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Abstract

This paper examines the impact of bail-in policies on the stability and efficiency of

the banking sector compared to traditional bailouts. I construct a model of banks’

balance sheet optimization with endogenous exit and entry, estimated to U.S. banking

data. Banks are heterogeneous in size and riskiness, key factors in the likelihood and

attractiveness of bailouts and bail-ins for individual banks. In an equilibrium in which

bail-ins replace bailouts, uninsured debt prices rise. This shift reduces the advantage

of being a large bank, particularly for riskier banks, who now grow at a slower rate.

The share of big banks drops 42%, and their failure rate decreases 65%. Despite

this, the overall decrease in aggregate lending is limited to 3.3% due to increased

entry to meet loan demand. Safer banks expand their lending share, enhancing the

overall efficiency of the banking sector. Furthermore, quantitative exercises show

that size-dependent capital requirements can replicate the reduction in failure rates

associated with bail-ins, but cost per failure remains high and the efficacy relies on

using the correct thresholds.
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1 Introduction

Big bank failure poses an immense threat to the stability of the banking sector and the

financial system. To avoid this, governments often provide support to either stabilize the

bank or wind it down in a way with minimal spillovers. Banks adjust their balance sheets

optimally to this expectation of support, and some methods, such as bailouts, have been

found to exacerbate moral hazard and increase the riskiness of banks (Bianchi (2016),

Chari and Kehoe (2016), Farhi and Tirole (2012), Gale and Vives (2002)). To combat

this effect, governments have adopted new bail-in policies to stabilize failing big banks

while also limiting moral hazard.

Bail-ins recapitalize distressed banks by converting uninsured debt into new equity.

Creditors are repaid in shares of the newly restructured bank while equity holders may

be wiped out. Compared to their repayment in equity-injection bailouts 2, creditors and

shareholders are likely to be repaid less under bail-in. Therefore, bail-ins can both improve

market discipline by increasing the cost of borrowing for riskier banks as well as reduce

moral hazard through the limiting of shareholder payoff under distress.

To evaluate the impacts of bail-in policies on the overall banking industry, I build a

quantitative dynamic model of bank decisions in which banks are heterogeneous in size

and riskiness. Prior literature on bailouts and bail-ins has focused on a representative big

bank (Berger et. al. (2022), Nguyen (2023), Shukayev and Ueberfeldt (2021)). However,

banks’ eligibility for these resolution methods is often determined by asset size, a dimen-

sion banks can and do optimally adjust (Brewer and Jagtiani (2013), Morgan and Yang

(2016)). Further, bailout expectations increase with the probability of failure, benefiting

riskier banks more than safer ones. While bail-ins may also be more likely for risky banks,

repayment to creditors is based on the equity value of the bank and may decrease with its

riskiness. In this paper, I evaluate the distributional and aggregate changes in the banking

industry under the expectation of bail-in versus bailout policies and the implications for

efficiency and financial stability.

The benchmark model consists of a steady state industry equilibrium with endogenous

exit and entry, in which failing banks have a probability of bailout depending on their size.

Banks in the model have rich balance sheets: they optimally invest in a portfolio of risky

loans and safe assets, funded via equity, insured deposits, and uninsured debt. Banks differ

2Distressed banks in the U.S. received equity injections from the government under the Troubled Asset
Relief Program. Banks were generally able to repay creditors and shareholders retained shares in the bank.
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in the rate at which their borrowers default on their loans, but they can mitigate this loss

through investing in safe assets. The price of the uninsured debt is a function of a bank’s

bailout probability, creating a “too big to fail” subsidy. By estimating the model to the

pre-Global Financial Crisis period, I uncover deep parameters governing banks’ decisions.

In a counterfactual, the bailout policy is replaced with one of bail-in and a new equilibrium

is found, including equilibrium uninsured debt prices and entry and exit decisions. Using

the parameters estimated from the benchmark model, I make quantitative statements re-

garding the equilibrium impacts of a fully-enforced bail-in policy.

