## The Inflation Attention Threshold and Inflation Surges

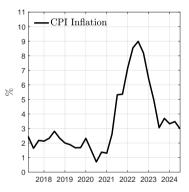
Oliver Pfäuti UT Austin

Federal Reserve Bank of Cleveland and European Central Bank Inflation: Drivers and Dynamics Conference 2024

October 2024

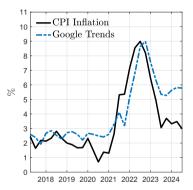
## Inflation is back...

## (a) Inflation



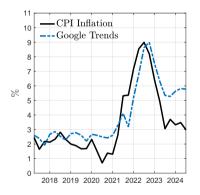
# Inflation is back... on people's minds

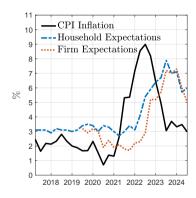
(a) Inflation and Google Trends



# Inflation expectations had a hard time catching up

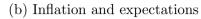
(a) Inflation and Google Trends (b) Inflation and expectations

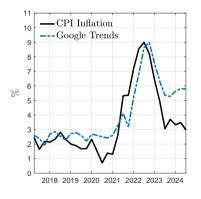


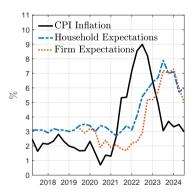


# Inflation expectations had a hard time catching up

(a) Inflation and Google Trends (b) Inflation and expectations



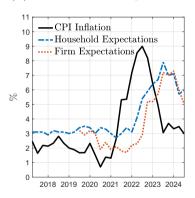




**Q:** When does attention to inflation change?

# Inflation expectations had a hard time catching up

- (a) Inflation and Google Trends
- CPI Inflation 10 -Google Trends 8 200 5 2018 2019 2020 2021 2022 2023 2024
- (b) Inflation and expectations



**Q:** When does attention to inflation change?

Q: Can attention changes explain inflation & inflation expectations dynamics?

▶ Estimate attention to inflation and threshold when attention changes:

- ▶ Estimate attention to inflation and threshold when attention changes:
  - ightharpoonup attention captures sensitivity of inflation expectations to forecast errors

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - $\Rightarrow$  attention doubles when inflation exceeds threshold of about 4%

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - ⇒ attention doubles when inflation exceeds threshold of about 4%
- ▶ Quantify role of attention and attention threshold for inflation dynamics:

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - ⇒ attention doubles when inflation exceeds threshold of about 4%
- ▶ Quantify role of attention and attention threshold for inflation dynamics:
  - ▶ Supply shocks: 2-3 times as inflationary in high-attention regime

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - ⇒ attention doubles when inflation exceeds threshold of about 4%
- ▶ Quantify role of attention and attention threshold for inflation dynamics:
  - ▶ Supply shocks: 2-3 times as inflationary in high-attention regime
  - ▶ higher attention doubled inflationary effects of supply shocks in recent inflation surge

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - ⇒ attention doubles when inflation exceeds threshold of about 4%
- Quantify role of attention and attention threshold for inflation dynamics:
  - ▶ Supply shocks: 2-3 times as inflationary in high-attention regime
  - higher attention doubled inflationary effects of supply shocks in recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - ⇒ attention doubles when inflation exceeds threshold of about 4%
- ▶ Quantify role of attention and attention threshold for inflation dynamics:
  - ▶ Supply shocks: 2-3 times as inflationary in high-attention regime
  - higher attention doubled inflationary effects of supply shocks in recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:
  - exceeding threshold changes inflation dynamics (resembling recent inflation surge)

- Estimate attention to inflation and threshold when attention changes:
  - attention captures sensitivity of inflation expectations to forecast errors
  - ⇒ attention doubles when inflation exceeds threshold of about 4%
- Quantify role of attention and attention threshold for inflation dynamics:
  - ▶ Supply shocks: 2-3 times as inflationary in high-attention regime
  - ▶ higher attention doubled inflationary effects of supply shocks in recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:
  - exceeding threshold changes inflation dynamics (resembling recent inflation surge)
  - ▶ threshold leads to inflation asymmetry, longer 'last mile', larger central bank losses, ...

## Contribution to the literature

- ▶ Drivers of recent inflation surge: Shapiro (2023), Gagliardone/Gertler (2023), Bernanke/Blanchard (2023), Benigno/Eggertsson (2023), Amiti et al. (2023), Bianchi/Melosi (2022) & Bianchi et al. (2023), Reis (2022), Schmitt-Grohe/Uribe (2024), Erceg et al. (2024)...
  - ⇒ Contribution: role of attention increase in inflation surge
- ▶ Measuring attention to inflation: Cavallo et al. (2017), Pfäuti (2021), Korenok et al. (2022), Bracha/Tang (2023), Weber et al. (2023), Kroner (2023)
- ⇒ Contribution: estimate attention threshold and attention in a way that directly maps into otherwise standard macro models
- ▶ State dependency of shocks: Auerbach/Gorodnichenko (2012a,b), Ramey/Zubairy (2018), Jo/Zubairy (2023), Tenreyro/Thwaites (2016), Ascari/Haber (2022), Joussier et al. (2023)
  - ⇒ Contribution: role of attention regime for inflation response
- ► Theory: Mackowiak/Wiederholt (2009), Paciello/Wiederholt (2014), Reis (2006a,b) Pfäuti (2021), Carvalho et al. (2022), Afrouzi/Yang (2022), Gati (2022)
  - $\Rightarrow$  Contribution: GE model with attention threshold, role for inflation surges

## Outline

- 1. Quantify Attention and Attention Threshold
- 2. Role of Attention for Inflation
- 3. Model + Model Results

