Bank Runs, Fragility, and Credit Easing

Manuel Amador ¹ Javier Bianchi²

¹Federal Reserve Bank of Minneapolis University of Minnesota
²Federal Reserve Bank of Minneapolis

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Motivation

- Financial crises typically involve bank runs
- Short-term debt can make a bank vulnerable to a self-fulfilling run
- Empirically, runs more likely with weak aggregate fundamentals
 - General equilibrium feedbacks potentially important

⭐ Macroeconomic model essential to understand feedbacks

Q: What are the implications for government policy?
A Macroeconomic Model of Bank Runs

- Dynamic portfolio and equity decisions for banks
 - Depend on asset prices, determined in equilibrium

- Limited commitment and endogenous strategic default
 - Defaults triggered by fundamentals or runs

- Fragility linked to fundamentals, as in Gertler-Kiyotaki model, but key differences:
 - Runs on individual banks
 - Maturity critical for fragility

- Normative analysis
• Desirability of **credit easing** depends on source of the crisis

• Bad if driven by fundamentals. Good if driven by runs
Preview of Main Normative Results

- Desirability of **credit easing** depends on source of the crisis
 - Bad if driven by fundamentals. Good if driven by runs

- Repaying banks are **net buyers** during fundamental crisis, but are **net sellers** in the event of a run.
 - Increases in asset prices hurt repaying banks in a fundamental driven crisis, but benefit them in the case of runs
Outline of the Talk

1. Environment without runs

2. Model with bank runs

3. Policy analysis
Environment

- Discrete time, infinite horizon, no aggregate risk
- Continuum of banks, preferences $\sum_{t=0}^{\infty} \beta^t \log(c_t)$.
- Creditors have linear utility, discount rate R
- Technology
 - Production of consumption good: $y = zk$
 - Capital in fixed supply \bar{K}
- Competitive market for assets and deposits
All banks start at $t = 0$ with portfolio (b_0, \bar{K})

- If repay at time t:

$$c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k'.$$

- q_t price schedule of deposits
- p_t price of capital

- Deposits are one-period non-state contingent claims
 - Without loss for now, but will matter with runs
Banks’ Budget Constraints

- If default at time t:

$$c = (z + p_t)k - p_t k'$$

- Permanent financial exclusion $b' = 0$
 - Restriction on saving w/o loss
- Productivity loss $y = zk$
 - Evidence on losses of firms exposed to defaulting banks
Strategic Bank Default

\[V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \]

s.t. \(c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \)

No-Ponzi

\[V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \]

s.t. \(c = \bar{z}k + p_t(k - k') \)
Strategic Bank Default

\[V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \]

s.t. \(c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \)

No-Ponzi

\[V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \]

s.t. \(c = zk + p_t(k - k') \)

Repayment decision:

- If \(V_t^R(b, k) > V_t^D(k) \): repay
Strategic Bank Default

\[
V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \\
\text{s.t. } c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k'
\]

No-Ponzi

\[
V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}(k') \\
\text{s.t. } c = zk + p_t(k - k')
\]

Repayment decision:

- If \(V_t^R(b, k) < V_t^D(k) \): default
Strategic Bank Default

\[V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \]

s.t. \(c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \)

No-Ponzi

\[V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}(k') \]

s.t. \(c = z k + p_t(k - k') \)

Repayment decision:

- If \(V_t^R(b, k) = V_t^D(k) \): indifferent
Strategic Bank Default

\(V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \)

s.t. \(c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \)

No-Ponzi

\(V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \)

s.t. \(c = zk + p_t(k - k') \)

Repayment decision:

- If \(V_t^R(b, k) = V_t^D(k) \): indifferent
 - Repay for \(t > 0 \)
 - Default with probability \(\phi \) for \(t = 0 \)
• Equilibrium default only at $t = 0$
Equilibrium Consistent Borrowing Limit

- Equilibrium default only at $t = 0$

- Bank at time t faces $q_t = 1$ if

\[V_{t+1}^R(b', k') \geq V_{t+1}^D(k') \]

Otherwise, $q = 0$.
• Equilibrium default only at $t = 0$

• Bank at time t faces $q_t = 1$ if

$$V_{t+1}(b', k') \geq V_{t+1}(k')$$

Otherwise, $q = 0$.