I find that creditors are never fully repaid in the bail-ins that occur in the steady state

equilibrium. This partial repayment to creditors decreases the average “subsidy”3 on large

banks’ debt from 254 to 40 bps. Banks borrow less, relative to their size, and with lower

leverage, they can better weather large defaults on their loans without having to enter

resolution. Due to paying higher interest rates, individual banks lend less, and fewer banks

grow to be big banks — the share of big banks decreases from 18% to 10%. Importantly,

the banks that still grow large are ex-ante safer compared to those who grew large under

bailout: the subsidy to creditors under bailout increased the debt prices for banks with

higher expected defaults on their loans by a greater percentage than for banks with lower

expected defaults. Therefore, these riskier banks were strongly incentivized to grow large

under the benchmark, but less so in the counterfactual. The failure rate of big banks de-

creases by 65% due to lowered riskiness of the big banks. With fewer large banks, aggregate

demand for bank loans must be met through the entrance of new banks. Average lending

is $21.8B compared to $26.4B under the benchmark, a 17.4% decrease, but the entrance

of new banks leads to a decrease in aggregate lending of only 3.3%. Therefore, the bail-in

improves both financial stability and market discipline but decreases aggregate lending.

To understand the impact of bail-in policies on efficiency, I compare the counterfactual

results to two alternative benchmarks. The first features a non-targeted bail-in policy,

in which banks of any size can be bailed-in if they enter resolution. This policy lowers

the cost of uninsured debt for small banks as the repayment to creditors under bail-in is

greater than that under liquidation, the only option for small banks under the benchmark

and counterfactual. Therefore, small banks increase their lending, but without needing to

reach the size threshold for access to bail-ins, fewer grow as large as under the benchmark.

3Because government funding is not used to repay creditors in the event of a bail-in, there is no true
subsidy in the bail-in. By subsidy, I refer to the difference in repayment from the bail-in compared to the
repayment from the alternative liquidation process.
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Aggregate lending increases as banks do not need to earn as high of a return on their

lending to decide to enter.

The second alternative benchmark is a “frictionless” one, designed to resemble the en-

vironment of Hopenhayn (1992). I remove all external financing frictions, allowing banks

to raise equity and borrow at the risk-free rate. In this equilibrium, only the banks with

the lowest expected default rate on lending engage in risky lending. With risk-free external

funding, the required return on lending for banks to choose to enter decreases further, and

aggregate lending increases. As a measure of financial stability, I define a new variation

of allocative efficiency in spirit of Olley and Pakes (1996) based on banks’ expected loan

default rates. This measure captures that a more efficient economy is one in which banks

with lower expected default rates have the highest loan shares. Because only the banks

with the lowest default rates lend in the frictionless benchmark, the default rate allocative

efficiency is 100%. I find that this measure is only 48% in the benchmark equilibrium.

The bail-in policy in the counterfactual drastically improves efficiency, with an allocative

efficiency measure of 92% due to the reduction in lending by banks with higher expected

default rates investing in large quantities of risky lending in order to quickly grow above the

size threshold. However, the non-targeted bail-in policy can further improve the allocative

efficiency to 98%. This change is driven by the increase in lending by small banks with

low expected defaults that now have access to cheaper uninsured debt.

Finally, I compare the effects of bail-in expectations on bank decisions to those of other

macroprudential policies. I first increase the capital requirement in the bailout world to

match that of Basel II regulations. Higher capital requirements greatly decrease the value

of being a bank, and banks must earn more on their lending in order to enter. At higher

interest rates, firms demand fewer loans, and aggregate lending decreases by 8.9%. Further,

this change has little effect on the failure rate of big banks as banks still lack sufficiently

large capital reserves to absorb the significant shocks that lead to big bank failures. For the

second comparison, I implement the increase in capital requirements only for banks who

have passed the size threshold at which the probability of bailout becomes positive. This

increased constraint discourages the banks with the higher expected defaults from growing

above the threshold, but still encourages lending by smaller banks and ex-ante safer banks.

While these size-dependent capital requirements lower the failure rate of big banks at a

similar rate as bail-ins, the resolution costs under the former exceed those under bail-in

by 137% due to the bailout transfers that are still needed for those big banks that do fail.