 $\triangleright$  Perceived law of motion (subscripts r indicate potential regime dependence):

$$\pi_t = (1 - \rho_{\pi,r})\underline{\pi}_r + \rho_{\pi,r}\pi_{t-1} + \nu_t$$
, with  $\nu_t \sim N(0, \sigma_{\nu}^2)$ 

- current inflation is unobservable
- ▶ noisy signal:  $s_t = \pi_t + \varepsilon_t$ , with  $\varepsilon_t \sim N(0, \sigma_{\varepsilon,r}^2)$ , precision  $\frac{1}{\sigma_{\varepsilon,r}^2}$  reflects attention

 $\triangleright$  Perceived law of motion (subscripts r indicate potential regime dependence):

$$\pi_t = (1 - \rho_{\pi,r})\underline{\pi}_r + \rho_{\pi,r}\pi_{t-1} + \nu_t$$
, with  $\nu_t \sim N(0, \sigma_\nu^2)$ 

- current inflation is unobservable
- ▶ noisy signal:  $s_t = \pi_t + \varepsilon_t$ , with  $\varepsilon_t \sim N(0, \sigma_{\varepsilon, r}^2)$ , precision  $\frac{1}{\sigma_{\varepsilon, r}^2}$  reflects attention
- ▶ Bayesian updating:

$$\tilde{E}_t \pi_{t+1} = (1 - \rho_{\pi,r}) \underline{\pi}_r + \rho_{\pi,r} \tilde{E}_{t-1} \pi_t + \rho_{\pi,r} \gamma_{\pi,r} \left( \pi_t - \tilde{E}_{t-1} \pi_t \right) + u_t$$

 $\triangleright$  Perceived law of motion (subscripts r indicate potential regime dependence):

$$\pi_t = (1 - \rho_{\pi,r})\underline{\pi}_r + \rho_{\pi,r}\pi_{t-1} + \nu_t$$
, with  $\nu_t \sim N(0, \sigma_\nu^2)$ 

- current inflation is unobservable
- ▶ noisy signal:  $s_t = \pi_t + \varepsilon_t$ , with  $\varepsilon_t \sim N(0, \sigma_{\varepsilon, r}^2)$ , precision  $\frac{1}{\sigma_{\varepsilon, r}^2}$  reflects attention
- ▶ Bayesian updating:

$$\tilde{E}_t \pi_{t+1} = (1 - \rho_{\pi,r}) \underline{\pi}_r + \rho_{\pi,r} \tilde{E}_{t-1} \pi_t + \rho_{\pi,r} \gamma_{\pi,r} \left( \pi_t - \tilde{E}_{t-1} \pi_t \right) + u_t$$

 $\Rightarrow \gamma_{\pi,r}$  captures attention in regime r

 $\triangleright$  Perceived law of motion (subscripts r indicate potential regime dependence):

$$\pi_t = (1 - \rho_{\pi,r})\underline{\pi}_r + \rho_{\pi,r}\pi_{t-1} + \nu_t$$
, with  $\nu_t \sim N(0, \sigma_\nu^2)$ 

- current inflation is unobservable
- ▶ noisy signal:  $s_t = \pi_t + \varepsilon_t$ , with  $\varepsilon_t \sim N(0, \sigma_{\varepsilon, r}^2)$ , precision  $\frac{1}{\sigma_{\varepsilon, r}^2}$  reflects attention
- ▶ Bayesian updating:

$$\tilde{E}_t \pi_{t+1} = (1 - \rho_{\pi,r}) \underline{\pi}_r + \rho_{\pi,r} \tilde{E}_{t-1} \pi_t + \rho_{\pi,r} \gamma_{\pi,r} \left( \pi_t - \tilde{E}_{t-1} \pi_t \right) + u_t$$

 $\Rightarrow \gamma_{\pi,r}$  captures attention in regime r and can be estimated from:

(Vellekoop/Wiederholt 2019, Pfäuti 2021

$$\tilde{E}_t \pi_{t+1} = \beta_{0,r} + \beta_{1,r} \tilde{E}_{t-1} \pi_t + \beta_{2,r} \left( \pi_t - \tilde{E}_{t-1} \pi_t \right) + \epsilon_t,$$

 $\triangleright$  Perceived law of motion (subscripts r indicate potential regime dependence):

$$\pi_t = (1 - \rho_{\pi,r})\underline{\pi}_r + \rho_{\pi,r}\pi_{t-1} + \nu_t$$
, with  $\nu_t \sim N(0, \sigma_\nu^2)$ 

- current inflation is unobservable
- ▶ noisy signal:  $s_t = \pi_t + \varepsilon_t$ , with  $\varepsilon_t \sim N(0, \sigma_{\varepsilon, r}^2)$ , precision  $\frac{1}{\sigma_{\varepsilon, r}^2}$  reflects attention
- ▶ Bayesian updating:

$$\tilde{E}_t \pi_{t+1} = (1 - \rho_{\pi,r}) \underline{\pi}_r + \rho_{\pi,r} \tilde{E}_{t-1} \pi_t + \rho_{\pi,r} \gamma_{\pi,r} \left( \pi_t - \tilde{E}_{t-1} \pi_t \right) + u_t$$

 $\Rightarrow \gamma_{\pi,r}$  captures attention in regime r and can be estimated from:

Rational inattention microfoundation: Details

$$\gamma_{\pi,r} = max \left( 0, 1 - \frac{\lambda_r}{\rho_{\pi,r}^2 \sigma_{\pi,r}^2} \right)$$

## Attention threshold

▶ Test for different attention levels and attention threshold  $\bar{\pi}$ :

$$\tilde{E}_{t}\pi_{t+1} = \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}} \left( \beta_{0,L} + \beta_{1,L} \tilde{E}_{t-1} \pi_{t} + \beta_{2,L} \left( \pi_{t} - \tilde{E}_{t-1} \pi_{t} \right) \right) 
+ (1 - \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}}) \left( \beta_{0,H} + \beta_{1,H} \tilde{E}_{t-1} \pi_{t} + \beta_{2,H} \left( \pi_{t} - \tilde{E}_{t-1} \pi_{t} \right) \right) + \tilde{\epsilon}_{t}$$

