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Motivation

• Financial crises typically involve bank runs

• Short-term debt can make a bank vulnerable to a self-fulfilling run

• Empirically, runs more likely with weak aggregate fundamentals

• General equilibrium feedbacks potentially important

⋆ Macroeconomic model essential to understand feedbacks

Q: What are the implications for government policy?

1/18



A Macroeconomic Model of Bank Runs

• Dynamic portfolio and equity decisions for banks

• Depend on asset prices, determined in equilibrium

• Limited commitment and endogenous strategic default

• Defaults triggered by fundamentals or runs

• Fragility linked to fundamentals, as in Gertler-Kiyotaki model,

but key differences:

• Runs on individual banks

• Maturity critical for fragility

• Normative analysis
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Preview of Main Normative Results

• Desirability of credit easing depends on source of the crisis

• Bad if driven by fundamentals. Good if driven by runs

• Repaying banks are net buyers during fundamental crisis, but are

net sellers in the event of a run.

⇒ Increases in asset prices hurt repaying banks in a

fundamental driven crisis, but benefit them in the case of runs
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Outline of the Talk

1. Environment without runs

• Bank problem in partial equilibrium

• General equilibrium

2. Model with bank runs

• Bank problem in partial equilibrium

• General equilibrium

3. Policy analysis



Environment

• Discrete time, infinite horizon, no aggregate risk

• Continuum of banks, preferences
∑∞

t=0 β
t log(ct).

• Creditors have linear utility, discount rate R

• Technology

• Production of consumption good: y = zk

• Capital in fixed supply K

• Competitive market for assets and deposits
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Banks’ Budget Constraints

All banks start at t = 0 with portfolio (b0,K)

• If repay at time t:

c = (z + pt)k − Rb + qt(b
′, k ′)b′ − ptk

′.

• qt price schedule of deposits • pt price of capital

• Deposits are one-period non-state contingent claims

◦ Without loss for now, but will matter with runs

• Capital is liquid

◦ Price determined in equilibrium
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Banks’ Budget Constraints

All banks start at t = 0 with portfolio (b0,K)

• If default at time t:

c = (z + pt)k − ptk
′

• Permanent financial exclusion b′ = 0

◦ Restriction on saving w/o loss

• Productivity loss y = zk

◦ Evidence on losses of firms exposed to defaulting banks
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Strategic Bank Default

V R
t (b, k) = max

k ′,b′,c
log(c) + βVt+1(b

′, k ′)

s.t. c = (z + pt)k − Rb + qt(b
′, k ′)b′ − ptk

′

No-Ponzi

VD
t (k) = max

k ′,c
log(c) + βVD

t+1(k
′)

s.t. c = zk + pt(k − k ′)

Repayment decision:

• If V R
t (b, k) = VD

t (k): indifferent

◦ Repay for t > 0

◦ Default with probability ϕ for t = 0
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Equilibrium Consistent Borrowing Limit

• Equilibrium default only at t = 0

• Bank at time t faces qt = 1 if

V R
t+1(b

′, k ′) ≥ VD
t+1(k

′)

Otherwise, q = 0.

• Guess and verify borrowing constraint

bt+1 ≤ γtpt+1kt+1

where {γt} is an eqm. object characterized analytically in
the paper
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General Equilibrium

ϕKD
t + (1− ϕ)KR

t =K

γRpRK γDpDK

Repayment eqm. Mixed eqm. Default eqm
B0

Stationary values:

pR =
βz̄

1− β − (1− βR)γR
pD =

β

1− β
z

γR = H(γR , pR) γD = H(γD , pD)

Result: γDpD > γRpR → Uniqueness
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General Equilibrium

ϕKD
t + (1− ϕ)KR

t =K

γRpRK γDpDK

Repayment eqm. Mixed eqm. Default eqm
B0

Within thresholds, a degenerate equilibrium does not exist

• Fraction ϕ defaults and 1− ϕ repay

• Generalize Kehoe-Levine, by allowing initial defaults

In the paper: Details

• Unique stationary eqm. and unique transition

• Repaying banks are net buyers of k in the mixed eqm.
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Equilibrium ϕ and p0 as a function of B0