Further, the reduction in failure hinges on the size-dependent capital requirements being
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enacted at the correct size threshold. In a scenario in which bailout expectations are pos-

itive for banks with $100B in assets but higher capital requirements are imposed only on

banks with $110B in assets, the big bank failure rate is the same as in the original bailout

model. Banks will cluster just below the $110B mark to take advantage of the TBTF

subsidy on debt prices but avoid higher capital requirements. Therefore, aggregate lending

decreases as these banks stunt their lending to stay below the threshold. This situation is

reminiscent of that of Silicon Valley Bank, a large bank holding company with assets just

below an important regulatory threshold whose uninsured depositors were bailed out by

the FDIC upon its failure.

The rest of the paper is structured as follows. Section 2 provides an overview of related

literature while Section 3 goes into more detail about each resolution policy. The model

and the estimation approach are described in Sections 4 and 5, respectively. Section 6

summarizes the results, including those from the counterfactual exercise. A discussion of

efficiency properties is included in Section 7 and further quantitative exercises are described

in Section 8. Finally, Section 9 summarizes the results of various capital requirement ex-

periments compared to the bailout and bail-in results. Section 10 concludes.

2 Related Literature

The study of bail-in policies is still relatively new, and most papers focus on the effect on

the price of bank debt and whether the adoption of these policies has ended the “too big

to fail” subsidy (Schaefer et. al. (2016), Giuliana (2017), Berndt et. al. (2019)). Bernard

et. al. (2022) studies the strategic game between a regulator and the creditors of banks

and the characteristics of networks in which bail-ins can enhance welfare. However, Beck

et. al. (2017) performs a reduced-form analysis of credit supply in Portugal following the

bail-in of Banco Espirito Santo. They find that other Portuguese banks reduced their

credit supply following the resolution, with those banks more exposed to Banco Espirito

Santo reducing by a greater amount. This corresponds well to my finding that individual

banks reduce their lending in the bail-in regime.

Berger et. al. (2022) uses a dynamic banking model to determine the optimal regulatory

design, under the policy regimes of bail-outs, bail-ins, and no government intervention in

the resolution of banks. They focus on the decisions of a representative big bank in which

the bank chooses its optimal capital structure depending on the resolution policy in place.

4



The bank will be bailed out or in when its capital falls below a pre-set trigger point. I build

upon this framework by introducing heterogeneity into the banking industry and allowing

smaller banks to desire to be larger depending on the resolution policy in place. Further,

the addition of entrants and the continuation of bailed out/in banks in my model plays

important roles in the amount of aggregate lending and size distribution of banks.

Bank bailouts have been studied more extensively, such as in Nguyen (2023) and

Shukayev and Ueberfeldt (2021). These papers solve for the welfare under a bailout policy

and various levels of capital requirements for banks. In both of these papers, the bailout

probability does not depend on the bank’s size and banks do not make an optimal size

decision. The bailout is provided directly to the banks’ creditors and banks do not continue

after receiving a bailout. In the Nguyen (2023) paper, entrants replace banks that exit

and in the Shukayev and Ueberfeldt (2021) paper, all agents exit and are replaced with

new agents. Therefore, my paper builds upon these by endogenizing the entry choice of

banks and modeling the behavior of a continuing bank upon receiving a bailout. Another

related study is that of Egan et. al. (2017) which focuses on the relationship between

uninsured deposits and bank financial distress. By estimating the demand function for

uninsured deposits, they find that such demand increases with the financial health of the

bank. My findings are in line with this as my model shows that creditors demand higher

prices to lend to banks that are more at risk of non-repayment.

Other quantitative models of banking industry dynamics include Corbae and D’Erasmo

(2021a), Dempsey (2024), Pandolfo (2021), Ŕıos-Rull et. al. (2023), Van den Heuvel

(2008), and Wang et. al. (2022). As in this paper, these papers microfound the balance

sheet decisions of banks. However, they do not explicitly model stabilization policies for

banks such as bailout and bail-in policies. Failed banks in these models are handled in

processes similar to the liquidation process in my paper. My paper therefore adds another

layer to banks’ considerations when choosing their asset and liability structures regarding

how these decisions affect their probability of receiving a bailout or bail-in and the payoffs

in each.