## Attention threshold

▶ Test for different attention levels and attention threshold  $\bar{\pi}$ :

$$\tilde{E}_{t}\pi_{t+1} = \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}} \left( \beta_{0,L} + \beta_{1,L} \tilde{E}_{t-1} \pi_{t} + \beta_{2,L} \left( \pi_{t} - \tilde{E}_{t-1} \pi_{t} \right) \right) 
+ (1 - \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}}) \left( \beta_{0,H} + \beta_{1,H} \tilde{E}_{t-1} \pi_{t} + \beta_{2,H} \left( \pi_{t} - \tilde{E}_{t-1} \pi_{t} \right) \right) + \tilde{\epsilon}_{t}$$

• Estimate threshold  $\bar{\pi}$  and regression coefficients jointly by minimizing SSR

## Attention threshold

▶ Test for different attention levels and attention threshold  $\bar{\pi}$ :

$$\tilde{E}_{t}\pi_{t+1} = \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}} \left( \beta_{0,L} + \beta_{1,L} \tilde{E}_{t-1} \pi_{t} + \beta_{2,L} \left( \pi_{t} - \tilde{E}_{t-1} \pi_{t} \right) \right) 
+ (1 - \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}}) \left( \beta_{0,H} + \beta_{1,H} \tilde{E}_{t-1} \pi_{t} + \beta_{2,H} \left( \pi_{t} - \tilde{E}_{t-1} \pi_{t} \right) \right) + \tilde{\epsilon}_{t}$$

- Estimate threshold  $\bar{\pi}$  and regression coefficients jointly by minimizing SSR
- ▶ Baseline data:
  - ▶ monthly average expectations Michigan Survey of Consumers, 1978-2024
  - ▶ actual inflation: U.S. CPI inflation → Time series

# Empirical results: attention twice as high when inflation is above 4%

|          | Threshold $\bar{\pi}$ | Low Att. $\widehat{\gamma}_{\pi,L}$ | High Att. $\widehat{\gamma}_{\pi,H}$ | $p$ -val. $\gamma_{\pi,L} = \gamma_{\pi,H}$ |
|----------|-----------------------|-------------------------------------|--------------------------------------|---------------------------------------------|
| Baseline | 3.91%                 | 0.18                                | 0.35                                 | 0.000                                       |
| s.e.     |                       | (0.018)                             | (0.042)                              |                                             |

# Empirical results: attention twice as high when inflation is above 4%

|          | Threshold $\bar{\pi}$ | Low Att. $\widehat{\gamma}_{\pi,L}$ | High Att. $\hat{\gamma}_{\pi,H}$ | $p$ -val. $\gamma_{\pi,L} = \gamma_{\pi,H}$ |
|----------|-----------------------|-------------------------------------|----------------------------------|---------------------------------------------|
| Baseline | 3.91%                 | 0.18                                | 0.35                             | 0.000                                       |
| s.e.     |                       | (0.018)                             | (0.042)                          |                                             |

#### robustness:

- ▶ no evidence for changes within regime and data favors having one threshold
- regional data, control for unemployment expectations
- ▶ median expectations, quarterly frequency, NY Fed SCE (HH panel), SPF
- ▶ using average inflation over last three months as threshold-defining variable
- ► Markov-switching model

# Empirical results: attention twice as high when inflation is above 4%

|          | Threshold $\bar{\pi}$ | Low Att. $\widehat{\gamma}_{\pi,L}$ | High Att. $\hat{\gamma}_{\pi,H}$ | $p$ -val. $\gamma_{\pi,L} = \gamma_{\pi,H}$ |
|----------|-----------------------|-------------------------------------|----------------------------------|---------------------------------------------|
| Baseline | 3.91%                 | 0.18                                | 0.35                             | 0.000                                       |
| s.e.     |                       | (0.018)                             | (0.042)                          |                                             |

#### robustness:

- no evidence for changes within regime and data favors having one threshold
- regional data, control for unemployment expectations
- median expectations, quarterly frequency, NY Fed SCE (HH panel), SPF
- ▶ using average inflation over last three months as threshold-defining variable
- Markov-switching model

What drives attention? If inflation is above 4%, (i) inflation volatility, (ii) persistence, and (iii) news coverage are all higher (information cost lower).

# Empirical results: attention twice as high when inflation is above 4%

|          | Threshold $\bar{\pi}$ | Low Att. $\widehat{\gamma}_{\pi,L}$ | High Att. $\hat{\gamma}_{\pi,H}$ | $p$ -val. $\gamma_{\pi,L} = \gamma_{\pi,H}$ |
|----------|-----------------------|-------------------------------------|----------------------------------|---------------------------------------------|
| Baseline | 3.91%                 | 0.18                                | 0.35                             | 0.000                                       |
| s.e.     |                       | (0.018)                             | (0.042)                          |                                             |

#### robustness:

- no evidence for changes within regime and data favors having one threshold
- regional data, control for unemployment expectations
- median expectations, quarterly frequency, NY Fed SCE (HH panel), SPF
- using average inflation over last three months as threshold-defining variable
- Markov-switching model

What drives attention? If inflation is above 4%, (i) inflation volatility, (ii) persistence, and (iii) news coverage are all higher (information cost lower). Together with RCT evidence in Weber et al. (2024), (i) is the most likely driver.