• Guess and verify borrowing constraint

$$b_{t+1} \leq \gamma_t p_{t+1} k_{t+1}$$

where $\{\gamma_t\}$ is an eqm. object characterized analytically in the paper.
\[\phi K_t^D + (1 - \phi) K_t^R = \bar{K} \]
General Equilibrium

Stationary values:

\[p^R = \frac{\beta \bar{Z}}{1 - \beta - (1 - \beta R)\gamma^R} \]
\[p^D = \frac{\beta \bar{Z}}{1 - \beta} \]
\[\gamma^R = H(\gamma^R, p^R) \]
\[\gamma^D = H(\gamma^D, p^D) \]
General Equilibrium

\[\phi K_t + (1 - \phi) R_t = \gamma R p^R K \]

\[\gamma^R p^R K \quad \text{Mixed eqm.} \quad \gamma^D p^D K \]

Stationary values:

\[p^R = \frac{\beta \bar{z}}{1 - \beta - (1 - \beta R) \gamma^R} \]
\[\gamma^R = H(\gamma^R, p^R) \]

\[p^D = \frac{\beta}{1 - \beta} \bar{z} \]
\[\gamma^D = H(\gamma^D, p^D) \]
General Equilibrium

Stationary values:

\[p^R = \frac{\beta z}{1 - \beta - (1 - \beta R)\gamma^R} \]

\[\gamma^R = H(\gamma^R, p^R) \]

\[p^D = \frac{\beta}{1 - \beta} z \]

\[\gamma^D = H(\gamma^D, p^D) \]
General Equilibrium

Stationary values:

\[
\begin{align*}
 p^R &= \frac{\beta \bar{z}}{1 - \beta - (1 - \beta R)\gamma^R} \\
 \gamma^R &= H(\gamma^R, p^R) \\
 p^D &= \frac{\beta}{1 - \beta} \bar{z} \\
 \gamma^D &= H(\gamma^D, p^D)
\end{align*}
\]
General Equilibrium

Stationary values:

\[p^R = \frac{\beta \bar{z}}{1 - \beta - (1 - \beta R)\gamma^R} \]

\[\gamma^R = H(\gamma^R, p^R) \]

\[p^D = \frac{\beta}{1 - \beta \bar{z}} \]

\[\gamma^D = H(\gamma^D, p^D) \]

Result: \(\gamma^D p^D > \gamma^R p^R \rightarrow \text{Uniqueness} \)
Within thresholds, a degenerate equilibrium does not exist

- Fraction ϕ defaults and $1 - \phi$ repay
 - Generalize Kehoe-Levine, by allowing initial defaults
Within thresholds, a degenerate equilibrium does not exist

- Fraction ϕ defaults and $1 - \phi$ repay
 - Generalize Kehoe-Levine, by allowing initial defaults

In the paper: Details

- Unique stationary eqm. and unique transition
- Repaying banks are net buyers of k in the mixed eqm.
Equilibrium ϕ and p_0 as a function of B_0
Mixed Equilibrium Simulations

Price of Capital p_t

Leverage Threshold γ_t

Capital Holdings

- Repaying banks
- Defaulting banks
Outline of the Talk

1. Environment without runs

2. Model with bank runs

3. Policy analysis
We model bank runs following Cole-Kehoe:

- If creditors refuse to rollover ⇒ repayment more costly
- In turn, if optimal to default during a run ⇒ a bank run happens

Coordination problem between creditors give rise to multiplicity
Self-fulfilling Bank Runs

- Bank facing a run needs to de-lever:

\[
\hat{V}_{\text{Run}}^t(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1} \left((\bar{z} + p_{t+1})k' \right)
\]

\[
s.t \quad c = n + b' - p_t k'
\]

- A bank that can borrow faces tighter constraint:

\[
\hat{V}_{\text{Safe}}^t(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^\text{Safe} \left((\bar{z} + p_{t+1})k' - R b' \right)
\]

\[
s.t \quad c = n + b' - p_t k'
\]

\[
\hat{V}_{t+1}^\text{Run}(n') \geq V_{t+1}^D(k') \quad \text{[If vulnerable, run happens]}
\]
Self-fulfilling Bank Runs

- Bank facing a run needs to de-lever:

\[
\hat{V}_{t}^{\text{Run}}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1}((\bar{z} + p_{t+1})k')
\]

\[
s.t \quad c = n + b' - p_t k'
\]

- A bank that can borrows faces tighter constraint:

\[
\hat{V}_{t}^{\text{Safe}}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^{\text{Safe}}((\bar{z} + p_{t+1})k' - Rb')
\]

\[
s.t \quad c = n + b' - p_t k'
\]

\[
\hat{V}_{t+1}(n') \geq V_{t+1}^{D}(k') \quad \text{[If vulnerable, run happens]}
\]
Self-fulfilling Bank Runs

- Bank facing a run needs to de-lever:

\[
\hat{V}_{t}^{Run}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1}((\bar{z} + p_{t+1})k')
\]

\[
s.t \quad c = n + b' - p_{t}k'
\]

