Bank Funding Risk, Reference Rates, and Credit Supply

Harry Cooperman, ¹ Darrell Duffie, ² Stephan Luck, ¹ Zachry Wang², Yilin Yang²

November 17, FRB Cleveland 2022 FS Conference

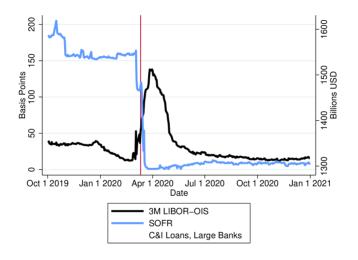
The views expressed here do not necessarily represent those of the Federal Reserve Bank of New York or the Federal Reserve System

¹Federal Reserve Bank of New York

²Graduate School of Business, Stanford University

Introduction

- Historically, the majority of C&I loans in the U.S. is indexed to LIBOR.
 - $\approx 80\%$ floating rate
 - $\approx 70\%$ indexed to LIBOR
- LIBOR is as of January 2022 being replaced with SOFR.


London Interbank Offered Rate (LIBOR)

- LIBOR includes changes in bank credit spreads.
- → Increases during times of distress.

Secured Overnight Financing Rate (SOFR)


- SOFR is a risk-free rate.
- → Falls during times of distress.
- LIBOR mitigates impact of potential funding shocks.
 - → Bank interest income rises when funding costs increase.
 - → Reduces incentives to draw revolving credit.
- How will the transition from LIBOR to SOFR affect credit supply?

C&I lending and reference rates during COVID recession

Data sources: FRED, Bloomberg.

C&I lending and reference rates during COVID recession

Data sources: FRED, Bloomberg.

Research objective

1. Theoretically

Under which conditions do reference rates matter for credit supply?

2. Empirically

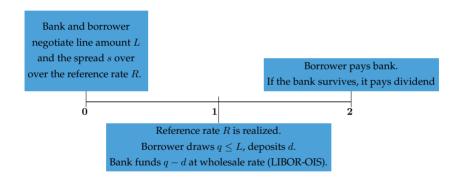
Does revolving credit plausibly represent a funding risk for banks?

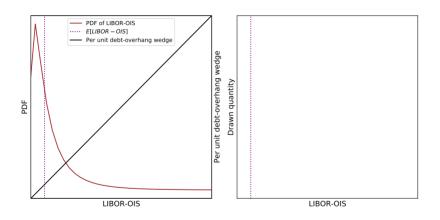
3. Calibration

What is the impact of the LIBOR-SOFR transition on credit supply?

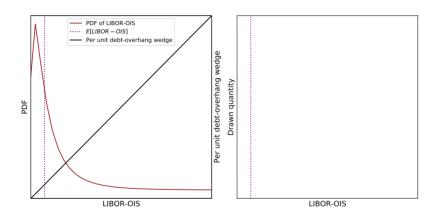
1 A Model of Credit Line Provision

2 Empirical Facts about Bank Funding Risk from Credit Line Drawdowns

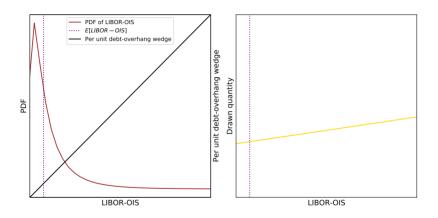

3 Quantifying the Effect of the LIBOR-SOFR Transition on Credit Supply

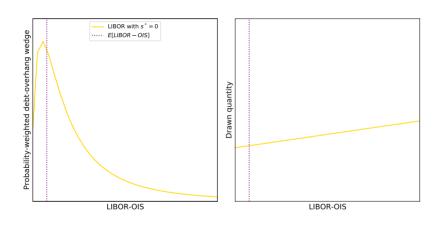

1 A Model of Credit Line Provision

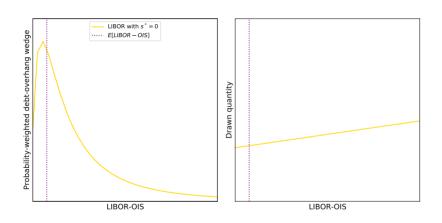
2 Empirical Facts about Bank Funding Risk from Credit Line Drawdowns