## Outline

- 1. Quantify Attention and Attention Threshold
- 2. Role of Attention for Inflation
- 3. Model + Model Results

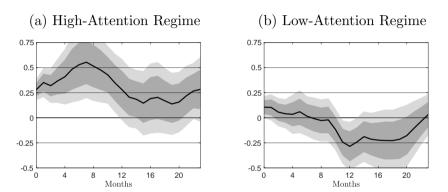
# Attention regimes and the propagation of supply shocks

#### Estimate local projection:

$$y_{i,t+j} = \mathbb{1}_{i,H} \left( \alpha_{i,j}^H + \beta_j^H \varepsilon_t \right) + (1 - \mathbb{1}_{i,H}) \left( \alpha_{i,j}^L + \beta_j^L \varepsilon_t \right) + \Gamma' X_{i,t} + u_{i,t+j}$$

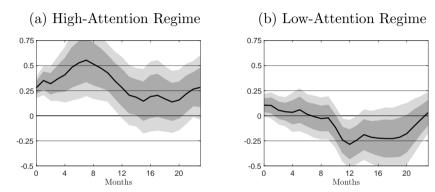
- ▶  $y_{i,t+j}$ : y-o-y CPI inflation in period t+j in region i
- ▶  $\mathbb{1}_{i,H} = 1$  if region i is in high-attention regime (based on Google Trends)
- $\varepsilon_t$ : oil supply news shock, 1975M1-2023M12 (Känzig, AER 2021)
- $\beta_j^r$ : effect of supply shock on inflation at horizon j in regime  $r \in \{L, H\}$
- $X_{i,t}$ : controls, including (lagged) aggregate inflation, regional inflation and interaction of those with the shock

# Supply shocks are more inflationary in times of higher attention



▶ supply shocks: more inflationary & more persistent in times of high attention

# Supply shocks are more inflationary in times of higher attention



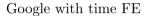
- ▶ supply shocks: more inflationary & more persistent in times of high attention
- ▶ also note different shape: hump vs. peak on impact

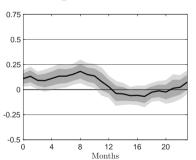
# Alternative approach to disentangle attention from inflation

• use interaction of Google Trends with the shock as measure of interest, and control for time- and region fixed effects (and control for region-specific inflation)

# Alternative approach to disentangle attention from inflation

• use interaction of Google Trends with the shock as measure of interest, and control for time- and region fixed effects (and control for region-specific inflation)





positive interaction: shocks more inflationary in times of high attention even when controlling for time fixed effects

## Outline

- 1. Quantify Attention and Attention Threshold
- 2. Role of Attention for Inflation
- 3. Model + Model Results

New Keynesian model with limited attention and attention threshold:

► Households: consume, work, subjective expectations + limited attention → Details

- ► Households: consume, work, subjective expectations + limited attention → Detail
- ▶ Firm sector: held by risk-neutral managers

- ► Households: consume, work, subjective expectations + limited attention → Detail.
- ► Firm sector: held by risk-neutral managers
  - ► Final good producer aggregates intermediate goods to final consumption good → Details

- ► Households: consume, work, subjective expectations + limited attention → Detail.
- ▶ Firm sector: held by risk-neutral managers
  - ► Final good producer aggregates intermediate goods to final consumption good → Detail
  - ► Intermediate producers: monopolistic competition, price adjustment cost, use labor to produce, tax/subsidy, subjective expectations + limited attention → Details

- ► Households: consume, work, subjective expectations + limited attention → Details
- ► Firm sector: held by risk-neutral managers
  - ► Final good producer aggregates intermediate goods to final consumption good → Details
  - ► Intermediate producers: monopolistic competition, price adjustment cost, use labor to produce, tax/subsidy, subjective expectations + limited attention → Details
- ▶ Government:
  - ► Fiscal authority: subsidy to firms, lump-sum taxes, issues bonds → Details
  - Monetary authority: sets nominal interest rate, following Taylor rule (for now)

$$\tilde{i}_t = \rho_i \tilde{i}_{t-1} + (1 - \rho_i) \left( \phi_\pi \pi_t + \phi_x \hat{x}_t \right)$$

▶ two managers: price setter and forecaster (Adam/Padula (2011))

- ▶ two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation  $\tilde{E}_t^j \pi_{t+1}^j$ , the price is set to:

$$\widehat{p}_t(j) = \frac{1}{\psi + \epsilon} \left[ \psi \widehat{p}_{t-1}(j) + \epsilon \left( \widehat{mc}_t - \widehat{T}_t + \widehat{p}_t \right) + \beta \psi \widetilde{E}_t^j \pi_{t+1}^j \right]$$

- ▶ two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation  $\tilde{E}_t^j \pi_{t+1}^j$ , the price is set to:

$$\widehat{p}_t(j) = \frac{1}{\psi + \epsilon} \left[ \psi \widehat{p}_{t-1}(j) + \epsilon \left( \widehat{mc}_t - \widehat{T}_t + \widehat{p}_t \right) + \beta \psi \widetilde{E}_t^j \pi_{t+1}^j \right]$$

- forecaster provides  $\tilde{E}_t^j \pi_{t+1}^j$ :
  - assumption:  $\tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1}$  (no idiosyncratic shocks and confirmed in equilibrium)

- ▶ two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation  $\tilde{E}_t^j \pi_{t+1}^j$ , the price is set to:

$$\widehat{p}_t(j) = \frac{1}{\psi + \epsilon} \left[ \psi \widehat{p}_{t-1}(j) + \epsilon \left( \widehat{mc}_t - \widehat{T}_t + \widehat{p}_t \right) + \beta \psi \widetilde{E}_t^j \pi_{t+1}^j \right]$$

- forecaster provides  $\tilde{E}_t^j \pi_{t+1}^j$ :
  - assumption:  $\tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1}$  (no idiosyncratic shocks and confirmed in equilibrium)
  - ▶ assume same initial conditions and signals are public (e.g., coming from news media)
    - $\Rightarrow \tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1} = \tilde{E}_t \pi_{t+1}$ , which leads to equilibrium with  $\pi_t = \pi_t^j$  for all j