- A bank that can borrow faces tighter constraint:

\[
\hat{V}_{t}^{Safe}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^{Safe}((\bar{z} + p_{t+1})k' - Rb')
\]

\[
s.t \quad c = n + b' - p_{t}k'
\]

\[
\hat{V}_{t+1}^{Run}(n') \geq V_{t+1}^{D}(k') \quad [\text{If vulnerable, run happens}]
\]

Three regions depending on \((b, k)\):

- **Safe:** \(\hat{V}_{t}^{Run}(n) > V_{t}^{D}(k)\): run does not happen
Self-fulfilling Bank Runs

- Bank facing a run needs to de-lever:

\[
\hat{V}_{t}^{\text{Run}}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1}((\bar{z} + p_{t+1})k') \\
\text{s.t. } c = n + b' - p_t k'
\]

- A bank that can borrows faces tighter constraint:

\[
\hat{V}_{t}^{\text{Safe}}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^{\text{Safe}}((\bar{z} + p_{t+1})k' - Rb') \\
\text{s.t. } c = n + b' - p_t k'
\]

\[
\hat{V}_{t+1}^{\text{Run}}(n') \geq V_{t+1}^{D}(k') \quad [\text{If vulnerable, run happens}]
\]

Three regions depending on \((b, k)\):

- Default: \(\hat{V}_{t}^{\text{Safe}}(n) < V_{t}^{D}(k)\): default due to fundamentals
Self-fulfilling Bank Runs

• Bank facing a run needs to de-lever:

\[
\hat{V}_{t}^{Run}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1}((\bar{z} + p_{t+1})k') \\
\text{s.t. } c = n + b' - p_{t}k'
\]

• A bank that can borrow faces tighter constraint:

\[
\hat{V}_{t}^{Safe}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^{Safe}((\bar{z} + p_{t+1})k' - Rb') \\
\text{s.t. } c = n + b' - p_{t}k'
\]

\[
\hat{V}_{t+1}^{Run}(n') \geq V_{t+1}^{D}(k') \quad [\text{If vulnerable, run happens}]
\]

Three regions depending on \((b, k)\):

• Vulnerable: \(\hat{V}_{t}^{Run}(n) < V_{t}^{D}(k) < \hat{V}_{t}^{Safe}(n)\): default due to runs
Financial Fragility

\[\gamma^R p^R K \quad \gamma^D p^D K \]

Repayment eqm. \quad Mixed eqm. \quad Default eqm

\[B_0 \]
Repayment eqm. Mixed eqm. Default eqm

$γ^R p^{R\bar{K}}$ $γ^D p^{D\bar{K}}$

B_0
Financial Fragility

\[\gamma^R p^R K \quad \text{Mixed eqm.} \quad \gamma^D p^D K \]

\[B_0 \]
Outline of the Talk

1. Environment without runs

2. Model with bank runs

3. Policy analysis
Credit Easing

- Government purchases assets K^g at $t = 0$
 - Financed with lump sum taxes and bond issuances
 - Assets sold at $t = 1$

- Assume that govt. return $R^g = \frac{p_{1} + z^g}{p_0} < R$:
 \[\Rightarrow\] Investors don’t want to buy k (if same return as gov.)
Credit Easing

- Government purchases assets K^g at $t = 0$
 - Financed with lump sum taxes and bond issuances
 - Assets sold at $t = 1$

- Assume that govt. return $R^g = \frac{p_1 + z^g}{p_0} < R$:
 \[\Rightarrow \text{Investors don’t want to buy } k \text{ (if same return as gov.)} \]

Q: How does credit easing affect ϕ and welfare?
Welfare effects of Credit Easing \(\phi > 0 \)

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}
\]
Welfare effects of Credit Easing $\phi > 0$

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g} \rightarrow 0
\]

Without runs:

- $V^R = V^D \Rightarrow d\phi$ irrelevant
Welfare effects of Credit Easing $\phi > 0$

$$\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}$$

Without runs:

- $V^R = V^D \Rightarrow d\phi$ irrelevant
- Given $\{p_1, p_2\ldots\}$, $dV^R = dV^D = dW < 0$
Welfare effects of Credit Easing $\phi > 0$

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}
\]

Without runs:

- $V^R = V^D \Rightarrow d\phi$ irrelevant
- Given $\{p_1, p_2, \ldots\}$, $dV^R = dV^D = dW < 0$

With runs:

- $V^R = V^{Safe} > V^{Run} = V^D$

\Rightarrow If $d\phi < 0$, possibility that $\uparrow W$

A repaying banks facing a run is a net seller of assets

\Rightarrow benefits from intervention that $\uparrow p_0 \Rightarrow d\phi < 0$
Welfare effects of Credit Easing $\phi > 0$

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}
\]

Without runs:

- $V^R = V^D \Rightarrow d\phi$ irrelevant
- Given $\{ p_1, p_2, \ldots \}$, $dV^R = dV^D = dW < 0$

With runs:

- $V^R = V^{Safe} > V^{Run} = V^D$

 \Rightarrow If $d\phi < 0$, possibility that $\uparrow W$

A repaying banks facing a run is a net seller of assets

\Rightarrow benefits from intervention that $\uparrow p_0 \Rightarrow d\phi < 0$
Credit Easing: Self-Fulfilling vs. Fundamentals

Self-Fulfilling Runs

\[\rho_0 \]

\[\phi \]

![Graph of \(\rho_0 \) and \(\phi \) vs. \(K^g \)]
Credit Easing: Self-Fulfilling vs. Fundamentals

Self-Fulfilling Runs

\[p_0 \]

\[K^g \]

Fundamentals

\[p_0 \]

\[K^g \]

\[\phi \]

\[K^g \]
Conclusions

• A dynamic macroeconomic model of self-fulfilling bank runs

• General equilibrium effects crucial to assess govt. policies

• Desirability of credit easing depends on whether a crisis is driven by fundamentals or self-fulfilling runs

• Agenda:
 • Anticipation effects of credit easing
 • Use framework for other policies, such as macroprudential
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi) V^R + \phi V^D$$
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi) V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi=\phi^E} = (V^D(p_0^E) - V^R(p_0^E)) + \left[(1 - \phi) \frac{dV^R(p_0)}{dp_0} \bigg|_{p_0=p_0^E} + \phi \frac{dV^D(p_0)}{dp_0} \bigg|_{p_0=p_0^E} \right] \frac{dp_0}{d\phi}$$
Banks’ welfare

\[W = (1 - \phi) V^R + \phi V^D \]

- Assume only \(p_0 \) changes in response to policy:

\[
\frac{dW}{d\phi} \bigg|_{\phi=\phi^E} = (V^D(p_0^E) - V^R(p_0^E)) + \\
\left[(1 - \phi) \frac{dV^R(p_0)}{dp_0} \bigg|_{p_0=p_0^E} + \phi \frac{dV^D(p_0)}{dp_0} \bigg|_{p_0=p_0^E} \right] \frac{dp_0}{d\phi}
\]
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi)V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\left. \frac{dW}{d\phi} \right|_{\phi=\phi^E} = (V^D(p_0^E) - V^R(p_0^E)) + \left[(1 - \phi) \left. \frac{dV^R(p_0)}{dp_0} \right|_{p_0=p_0^E} + \phi \left. \frac{dV^D(p_0)}{dp_0} \right|_{p_0=p_0^E} \right] \frac{dp_0}{d\phi}$$

$$\left. \frac{dV^R(p_0)}{dp_0} \right|_{\phi=\phi^E} = u'(c^R)(\bar{K} - k^R(p_0^E)), \quad \left. \frac{dV^D(p_0)}{dp_0} \right|_{\phi=\phi^E} = u'(c^D)(\bar{K} - k^D(p_0^E)).$$
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi)V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi=\phi^E} = \left[V^D(p_0^E) - V^R(p_0^E) \right]$$

$$- (1 - \phi)\left[u'(c^R(p_0^E)) - u'(c^D(p_0^E)) \right] \left(k^R(p_0^E) - \bar{K} \right) < 0$$

$\uparrow \phi$ reduces p_0 and helps repaying banks that have high u'
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi) V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi=\phi^E} = [V^D(p_0^E) - V^R(p_0^E)]$$

$$- (1 - \phi)[u'(c^R(p_0^E)) - u'(c^D(p_0^E))] (k^R(p_0^E) - \bar{K})$$

$\uparrow \phi$ reduces p_0 and helps repaying banks that have high u'

- Without runs: optimal to have more banks defaulting
Government picks ϕ at $t = 0$

Banks’ welfare

\[W = (1 - \phi) V^R + \phi V^D \]

- Assume only p_0 changes in response to policy:

\[\frac{dW}{d\phi} \bigg|_{\phi = \phi^E} = \left[V^D(p_0^E) - V^R(p_0^E) \right] \]

\[- (1 - \phi) \left[u'(c^R(p_0^E)) - u'(c^D(p_0^E)) \right] \left(k^R(p_0^E) - \bar{K} \right) \]

↑ ϕ reduces p_0 and helps repaying banks that have high u'

- Without runs: optimal to have more banks defaulting
- With runs: may be optimal to reduce defaults
FUNDAMENTALS

(a) Welfare

(b) p_0

(c) $\gamma_0 p_1$

SELF-FULFILLING RUNS

(d) Welfare

(e) p_0

(f) $\gamma_0 p_1$