Defaulting banks ϕ Price of Capital p0
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Mixed Equilibrium Simulations

Price of Capital pt Leverage Threshold γt

Capital Holdings
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Outline of the Talk

1. Environment without runs

• Bank problem in partial equilibrium

• General equilibrium

2. Model with bank runs

• Bank problem in partial equilibrium

• General equilibrium

3. Policy analysis



Self-Fulfilling Bank Runs

We model bank runs following Cole-Kehoe:

• If creditors refuse to rollover ⇒ repayment more costly

• In turn, if optimal to default during a run ⇒ a bank run

happens

Coordination problem between creditors give rise to multiplicity

12/18



Self-fulfilling Bank Runs

• Bank facing a run needs to de-lever:

V̂ Run
t (n) = max

k ′≥0,c
log(c) + Vt+1

(
(z̄ + pt+1)k

′ )
s.t c =n +��7

0
b′ − ptk

′

• A bank that can borrows faces tighter constraint:

V̂ Safe
t (n) = max

b′,k ′≥0,c
log(c) + βV̂ Safe

t+1 ((z + pt+1)k
′ − Rb′)

s.t c = n + b′ − ptk
′

V̂ Run
t+1 (n

′) ≥ VD
t+1(k

′) [If vulnerable, run happens]

Three regions depending on (b, k):

• Safe: V̂ Run
t (n) > VD

t (k): run does not happen
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′
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t+1 (n

′) ≥ VD
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′) [If vulnerable, run happens]

Three regions depending on (b, k):

• Vulnerable: V̂ Run
t (n) < VD

t (k) < V̂ Safe
t (n): default due to runs
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Financial Fragility

γRpRK γDpDK

Repayment eqm. Mixed eqm. Default eqm
B0
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Outline of the Talk

1. Environment without runs

• Bank problem in partial equilibrium

• General equilibrium

2. Model with bank runs

• Bank problem in partial equilibrium

• General equilibrium

3. Policy analysis



Credit Easing

• Government purchases assets K g at t = 0

• Financed with lump sum taxes and bond issuances

• Assets sold at t = 1

• Assume that govt. return Rg = p1+zg

p0
< R:

⇒ Investors don’t want to buy k (if same return as gov.)

Q: How does credit easing affect ϕ and welfare?
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Welfare effects of Credit Easing ϕ > 0

dW

dKg
=

[
ϕ
dVD

dKg
− (1− ϕ)

dV R

dKg

]
−
���������:0(
V R − VD

) dϕ

dKg

Without runs:

• V R = VD ⇒ dϕ irrelevant

• Given {p1, p2...}, dV R = dVD = dW < 0

With runs:With runs:

• V R = V Safe > V Run = VD

⇒ If dϕ < 0, possibility that ⇑ dW > 0

A repaying banks facing a run is a net seller of assets

⇒ benefits from intervention that ⇑ p0 ⇒ dϕ < 0

In equilibrium, dϕ < 0
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Credit Easing: Self-Fulfilling vs. Fundamentals

Self-Fulfilling Runs
p0 ϕ

Fundamentals
p0 ϕ

Discussion
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Conclusions

• A dynamic macroeconomic model of self-fulfilling bank runs

• General equilibrium effects crucial to assess govt. policies

• Desirability of credit easing depends on whether a crisis is

diriven by fundamentals or self-fulfilling runs

• Agenda:

• Anticipation effects of credit easing

• Use framework for other policies, such as macroprudential
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Government picks ϕ at t = 0

Banks’ welfare

W = (1− ϕ)V R + ϕVD

• Assume only p0 changes in response to policy:

↑ ϕ reduces p0 and helps repaying banks that have high u′
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Simulations: Socially Optimal Default Back

Fundamentals

(a) Welfare (b) p0 (c) γ0p1

Self-Fulfilling Runs

(d) Welfare (e) p0
(f) γ0p1
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