Intermediary Balance Sheets and the Treasury Yield Curve

Wenxin Du (Chicago, FRBNY, NBER, CEPR)
Benjamin Hébert (Stanford, NBER)
Wenhao Li (USC)

2022 Cleveland Fed Financial Stability Conference

The views expressed in this presentation are those of the discussant and not necessarily those of the Federal Reserve Bank of New York or the Federal Reserve System.
Known Facts: (i) swap spread pos. to neg. and (ii) CIP zero to neg.
New Facts: (i) dealer net position neg. to pos. and (ii) CIP/swap spread correlation
1. Dealer-Long and Dealer-Short Curves
Balance-Sheet Neutral Treasury Trading Strategies

(A) Long Treasury

- Treasury Bonds
- Repo r_{tri}
- Dollar Lending in FX Swap r_{syn}
- Unsecured Funding r_{ois}

(B) Short Treasury

- Cash Collateral r_{sec}
- Treasury Bonds Borrowed
- Dollar Lending in FX Swap r_{syn}
- Unsecured Funding r_{ois}

Du, Hébert and Li (2022)
Net-Long vs. Net-Short Curve

- Long regime:
 \[y^s \approx r^{syn} - r^{ois} + r^{tri}, \]
 or equivalently,
 \[r^{ois} - y^s \approx - (r^{syn} - r^{ois}) + (r^{ois} - r^{tri}). \]

- Short regime:
 \[y^s \approx -(r^{syn} - r^{ois}) + r^{sec}, \]
 or equivalently,
 \[r^{ois} - y^s \approx r^{syn} - r^{ois} + (r^{ois} - r^{sec}). \]
10Y Yield pre- and post-GFC

- The actual bond yield switches from the dealer-short to the dealer-long curve, consistent with the change in dealers’ position.
2. Equilibrium Model
An Equilibrium Model

- Endogenous variables: (1) current n-period treasury bond yield y; (2) synthetic dollar lending rates r^{syn}. (3) Intermediary choices q^{bond} and q^{syn}.

- Intermediaries (consolidated dealers and levered clients) optimize profit subject to constraint

$$|q^{\text{bond}}| + q^{\text{syn}} \leq \bar{q}$$

- Real-money investors (e.g., pension funds and mutual funds) demand

$$D^{\text{bond}}_U = D_U\left(ny - (n - 1)y_P - y^{\text{bill}}\right)$$

Exp. Dollar Return vs Bill

- FX-hedge foreign investors (e.g., foreign life insurance companies) demand

$$D^{\text{bond}}_H = D_H\left(ny - (n - 1)y_P - r^{\text{syn}}\right)$$

Exp. Dollar Hedged Excess Return

- Each unit of bond requires synthetic financing, so $D^{\text{syn}}_H = D^{\text{bond}}_H$.
Market Clearings

▶ Treasury market:

\[
\exp(-ny)S^{\text{bond}} = q^{\text{bond}} + D_U^{\text{bond}} + D_H^{\text{bond}}
\]

Treasury bond supply in dollars

▶ Synthetic lending market:

\[
q^{\text{syn}} = D_H^{\text{bond}} + D^{\text{syn}}(r^{\text{syn}} - r^{\text{ois}})
\]

intermediary supply of syn lending

residual demand
Dealers’ Position Negatively Correlated with the Slope

- The model can explain that a steeper Treasury yield slope is correlated with stronger real-money demand for Treasury, which results in a lower dealer position, and a more negative swap spread.

- Contrasts with Jermann (2020) that the dealer inventory increases in the slope.
Key Changes Pre/Post GFC

- Supply of Treasury bonds has increased significantly, dealer balance sheets have contracted

Source: U.S. Flow of Funds
Regimes and Treasury Market Fragility

- Crises reduce dealer capacity \(\bar{q} \).
 - In the short regime (pre-2009) a bad shock to intermediary balance sheet decreases the Treasury yield relative to swaps.
 - In the long regime (post-2009) a bad shock to intermediary balance sheet increases the Treasury yield relative to swaps.

- An explanation of the Treasury market turmoil in March 2020 (Duffie (2020)).
 - Our explanation does not rely on “selling pressure” in the Treasury market (He, Nagel, and Song (2022)). Quantifying both forces is an interesting future direction.