- ▶ two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation  $\tilde{E}_t^j \pi_{t+1}^j$ , the price is set to:

$$\widehat{p}_t(j) = \frac{1}{\psi + \epsilon} \left[ \psi \widehat{p}_{t-1}(j) + \epsilon \left( \widehat{mc}_t - \widehat{T}_t + \widehat{p}_t \right) + \beta \psi \widetilde{E}_t^j \pi_{t+1}^j \right]$$

- forecaster provides  $\tilde{E}_t^j \pi_{t+1}^j$ :
  - assumption:  $\tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1}$  (no idiosyncratic shocks and confirmed in equilibrium)
  - assume same initial conditions and signals are public (e.g., coming from news media)

$$\Rightarrow \tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1} = \tilde{E}_t \pi_{t+1}$$
, which leads to equilibrium with  $\pi_t = \pi_t^j$  for all j

• get New Keynesian Phillips Curve with subjective expectations:

$$\pi_t = \beta \tilde{E}_t \pi_{t+1} + \kappa \hat{x}_t + u_t$$

#### Households and calibration

#### Households' expectations:

- ▶ inflation expectations as estimated empirically
- ▶ consumption solely driven by changes in aggregate wage ⇒ they forecast wages similarly as inflation but no regime changes

#### Households and calibration

#### Households' expectations:

- inflation expectations as estimated empirically
- ► consumption solely driven by changes in aggregate wage ⇒ they forecast wages similarly as inflation but no regime changes

#### Calibration:

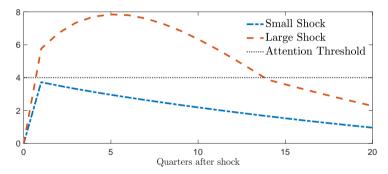
- calibrate all "non-attention parameters" to standard values in the literature
- set  $\gamma_{\pi,L} = 0.18$  and  $\bar{\pi} = 3.91\%$  and compute implied information cost  $\tilde{\lambda}$  from

$$\gamma_{\pi,r} = 1 - \frac{\tilde{\lambda}_r}{\sigma_{\pi,r}^2}$$

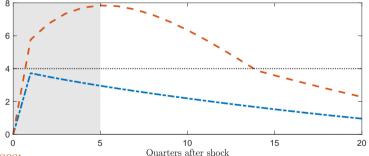
while increasing  $\sigma_u$  in high-attention regime to match  $\gamma_{\pi,H} = 0.35$  jointly  $\Rightarrow \sigma_{u,H} = 1.23\sigma_{u,L}$ 

- ▶ Effects of cost-push shocks  $u_t$  on inflation? → Equilibrium → Analytical Example
  - 1. large shock that pushes inflation above the threshold
  - 2. small one that does not push inflation above the threshold

- ▶ Effects of cost-push shocks  $u_t$  on inflation? → Equilibrium → Analytical Example
  - 1. large shock that pushes inflation above the threshold
  - 2. small one that does not push inflation above the threshold

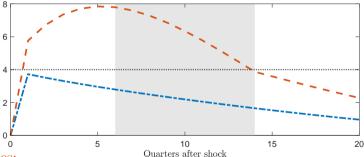


- ▶ Effects of cost-push shocks  $u_t$  on inflation? ▶ Equilibrium ▶ Analytical Example
  - 1. large shock that pushes inflation above the threshold
  - 2. small one that does not push inflation above the threshold



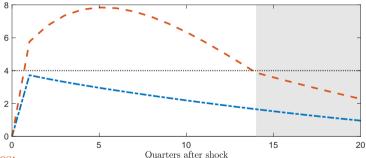
- ► Three phases:
  - 1. self-reinforcing inflation surge after shock due to attention increase

- ▶ Effects of cost-push shocks  $u_t$  on inflation? → Equilibrium → Analytical Example
  - 1. large shock that pushes inflation above the threshold
  - 2. small one that does not push inflation above the threshold



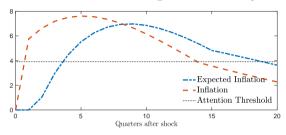
- ► Three phases:
  - 1. self-reinforcing inflation surge after shock due to attention increase
  - 2. relatively fast disinflation initially due to shock dying out and high attention

- $\triangleright$  Effects of cost-push shocks  $u_t$  on inflation?  $\triangleright$  Equilibrium  $\rightarrow$  Analytical Example
  - 1. large shock that pushes inflation above the threshold
  - 2. small one that does not push inflation above the threshold



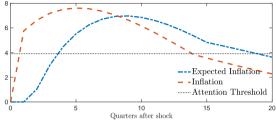
- ► Three phases:
  - 1. self-reinforcing inflation surge after shock due to attention increase
  - 2. relatively fast disinflation initially due to shock dying out and high attention
  - 3. disinflation slows down once inflation falls back below threshold

### Inflation and inflation expectation dynamics: Model vs. Data

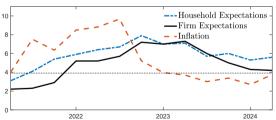


▶ Model: inflation hump-shaped and inflation expectations initially undershoot, followed by delayed overshooting

### Inflation and inflation expectation dynamics: Model vs. Data



▶ Model: inflation hump-shaped and inflation expectations initially undershoot, followed by delayed overshooting



▶ Data: shows similar patterns

#### Additional Results

- ► Similar results for demand shocks → IRF
- ► Attention threshold induces asymmetry in inflation dynamics: thicker right tail

  → Asymmetry
- ► Dovish monetary policy rules lead to larger central bank losses due to... → Details
  - ... higher inflation volatility
  - ... positive average inflation due to asymmetry