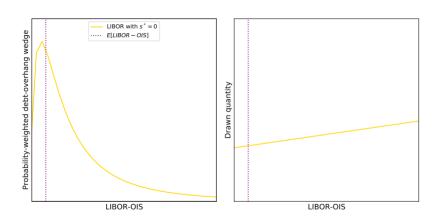

3 Quantifying the Effect of the LIBOR-SOFR Transition on Credit Supply

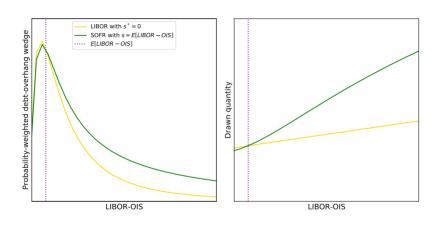
Simplified model of a credit line

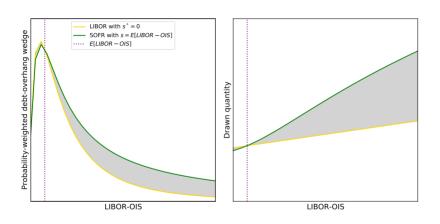


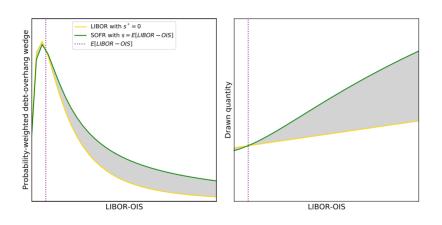

• Key friction: bank funding spread (LIBOR-OIS) above the risk-free rate

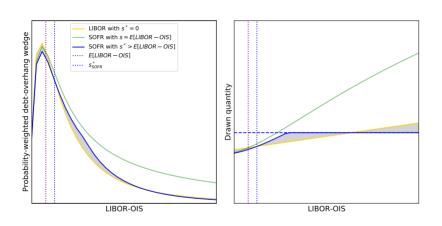

• Assumption: liquidity shocks are correlated with LIBOR-OIS

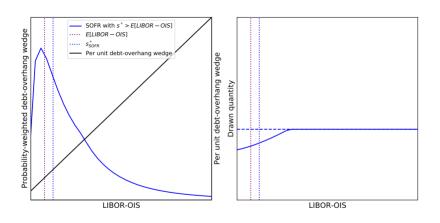

• Under risk-sensitive reference rate: spread s=0, credit limit L is indeterminate

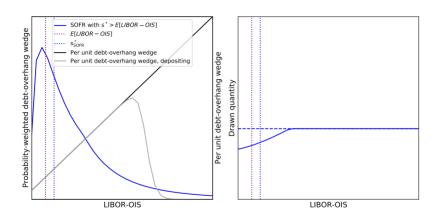

• Under risk-sensitive reference rate: spread s=0, credit limit L is indeterminate

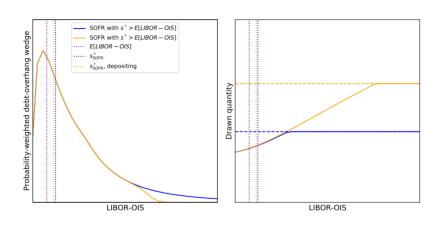

• Thought experiment: reference rate cannot vary across states

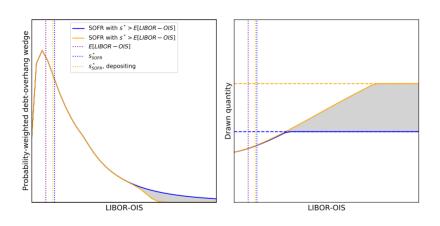

• Thought experiment: Assume $s = E[{\sf LIBOR\text{-}OIS}]$


→ Borrower will draw more when bank funding costs are high


 \rightarrow Expected debt-overhang wedge increase


ightarrow Bank will adjust menu: increase spread s for a given limit L


 \rightarrow Credit limit emerges, higher cost of credit $s^* > E[LIBOR-OIS]$


• Thus far, we assumed that all draws need to be funded at LIBOR-OIS

• Thought experiment: draws in bad states are precautionary (on deposit)

 \rightarrow Reduction in debt-overhang wedge

 \rightarrow Bank willing to provide more credit

1 A Model of Credit Line Provision

2 Empirical Facts about Bank Funding Risk from Credit Line Drawdowns

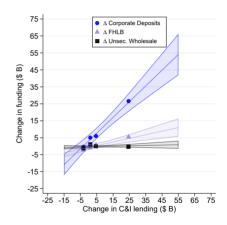
3 Quantifying the Effect of the LIBOR-SOFR Transition on Credit Supply

Data

- FR2052a:
 - Detailed BHC-level information for assets and liabilities.
 - Frequency: Monthly (banks > \$100B in assets) and daily (GSIBs).
- Y14-Q Schedule H1:
 - Detailed loan-level information for C&I larger than \$1 million.
 - All BHCs with more than \$100B in assets.
- FR2420:
 - Wholesale funding and corporate deposit rates.
- Other publicly available data:
 - Bloomberg, FR-Y9C, RateWatch, FHLB Des Moines historical rates file, Compustat, Capital IQ, etc.