The U.S. bail-in policy is similar to a proposed policy for the reorganization of fail-

ing non-financial firms by the American Bankruptcy Institute, as studied by Corbae and

D’Erasmo (2021b). The bankruptcy proposal they study allows the firm to become a

new “all-equity” firm, forgiving the previous debt in a similar manner to my own counter-

factual. My model borrows from many aspects of this model, but adapts them to match

the unique features of the banking industry, such as deposit insurance and risk-shifting.
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Additionally, my paper also compares this new policy to one of bailouts, a policy that

bears more importance in the financial than non-financial sector.

3 Background on Resolution Policies

3.1 Bankruptcy

The standard bankruptcy procedure for banks in the U.S. was established in the FDIC

Improvement Act of 1991. Section 38 of this Act, “Prompt Corrective Action (PCA),”

created a classification system for the capitalization of banks ranging from critically un-

dercapitalized to well capitalized. A critically undercapitalized bank is one whose tangible

equity to total assets ratio has fallen below 2% and a classification of this type triggers

the bankruptcy proceeding (FDIC (2019)). In this event, the FDIC would place this

bank under its receivership and choose between two resolution methods — Purchase &

Acquisition (P&A) or Deposit Payoff — based on which imposes the lowest cost to the

organization, and inadvertently to taxpayers. Under Deposit Payoff, the FDIC pays off all

insured deposits of the bank and the bank is closed. P&A, however, has been the more

frequent method chosen by the FDIC since the passage of the Act. Under P&A, the FDIC

sells the bank to a healthy financial institution that meets a strict list of requirements.

Despite the resolution process needing to be completed in the least-cost manner possible,

the average cost to the FDIC from the sale of failed banks between 2007 and 2013 was

28% of the value of each of the failed bank’s assets (Granja et. al. (2017)). Deposit

Insurance Fund costs at this time were approximately $90 billion, leaving the FDIC with a

negative balance (Davison and Carreon (2010)). Additionally, the selling of failed banks

can be costly to the customers of the bank in more indirect ways. P&A often leads to

more concentrated markets, resulting in higher rates on small business loans and lower

rates on retail deposits. Large institutions created by acquisitions may also use their new

size to provide wholesale services for larger market participants, reducing or eliminating

their more retail-oriented services for smaller customers. These financial institutions are

also more likely to cut services to customers who rely on relationships, such as lower income

and elderly customers (Berger et. al. (1999)). Despite the sixteen years in which this

resolution system was used prior to the crisis, large commercial banks were never closed,

most likely due to concerns over the systemic risk involved (Berger et. al. (2022)).
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3.2 Bailouts

In 2008, the risk to financial stability from large, failing banks became too great for the

FDIC to follow its regular bankruptcy proceedings. The U.S. Treasury set up the Troubled

Asset Relief Program (TARP) to inject preferred equity capital into troubled banks. The

amount of these injections totaled over $200 billion across 709 institutions, but most funds

went to the largest eight bank holding companies. Each institution received the mini-

mum of $25 billion and 1-3% of their risk-weighted assets (Berger et. al. (2022)). While

the bailouts are believed to have prevented greater widespread loss, the cost burden was

placed disproportionately on the government and taxpayers rather than the shareholders

and managers of the banks. In March of 2014, the Congressional Budget Office estimated

the net cost of TARP to the federal government to be $27 billion (Calomiris and Khan

(2015)).

3.3 Bail-ins

In response to the financial crisis, the U.S. passed the Dodd-Frank Act in 2010. Title II

of the Dodd-Frank Act enacts the new bail-in policy, which works as follows. If a bank is

at risk of failure, the Secretary of the Treasury, the FDIC Board, and the Federal Reserve

Board will apply a two-part test. First, they will decide if the bank is actually in default or

in danger of default. Second, they will estimate the systemic risk from the potential default

of the bank. They will consider the risks to financial stability and the harm imposed on

underrepresented communities, such as low income or minority communities, and on the

creditors, shareholders, and counterparties of the large, the bank will be subject to the

standard bankruptcy procedure. Otherwise, the bank will be placed under the receivership

of the FDIC to be bailed-in.