#### Conclusion

- ► Recent inflation surge brought inflation back on people's minds
- ▶ I find that...
  - ... attention doubles once inflation exceeds 4%
  - ... attention amplifies supply shocks and played important role in recent inflation surge
  - ... changes in attention matter for dynamics of inflation and inflation expectations
  - ... dovish monetary policy may lead to substantial central bank losses

Appendix

#### Limited-Attention Model

#### Model of optimal attention choice:

- ▶ Agent (household or firm) needs to form an expectation about future inflation
- ▶ Acquiring information is costly (cognitive abilities, time, etc.)
- Making mistakes leads to utility losses
  - $\Rightarrow$  optimal level of attention depends on how costly information acquisition is, how high your stakes are and the properties of inflation itself

### Setup

Agent believes that inflation follows an AR(1) process:

$$\pi' = \rho_{\pi}\pi + \nu,$$

with  $\rho_{\pi} \in [0, 1]$  and  $\nu \sim i.i.N(0, \sigma_{\nu}^2)$ .

The full-information forecast is given by

$$\pi^{e*} = \rho_{\pi}\pi$$

Problem: current inflation is unobservable and acquiring information is costly.

### Information Acquisition Problem

#### The agent's problem:

- ightharpoonup Choose the form of the signal s
- to minimize the loss that arises from making mistakes,  $U(s,\pi)$
- facing the cost of information  $C(f) = \lambda I(\pi; s)$ , with  $I(\pi; s)$  being the expected reduction in entropy of  $\pi$  due to observing s

### Information Acquisition Problem Continued

Quadratic loss function

$$U(\pi^e, \pi) = r \Big( \underbrace{\rho_{\pi}\pi}_{\text{full-info}} - \pi^e \Big)^2$$

r: stakes

Optimal signal has the form (Matejka/McKay (2015))

$$s = \pi + \varepsilon$$

where  $\varepsilon \sim i.i.N(0, \sigma_{\varepsilon}^2)$  captures noise  $\sigma_{\varepsilon}^2$  is chosen optimally

### Optimal Level of Attention

The optimal forecast is given by

$$\pi^e = \rho_\pi \hat{\pi} + \rho_\pi \gamma \left( s - \hat{\pi} \right),$$

where  $\hat{\pi}$  is the prior belief of the agent and  $\gamma$  is the optimal level of attention:

$$\gamma = \max\left(0, 1 - \frac{\lambda}{2r\rho_{\pi}^2 \sigma_{\pi}^2}\right)$$

Attention is higher when:

- the cost of information  $\lambda$  is low
- ightharpoonup the stakes r are high
- inflation is very volatile (high  $\sigma_{\pi}^2$ ) or persistent (high  $\rho_{\pi}$ ) Back

#### Households

Representative household, lifetime utility:

$$\tilde{E}_0 \sum_{t=0}^{\infty} \beta^t Z_t \left[ \frac{C_t^{1-\sigma}}{1-\sigma} - \Xi H_t \right]$$

Households maximize their lifetime utility subject to the flow budget constraints

$$C_t + B_t = w_t H_t + \frac{1 + i_{t-1}}{1 + \pi_t} B_{t-1} + \frac{T_t}{P_t},$$
 for all  $t$ 

Yields Euler equation

$$Z_t C_t^{-\sigma} = \beta (1 + i_t) \tilde{E}_t \left[ Z_{t+1} C_{t+1}^{-\sigma} \frac{1}{1 + \pi_{t+1}} \right]$$

and the labor-leisure condition

$$w_t = \Xi C_t^{\sigma}$$

▶ back

### Final goods producer

There is a representative final good producer that aggregates the intermediate goods  $Y_t(j)$  to a final good  $Y_t$ , according to

$$Y_t = \left(\int_0^1 Y_t(j)^{\frac{\epsilon - 1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon - 1}},\tag{1}$$

with  $\epsilon > 1$ . Nominal profits are given by  $P_t \left( \int_0^1 Y_t(j)^{\frac{\epsilon-1}{\epsilon}} dj \right)^{\frac{\epsilon}{\epsilon-1}} - \int_0^1 P_t(j) Y_t(j) dj$ , and profit maximization gives rise to the demand for each variety j:

$$Y_t(j) = \left(\frac{P_t(j)}{P_t}\right)^{-\epsilon} Y_t. \tag{2}$$

Thus, demand for variety j is a function of its relative price, the price elasticity of demand  $\epsilon$  and aggregate output  $Y_t$ . The aggregate price level is given by

$$P_t = \left(\int_0^1 P_t(j)^{1-\epsilon} dj\right)^{\frac{1}{1-\epsilon}}.$$
 (3)

▶ back

### Intermediate producers

Intermediate producer of variety j produces output  $Y_t(j)$  using labor  $H_t(j)$ 

$$Y_t(j) = H_t(j).$$

When adjusting the price, the firm is subject to a Rotemberg price-adjustment friction.

Per-period profits (in real terms) are given by

$$(1 - \tau_t)P_t(j) \left(\frac{P_t(j)}{P_t}\right)^{-\epsilon} \frac{Y_t}{P_t} - w_t H_t(j) - \frac{\psi}{2} \left(\frac{P_t(j)}{P_{t-1}(j)} - 1\right)^2 Y_t + t_t^F(j)$$

Defining  $T_t \equiv 1 - \tau_t$ , it follows that after a linearization of the FOC around the zero-inflation steady state, firm j sets its price according to

$$\widehat{p}_t(j) = \frac{1}{\psi + \epsilon} \left[ \psi \widehat{p}_{t-1} + \epsilon \left( \widehat{mc}_t - \widehat{T}_t + \widehat{p}_t \right) + \beta \psi \widetilde{E}_t^j \pi_{t+1}^j \right]$$