Substantial bank funding risk from pre-committed credit

Loan Type	Util (\$B)	Comm (\$B)	% Utilized	No. Banks
Credit Line	543.76	1876.39	28.98	20
Term Loan	310.37	375.26	82.71	20

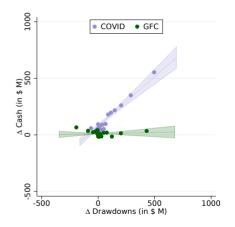

Source: FR Y-14Q Schedule H1 B as of 2019q4.

- In 2019, largest 20 BHCs alone had \$1.3 trillion unfunded commitmens
- During stress periods, when bank credit spreads are high, corporations draw down on credit lines.
 - Around 7% increase of total CI lending during GFC
 - Around 20% increase during COVID recession
- Acharya, Engle, and Steffen (2022).

Drawdowns during COVID were precautionary.

Bank-level evidence:

- \$1 increase in drawdowns → 89 cents increase in corporate deposits.
- Remaining amount raised via FHLB advances.
- No use of unsecured wholesale funding.

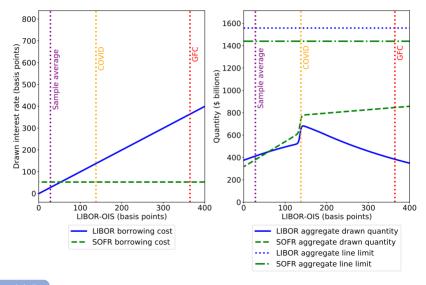


Binned scatterplot. 4 bins in each series across 24 banks which implies 6 banks per bin. Data Source: FR2052a.

Unlike during COVID, drawdowns during GFC were bank-funded.

Borrower-level evidence:

- COVID:
 - \$1 increase in drawdown → 84 cents increase in deposits.
- GFC:
 - \$1 increase in drawdown → 0 cents increase in deposits.
 - In line with Ivashina and Scharfstein (2010) and Acharya and Mora (2014).


Data Source: FR Y14Q, Compustat, Capital IQ.

1 A Model of Credit Line Provision

2 Empirical Facts about Bank Funding Risk from Credit Line Drawdowns

3 Quantifying the Effect of the LIBOR-SOFR Transition on Credit Supply

The effect of the LIBOR-SOFR transition on credit line prices and quantities.

Key Findings

1. Theoretically:

- Debt-overhang wedge implies a risk-free borrower pays a premium on revolving credit indexed to SOFR (compared to LIBOR) but not on term loans.
- Mitigated to the extent drawdowns are pre-cautionary as opposed to bank-funded

2. Empirically:

- (i) Bank funding risk from pre-committed credit is substantial
- (ii) Drawdowns during COVID were precautionary; drawdowns required bank funding during GFC

3. Quantifying the effect of the LIBOR-SOFR transition:

- Moderate increase in expected funding cost
 - Approx. 5-15 bps higher spread in normal times
 - Substantially lower funding cost during distress times

Parameterization

- C = 0.06, $\alpha = 0.25$, r = 0, f = 0.0003.
- $S = \theta W, \theta = 1, \psi = K(W).$
- $b(q, S) = \psi \log(q \underline{q}) + (1 \Phi(W))q$.
- $\Phi = \frac{D}{1+e^{-m(x-w_0)}}$, with D=1, m=0.223, and $w_0=130$ basis points.
- $K(w) = \delta(w + s(L))(\lambda e^{\eta w} \underline{q})$, with $\lambda = 465.71$, $\eta = 0.003089$, and $\underline{q} = 430$ (where q is measured in billions of dollars and w is measured in basis points).
- $\log S$ is Gaussian with mean -6.416 and standard deviation 0.892.
- Vertical gray dotted lines are shown at the sample average of LIBOR-OIS (28 basis points) and at the 140 bps level of LIBOR-OIS reached in the COVID shock of March, 2020.