Once the FDIC has taken control of the bank for the bail-in, the current management

will be dismissed and the agency will be in charge of all managerial decisions. The FDIC

will create a new bridge bank with the non-distressed assets of the bank and non-defaultable

debt such as insured deposits or secured (by collateral) debt. The secured debt may take

a haircut however if the value of the collateral has been reduced. Then, the FDIC will

begin to build the capital base of the bridge bank. To do so, it will estimate the losses
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of the original bank and apportion these to the firm’s equity holders, subordinated credi-

tors, and unsecured creditors, in that order. As stated by Martin Gruenberg, the former

Chairman of the FDIC, the equity claims will most likely be completely wiped out by the

losses (Gruenberg (2012)). Additionally, subordinated or even senior debt claims may be

written down to reflect losses the shareholders cannot cover. The surviving debt claims will

be converted into new equity claims to capitalize the bridge bank. Any remaining claims

after the bank is fully capitalized will become new unsecured debt. New management will

then be appointed and the bank will continue operating (111th Congress (2009-2010)).

The two goals of the bail-in policy are to maintain financial stability and to promote

market discipline. The bail-in policy supports financial stability by allowing distressed

banks whose failure threatens the safety of other banks to reorganize its liabilities and to

continue to operate as a safer bank. In addition to reducing the threat of systemic risk,

bail-ins can also promote financial stability through the preservation of banking services.

As mentioned above, the rise in market concentration from acquisitions of failing banks

can increase the cost of banking for small customers. The closure of a bank can also result

in lost soft information, a valuable component of the relationship lending many small busi-

ness and customers rely on (Berger et. al. (1999)). Allowing the bank to reorganize and

continue operating independently avoids these possible rising costs of banking, and thus

ensures the availability of financial services for the American taxpayers.

Bail-in policies promote market discipline by ensuring that the agents responsible for

bank distress are held accountable by firing the managers of the bank and reducing the

claims of the shareholders and creditors. Shareholders and creditors are considered to be

responsible for monitoring the bank and preventing excessive risk-taking, primarily through

the pricing of shares and debt. Prior to the crisis, the TBTF subsidy on the debt of large

banks meant that market discipline was failing — more distressed banks were not required

to pay higher costs to borrow. Additionally, during the crisis, the losses faced by share-

holders and creditors of the bailed out banks were reduced due to the capital injections.

While bail-ins would also save the bank from failure, the shareholders and creditors would

be the ones to pay for the losses and the cost of the bail-in. Prices for shares and debt

should adjust accordingly for these expected losses. In fact, Berndt et. al. (2019) provides

evidence that the TBTF subsidy has been reduced since the passage of the U.S. bail-in

policy.

Due to the change in payoffs to shareholders and creditors in the event of a bail-in, the

prices of shares and debt should differ in an equilibrium under this new regime compared
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to those in the bailout environment. A change in prices could then alter the exit, entry,

risk-taking, and debt-to-equity financing decisions of banks. For example, the higher costs

to borrowing for banks after the elimination of bailouts could result in less investment and

lending, which could inadvertently harm consumers. Additionally, with a possible loss of

shares from a bail-in, shareholders may not find it valuable enough to invest in a new bank,

reducing entry into the industry. While the bailing-in of a bank may preserve its services

for some customers, decreased entry could reduce banking services overall. Therefore, the

effects of this new policy on consumers is unclear and warrants a structural model to com-

pare equilibrium under each policy.

3.4 Resolution Policies in Model

Due to the complexity of the true resolution policies, some simplifications must be made in

order to incorporate these policies into a tractable, quantitative model. First, when a bank

exits and is not bailed out, it will be resolved following the Deposit Payoff process, not

through a Purchase & Acquisition. I follow the Deposit Payoff process very closely in the

model, as explained in Section 4. While the banks may not be sold, which is more common

in practice, their liquidations will free up the resources of shareholders and creditors to

invest in other banks, thus allowing them to grow, similar to if they were to purchase the

assets and deposits of a failing bank. Further, even when P&A is used, the FDIC often

agrees to share losses with the acquirer, or to sell the bank’s liabilities at a discount, thus

still imposing losses on the Deposit Insurance Fund. Modeling all non-bailouts as Deposit

Payoffs captures these costs.

In the counterfactual model, large banks’ probability of bailout is replaced with that of

bail-in. For simplification, in a bail-in, the bank will not repay the uninsured debt. Instead,

the original creditors will receive shares in the new, restructured bank. This translates to

debt claims being completely converted to equity claims, when in reality, creditors may lose

part of their claim, have another fraction converted to equity, and the rest remain as debt.