<sup>▶</sup> back

# Fiscal policy

The government imposes a sales tax  $\tau_t$  on sales of intermediate goods, issues nominal bonds, and pays lump-sum taxes and transfers  $T_t$  to households and  $t_t^F(j)$  to firms. The real government budget constraint is given by

$$B_t = B_{t-1} \frac{1 + i_{t-1}}{\prod_t} + \frac{T_t}{P_t} - \tau Y_t + t_t^f.$$

Lump-sum taxes and transfers are set such that they keep real government debt constant at the initial level  $B_{-1}/P_{-1}$ , which I set to zero.  $\rightarrow$  back

### Equilibrium

► Aggregate supply:

$$\pi_t = \beta \tilde{E}_t \pi_{t+1} + \kappa \hat{x}_t + u_t$$

► Aggregate demand:

$$\hat{x}_t = \tilde{E}_t \hat{x}_{t+1} - \varphi \left( \tilde{i}_t - \tilde{E}_t \pi_{t+1} - r_t^* \right)$$
$$\tilde{i}_t = \rho_i \tilde{i}_{t-1} + (1 - \rho_i) \left( \phi_\pi \pi_t + \phi_x \hat{x}_t \right)$$

+ shocks and expectation formation \* Analytical Example \* back

# Numerical insights: calibration • back

| Parameter            | Description                     | Value               |
|----------------------|---------------------------------|---------------------|
| β                    | Discount factor                 | $\frac{1}{1+1/400}$ |
| arphi                | Interest rate elasticity        | 1                   |
| $\kappa$             | Slope of NKPC                   | 0.057               |
| $ ho_i$              | Interest rate smoothing         | 0.7                 |
| $\phi_\pi$           | Inflation response coefficient  | 2                   |
| $\phi_x$             | Output gap response coefficient | 0.125               |
| $ ho_u$              | Shock persistence               | 0.8                 |
| $\sigma_u$           | Shock volatility                | 0.3%                |
| Attention parameters |                                 |                     |
| $\bar{\pi}$          | Attention threshold             | 3.91% (annualized)  |
| $\gamma_{\pi,L}$     | Low inflation attention         | 0.18                |
| $\gamma_{\pi,H}$     | High inflation attention        | 0.35                |
| $\gamma_x$           | Output gap attention            | 0.25                |

# An (hopefully) illustrative example

Consider a stylized version of the model: set  $\tilde{i}_t = \phi_\pi \pi_t$ ,  $\gamma_x = 0$  and  $\tilde{E}_{-1}\hat{x}_0 = 0$ 

# An (hopefully) illustrative example

Consider a stylized version of the model: set  $\tilde{i}_t = \phi_\pi \pi_t$ ,  $\gamma_x = 0$  and  $\tilde{E}_{-1}\hat{x}_0 = 0$ 

Focus on first three periods:

- 0: Steady State
- 1: Cost-push shock hits:  $u_1 > 0$
- 2: Shock persists:  $u_2 = u_1 > 0$

# An (hopefully) illustrative example

Consider a stylized version of the model: set  $\tilde{i}_t = \phi_\pi \pi_t$ ,  $\gamma_x = 0$  and  $\tilde{E}_{-1}\hat{x}_0 = 0$ 

Focus on first three periods:

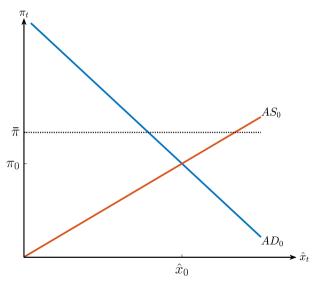
0: Steady State

1: Cost-push shock hits:  $u_1 > 0$ 

2: Shock persists:  $u_2 = u_1 > 0$ 

Q: What happens to inflation?

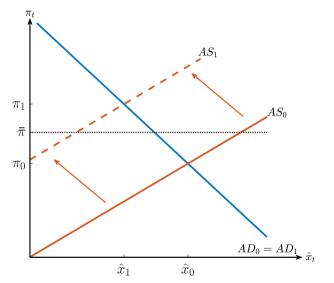
#### Period 0: economy in steady state



$$AS_0: \quad \pi_0 = \frac{\kappa}{1 - \beta \gamma_{\pi,L}} \hat{x}_0$$

$$AD_0: \quad \pi_0 = -\frac{1}{\phi_\pi - \gamma_{\pi,L}} \widehat{x}_0$$

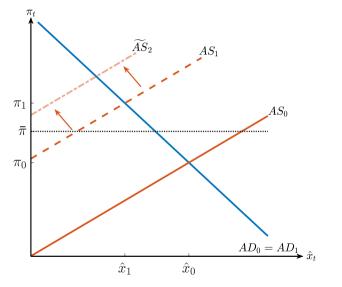
#### Period 1: Cost-push shock hits



$$AS_1: \quad \pi_1 = \frac{\kappa}{1 - \beta \gamma_{\pi,L}} \widehat{x}_1 + \frac{1}{1 - \beta \gamma_{\pi,L}} u_1$$

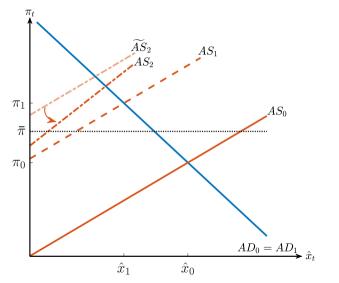
$$AD_1: \quad \pi_1 = -\frac{1}{\phi_\pi - \gamma_{\pi,L}} \widehat{x}_1$$

# Period 2: AS further up due to ongoing shock & prior expectations



$$\widetilde{AS}_2: \quad \pi_2 = \frac{\kappa}{1 - \beta \gamma_{\pi,L}} \widehat{x}_2 + \frac{1}{1 - \beta \gamma_{\pi,H}} u_2 + \frac{\beta (1 - \gamma_{\pi,H}) \gamma_{\pi,L}}{1 - \beta \gamma_{\pi,H}} \pi_1$$

