How abundant are reserves?
Evidence from the wholesale payment system

Gara Afonso Darrell Duffie Lorenzo Rigon Hyun Song Shin
FRBNY Stanford Stanford BIS

The Federal Reserve Bank of Cleveland and the Office of Financial Research
10th Financial Stability Conference

November 17-18, 2022

The views presented here are solely those of the authors and do not necessarily represent those of the Bank for International Settlements, the Federal Reserve Bank of New York, or the Federal Reserve System.
Policy backdrop

- Monetary policy normalization
 - Balance sheet reduction

- Adequacy of reserve balances

- This paper approaches reserve ampleness through the lens of payment dynamics
Reserve balances and payments

- Prior to the Global Financial Crisis,
 - Reserves were low relative to payments
 - Banks relied on incoming payments to make payments
 - Strategic complementarities in payments

- Since then,
 - Central banks have expanded balance sheets (LSAPs, liquidity facilities)
 - Large increase in reserve balances in many jurisdictions

- Do strategic complementarities in payments still exist?

Afonso, Duffie, Rigon and Shin (2022)
Outline

◊ Data

◊ Empirical results

◊ Robustness
Data

1. Payment transactions

◊ Fedwire Funds Service

* Real time gross settlement (RTGS) system
* 21.5 hour day: 9:00 pm - 6:30 pm ET
* Daily volume (2020): \(\sim\) 700,000 transfers
* Daily value (2020): \(\sim\) $3.3 trillion

◊ Our sample:

* First 100 business days of 2020; 2010-2020
* Minute-by-minute
* Banks - Excludes “special” accounts (ACH, CHIPS, CLS, TGA,...)
* Largest top 100 accounts by average daily dollar value of payments
* Dollar value (2020)
 - Top 100 captures 89% of dollar value (∼$3 tn per day)
 - Top 15 captures 76% of top 100 value

![Average daily value and volume graph]

Afonso, Duffie, Rigon and Shin (2022)
2. Reserve balances

- Internal Federal Reserve accounting records
- Top 15 accounts hold 40% of the reserves in the U.S. banking system
Strategic complementarity in payments

- Key relationship: $\text{Payments}_t = f(\text{Cumulative Receipts}_{t-s})$

- Distinctive data features
 1. Intraday dynamics

![Fedwire Funds by Time of Day](image)

 2. Zero payments

Afonso, Duffie, Rigon and Shin (2022)
Our model

⋄ Baseline specification (Tobit model)

\[
\log (1 + P_{imt}) = \beta_0 + \beta_1 \log \left(1 + \sum_{s=m-15}^{m-1} R_{ist}\right) + \gamma_i + \gamma_t + \gamma_m^p + u_{imt}
\]

where

- \(P_{imt} \) total dollar value payments from bank \(i \) to its counterparties in minute \(m \) on day \(t \)
- \(\sum_{s=m-15}^{m-1} R_{ist} \) bank \(i \)'s cumulative receipts during previous 15 minutes
- \(\gamma_i \) and \(\gamma_t \) are bank and date FEs
- \(\gamma_m^p = \{\gamma_m^{open}, \gamma_m^{early}, \gamma_m^{afternoon}, \gamma_m^{eod}\} \) are period-of-day FEs
- \(u_{imt} \) is an error term

Standard errors clustered at the bank level
Main results

<table>
<thead>
<tr>
<th></th>
<th>log(1 + (P_{int}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobit (MLE)</td>
<td>(1)</td>
</tr>
<tr>
<td>Coefficient</td>
<td>(2)</td>
</tr>
</tbody>
</table>

\[
\log(1 + \sum_{s=m-15}^{m-1} R_{ist})
\]

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.575***</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td></td>
</tr>
</tbody>
</table>

Marginal effect. A 1% increase in the cumulative payments received by bank \(i\) in the previous 15 minutes translates into a 0.4% increase in the value of payments that bank \(i\) makes over the next minute.

<table>
<thead>
<tr>
<th>Clustering</th>
<th>Bank FEs</th>
<th>Date FEs</th>
<th>Early dummy</th>
<th>EOD dummy</th>
<th>Afternoon dummies</th>
<th>Open dummy</th>
<th>N</th>
<th>Left-censored</th>
<th>Pseudo (R^2)</th>
<th>Log-likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>1,935,000</td>
<td>875,098</td>
<td>0.228</td>
<td>-3,157,609.4</td>
</tr>
</tbody>
</table>
Robustness

1. Bank, date and period-of-the-day fixed effects

2. Control for balances
 - Opening balances
 - Past payments

3. Gauging strategic complementarities
 Complementarity is stronger when banking system reserves are lower
Different intraday payments dynamics

Afonso, Duffie, Rigon and Shin (2022)
Share of receipts by time of day

\[\text{ShareReceipts}_t = \hat{\beta}_0^s + \hat{\beta}_1^s B_t + u_t^s \]

On high reserve days, banks receive a higher share of receipts in the morning

Afonso, Duffie, Rigon and Shin (2022)
A feature of 2020?
Complementarities in payments

Coordination is higher when reserves are lower

Afonso, Duffie, Rigon and Shin (2022)
Share of payments by time of day

![Graph showing share of payments by time of day with average cumulative receipts per total daily amount received. The graph covers the period 2010-2020. It illustrates two lines: one for high opening balances and another for low opening balances. The graph peaks around 18:00 for both categories.]
Reserves and timing of intraday payments

On high reserve days, banks still receive a higher share of receipts in the morning

Afonso, Duffie, Rigon and Shin (2022)
Concluding remarks

◊ Shed light on "ampleness" of reserves through revealed actions in payments
 - A 1% increase in the payments a bank receives in previous 15 minutes translates into a 0.4% increase in the payments it makes next minute

◊ This effect persists even in era of high reserve balances

◊ On days with low reserve balances,
 - Stronger effect
 - Banks receive a higher fraction of their receipts in the afternoon