The Dodd-Frank Act is not explicit about how much uninsured debt will be converted

into equity until the bank is deemed “adequately capitalized”. Given the importance of

investors’ and depositors’ beliefs regarding the safety of a bank for the actual safety of a

bank, it is not unreasonable to assume that the FDIC will err on the side of caution and

convert more claims than less. The true losses on the assets are uncertain at the time of
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resolution. If the FDIC converts too little uninsured debt and investors/depositors believe

the bank is not adequately capitalized, they could run, thus fulfilling the idea that the

bank was not adequately capitalized.

As in the Dodd-Frank Act, the original shareholders will only keep shares that are in

excess of the value of the creditors’ original claims.

4 Benchmark Model

4.1 Banks

The model is in discrete time with an infinite horizon and heterogeneous banks. As I

am only considering stationary equilibria of the model, I use the notation xt = x and

xt+1 = x′. A given bank will be represented by its place in a cross-sectional distribution of

banks, Γ(δ, λ, n), because every bank with insured deposits δ, loan default rate realization

λ, and retained earnings n will behave identically. The level of insured deposits δ follows an

exogenous, Markov process. Banks with more insured deposits will have a cost advantage

over smaller banks (Corbae and D’Erasmo (2021a)). The loan default rate λ follows an

exogenous, Markov process while n evolves based on the earnings and dividend payments

of the bank each period. The bank problem is represented in recursive format.

Incumbent banks begin the period with their previous loan default rate realization λ

and retained earnings n and receive their insured deposits δ. As insured deposits are priced

as a discount bond, the bank receives qδδ today with the promise to repay δ tomorrow. The

bank then makes its risky lending ℓ′, safe asset s′, and uninsured borrowing b′ choices. The

uninsured borrowing is also priced as a discount bond, so the bank receives q(δ, λ, ℓ′, s′, b′)b′

today and must repay b′ tomorrow. Risky lending is subject to convex monitoring costs of

the form cM(δ)ℓ′2, where the cost parameter cM differs by δ. The bank must also pay a fixed

operating cost, cO, which can be thought of as charter fees or other fixed expenses. These

decisions along with the retained earnings n will pin down the bank’s dividend/equity

issuance

d = n+ qδδ + q(δ, λ, ℓ′, s′, b′)b′ − ℓ′ − s′ − cM(δ)ℓ′
2 − cO. (1)

Dividends are equal to the difference between the funds of the bank n+qδδ+q(δ, λ, ℓ′, s′, b′)b′

and the total cost of operating ℓ′ + s′ + cM(δ)ℓ′2 + cO. If d ≥ 0, then the bank has enough

funds to lend ℓ′ and purchase s′ and the excess is paid as a dividend. However, the value
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to shareholders of this dividend is d+ d)σ − dσ, to capture a preference from shareholders

for smoothing of dividends. If d < 0, the bank needs to raise additional funds by issuing

equity. Equity issuance is costly to the bank, so it is valued to the shareholders as 1− ed.

ψ(d) =

(d+ d)σ − dσ if d ≥ 0

1− e−d if d < 0.
(2)

The bank maximizes this function of dividends and its continuation value, subject to Equa-

tion 1 and restrictions that ℓ′ ≥ 0, s′ ≥ 0, and b′ ≥ 0. Additionally, the bank is subject to

a capital requirement of the form

ℓ′ + s′ − δ − b′

ωrℓ′ + ωss′
≥ α, (3)

where ωr and ωs are risk-weights on the “risky” and “safe” types of assets, to replicate

risk-weighted capital requirements used in practice.

After issuing the dividend or more equity, the bank then realizes its returns on its

assets. The safe assets, s′, always earn a return of R. The risky loans, ℓ′, earn a return

of Rℓ, where Rℓ could be greater than R to reflect an excess return banks charge on the

risky lending due to non-diversifiable default risk. Banks take this Rℓ as given and it will

be solved for in equilibrium to clear the market for risky lending, discussed in Section 4.5.