## Period 2: AS becomes steeper due to higher attention

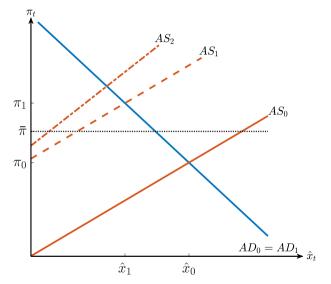


$$AS_2: \quad \pi_2 = \frac{\kappa}{1 - \beta \gamma_{\pi,H}} \hat{x}_2$$

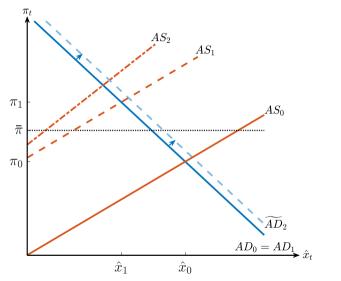
$$+ \frac{1}{1 - \beta \gamma_{\pi,H}} u_2$$

$$+ \frac{\beta (1 - \gamma_{\pi,H}) \gamma_{\pi,L}}{1 - \beta \gamma_{\pi,H}} \pi_1$$

# Period 2: What about aggregate demand?

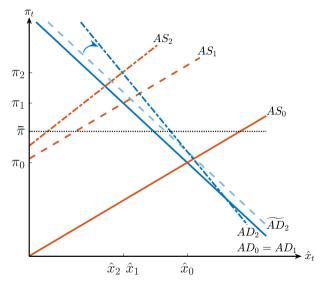


## Period 2: AD shifts out due to positive prior expectations



$$\widetilde{AD}_2: \quad \pi_2 = -\frac{1}{\phi_{\pi} - \gamma_{\pi,L}} \widehat{x}_2 + \frac{(1 - \gamma_{\pi,H})\gamma_{\pi,L}}{\phi_{\pi} - \gamma_{\pi,H}} \pi_1$$

#### Period 2: AD becomes steeper due to higher attention



$$AD_2: \quad \pi_2 = -\frac{1}{\phi_{\pi} - \gamma_{\pi,H}} \widehat{x}_2 + \frac{(1 - \gamma_{\pi,H})\gamma_{\pi,L}}{\phi_{\pi} - \gamma_{\pi,H}} \pi_1$$

▶ Period 3 ▶ back

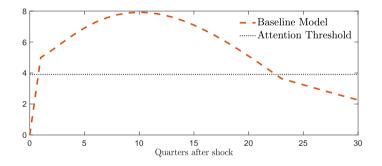
# Illustrative example: Period 3



$$AS_3: \qquad \pi_3 = \frac{\kappa}{1 - \beta \gamma_{\pi,H}} \hat{x}_3 + \frac{\beta (1 - \gamma_{\pi,H})}{1 - \beta \gamma_{\pi,H}} \tilde{E}_2 \pi_3$$

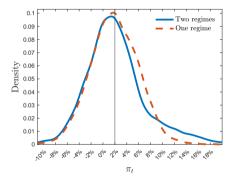
$$\pi_3 = -\frac{1}{\phi_{\pi} - \gamma_{\pi,H}} \hat{x}_3 + \frac{1 - \gamma_{\pi,H}}{\phi_{\pi} - \gamma_{\pi,H}} \tilde{E}_2 \pi_3$$

#### Demand shocks



#### Asymmetry in Inflation Dynamics

- ▶ The attention threshold leads to an asymmetry in inflation dynamics
  - ⇒ heightened risk of high-inflation periods



- Both models yield similar predictions for median inflation and deflation probabilities
- average inflation > 0 with 2 regimes= 0 with one regime

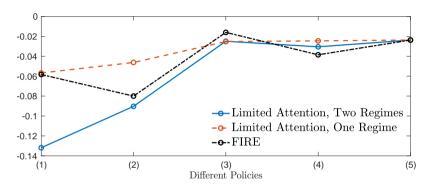
## Implications of different monetary policy rules for central bank losses

Central bank loss 
$$\equiv -\frac{1}{2}E_0\sum_{t=0}^{\infty}\beta^t\left[\pi_t^2+\Lambda\hat{x}_t^2\right]$$
, with  $\Lambda=0.007$ 

Compare welfare implications of different policy rules:

| Nr. | Name                            | Equation                                                                                               |
|-----|---------------------------------|--------------------------------------------------------------------------------------------------------|
| (1) | Taylor rule with smoothing      | $\tilde{i}_t = \rho_i \tilde{i}_{t-1} + (1 - \rho_i) \left( \phi_\pi \pi_t + \phi_x \hat{x}_t \right)$ |
| (2) | Taylor rule without smoothing   | $\tilde{i}_t = \phi_\pi \pi_t$                                                                         |
| (3) | Optimal RE commitment policy    | $\pi_t + \frac{\Lambda}{\kappa} \left( \hat{x}_t - \hat{x}_{t-1} \right) = 0$                          |
| (4) | Optimal RE discretionary policy | $\pi_t + \frac{\Lambda}{\kappa} \hat{x}_t = 0$                                                         |
| (5) | Strict inflation targeting      | $\pi_t = 0$                                                                                            |

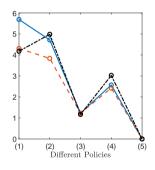
#### Central bank loss



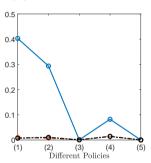
- ▶ Taylor rules lead to larger central bank losses than in other models
  - especially with interest-rate smoothing

#### Asymmetry of attention threshold increases average level of inflation

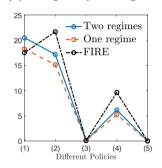




(b) Average inflation



(c) Frequency H regime



• Asymmetry  $\Rightarrow$  average level  $> 0 \Rightarrow$  losses