H} + \beta_{1,H} \tilde{E}_{t-3}\pi_{t} + \beta_{2,H} \left(\pi_{t} - \tilde{E}_{t-3}\pi_{t} \right) \right) + \epsilon_{t}, \end{split}$$

Table 1: Estimated attention levels and the attention threshold

	Threshold $\hat{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $H_0: \gamma_{\pi,L} = \gamma_{\pi,H}$
Mean expectations	3.91%	0.18	0.35	0.000
s.e.		(0.018)	(0.042)	
Median expectations	4.44%	0.13	0.21	0.014
s.e.		(0.018)	(0.027)	
Quarterly frequency	3.21%	0.14	0.38	0.000
s.e.		(0.033)	(0.076)	

Notes: This table shows the results from regression (8), where $\hat{\pi}$ denotes the estimated threshold, $\hat{\gamma}_{\pi,L}$ and $\hat{\gamma}_{\pi,H}$ the estimated attention levels when inflation is below or above the threshold, respectively. The last column shows the *p*-value for the null hypothesis that the two attention levels are equal. Standard errors are robust with respect to heteroskedasticity.

Pfäuti's Key contribution II: Examining State-Dependent Supply Shock Propagation

Where to Go From Here? Measuring Actions!

- This paper's two main empirical contributions:
 - 1. Measure attention in units (inflation expectations) that we can examine in and map to standard models
 - 2. Show that attention has macroeconomic consequences

Where to Go From Here? Measuring Actions!

- This paper's two main empirical contributions:
 - 1. Measure attention in units (inflation expectations) that we can examine in and map to standard models
 - 2. Show that attention has macroeconomic consequences
- Pushing this idea further, I would like to see an examination (not for this paper!) of how attention to inflation manifests in what actually matters:

Actions

Where to Go From Here? Measuring Actions!

- This paper's two main empirical contributions:
 - 1. Measure attention in units (inflation expectations) that we can examine in and map to standard models
 - 2. Show that attention has macroeconomic consequences
- Pushing this idea further, I would like to see an examination (not for this paper!) of how attention to inflation manifests in what actually matters:

Actions

- This is hard, but the literature has made some progress on this in both survey and observational settings:
 - 1. Surveys: Kumar, Gorodnichenko, and Coibion (2023) directly measure how firms respond to exogenous changes in information
 - 2. Observational: Flynn and Sastry (2024) show how to recover choice mistakes from observational data to test state-dependence in attention and decompose mechanisms

2. Disscussion Point II: The Level or Volatility of Inflation?

Inflation is High When Its Volatility is High

Figure 7: Estimates of Time-Varying Uncertainty

• From an estimated CCC GARCH(1,1) model

The Theory Predicts that Attention Should be High when Inflation Volatility is High

• The optimal attention level in the theory is given by:

$$\gamma_{\pi,r} = max \left\{ 0, 1 - rac{1}{\lambda_r} {2\chi
ho_{\pi,r}^2 \sigma_{\pi,r}^2}
ight\}.$$

• No particular role for the *level* of inflation

The Theory Predicts that Attention Should be High when Inflation Volatility is High

• The optimal attention level in the theory is given by:

$$\gamma_{\pi,r} = max \left\{ 0, 1 - rac{1}{\lambda_r} {2\chi
ho_{\pi,r}^2\sigma_{\pi,r}^2}
ight\}.$$

- No particular role for the *level* of inflation
- My suggestion for this paper: make the empirics slightly more aligned with the theory by looking at changes in the *second moments*
- Very unlikely to matter for the empirical results of this paper...
- ... but matters a lot for our models and anything that could be said would be valuable!

Are Phillips Curves Non-Linear or State-Dependent?

Figure 1: The Phillips Correlation Across US Cities

• Figure from Cerrato and Gitti (2022)

Candidate I: Non-linear Phillips Curves (Levels)

- Benigno and Eggertsson (2023): It's Baaack: The Surge in Inflation in the 2020s and the Return of the Non-linear Phillips Curve
- A tight labor market can induce non-linearity in the Phillips curve

Figure 8: A Model of an Inv-L NK Phillips Curve as a function of labor market tightness.

• More mechanisms: Schmitt-Grohe and Uribe (2022), Blanco, Boar, Jones, and Midrigan (2024), Karadi, Nakov, Nuño, Pastén, and Thaler (2024)

Candidate II: State-dependent Phillips Curves (Uncertainty)

- Flynn, Nikolakoudis, and Sastry (2024): A Theory of Supply Function Choice and Aggregate Supply
- Firms endogenously have more responsive prices when inflation *uncertainty* is high

Figure 4: The Slope of Aggregate Supply Over Time

3. Discussion Point III: Where do Regimes Come From?

Where Do Regimes Come From?

- I like the two-state regime-shifting model for its simplicity
- For this paper: but I would have liked to have seen more in the paper about why two regimes fit the data better *vs.* a continuous but non-linear model
 - To be clear, the author does do model selection based on the BIC. But for such an important modeling assumption, I would like to see more discussion.

Where Do Regimes Come From?

- I like the two-state regime-shifting model for its simplicity
- For this paper: but I would have liked to have seen more in the paper about why two regimes fit the data better *vs.* a continuous but non-linear model
 - To be clear, the author does do model selection based on the BIC. But for such an important modeling assumption, I would like to see more discussion.
- **Beyond this paper:** I think it would be valuable to more fully explore the nonlinearities and which variables most clearly seem to drive them
- It would be useful to return to the theory here:
 - 1. Are regimes changes between multiple equilibria?
 - 2. Are regimes arising from changes in the conduct of policy?
 - 3. Are regimes actually arising from large changes in underlying variables that affect decisions smoothly?

Conclusion

- 1. A very nice and extremely well-written and executed paper that makes several important contributions to the literature
 - 1.1 A clear demonstration of how attention varies across inflationary regimes and manifests in inflation expectations
 - 1.2 This could matter for macro and monetary policy: shock propagation looks substantially different in high *vs.* low inflation regimes

Conclusion

- 1. A very nice and extremely well-written and executed paper that makes several important contributions to the literature
 - 1.1 A clear demonstration of how attention varies across inflationary regimes and manifests in inflation expectations
 - 1.2 This could matter for macro and monetary policy: shock propagation looks substantially different in high *vs.* low inflation regimes
- 2. A challenge for the literature: it would be very valuable to go further and unpack three things
 - 2.1 Beliefs vs. Actions: Does state-dependent attention to inflation matter for price- and/or wage-setting?
 - 2.2 Levels *vs.* Uncertainty: very important for the growing theory literature on non-linear *vs.* state-dependent Phillips curves
 - 2.3 Where do regimes come from? Important for empirical analysis and for thinking about policy