However, fraction λ′ of the bank’s risky loans will be defaulted upon and the return to the

bank from these loans will be 0. Therefore, the gross return on the bank’s assets is

G(λ′, ℓ′, s′) = Rℓ(1− λ′)ℓ′ +Rs′. (4)

Once the bank knows this gross return on its assets, it must decide to continue operating

or enter resolution. Only after this decision is made does the bank realize its new level of

insured deposits δ′. Letting VR(δ, λ
′, ℓ′, s′, b′) denote the value of resolution and V (δ′, λ′, n′)

the value of a continuing bank, the bank’s decision problem can be written as
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V (δ, λ, n) = max
ℓ′,s′,b′

ψ(d) + β E
λ′|λ

(
max{VR(δ, λ′, ℓ′, s′, b′), E

δ′|δ
(V (δ′, λ′, n′(λ′))}

)
s.t.

d = n+ qδδ + q(δ, λ, ℓ′, s′, b′)b′ − ℓ′ − s′ − cM(δ)ℓ′
2 − cO

ℓ′ + s′ − δ − b′

ωrℓ′ + ωss′
≥ α

n′(λ′) = G(λ′, ℓ′, s′)− δ − b′ − τ(λ′)

τ(λ′) = τC max{0, (Rℓ − 1)(1− λ′)ℓ′ + (R− 1)s′ − (
1

1 + rF
− 1)b′ − (

1

qδ
− 1)δ}

ℓ′ ≥ 0, s′ ≥ 0, b′ ≥ 0.

(5)

A continuing bank must repay both types of debt b′ and δ′ as well as pay corporate income

taxes on its interest income, but can deduct the interest expense paid on the uninsured

debt and insured deposits.4

In the benchmark model, resolution options include liquidation and bailout. If the

bank is sent to resolution, it is bailed out with probability ρ(ℓ′, s′) and liquidated with

probability 1 − ρ(ℓ′, s′). ρ is a function of the bank’s assets to capture the “too big to

fail” aspect of the bailout policy. The value of a liquidated bank is modeled off of the

Deposit Payoff process as mandated in PCA. First, the bank’s realized assets, G(λ′, ℓ′, s′),

are devalued at a discount price, cL. When the FDIC resolves banks, their Least Cost

Mandate dictates them to sell the assets off right away rather than hold them to see if

they will increase in value. Because they must sell so quickly, they are willing to accept

below value prices for the loans. The bank uses these funds to repay its stakeholders,

following the order dictated in PCA. First, the funds are used to pay administrative costs

of the bank, such as salaries, and then the expenses of the FDIC to run the receivership

and resolve the bank. I model this cost as a fixed cost cF . Next, the leftover funds are

used to repay insured depositors. In Deposit Payoffs, the FDIC uses the Deposit Insurance

Funds to make insured depositors completely whole. The FDIC itself then takes the place

of the insured depositors in the payout order in order to reimburse the Deposit Insurance

Fund. At this step, the funds are used to pay the FDIC and uninsured depositors equally.

Each dollar is split between the FDIC and uninsured depositors rather than paying one

then the other. As uninsured deposits are grouped with insured deposits in my model (see

4The true interest paid on uninsured debt is 1
q(δ,λ,ℓ′,s′,b′) −1. However, I simplify the uninsured interest

expense to be 1
1+rF

− 1 ≤ 1
q(δ,λ,ℓ′,s′,b′) − 1 in order to reduce the computational burden when solving for

the bank’s resolution decisions.
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Section 5), leftover funds after this step are equal to max{0, cLG(λ′, ℓ′, s′)− cF − δ}. These
funds, if any, are given to creditors to repay them for the uninsured debt. Sharehold-

ers are only repaid if all creditors are fully repaid. However, they have limited liability, so

their final dividend cannot be negative. The value of liquidation to the shareholders is then

VL(δ, λ
′, ℓ′, s′, b′) = max{0, cLG(λ′, ℓ′, s′)− cF − δ − b′}. (6)

In reality, the probability of a bailout is due to the systemic importance of the bank.

However, systemic importance is highly correlated with size, as it was the largest banks

that were discovered to receive subsidies for their debt and equity leading up to the crisis

due to implicit guarantees of government support (Acharya et. al. (2016)). Therefore,

I model the probability to be a function of both of the bank’s assets. The value of being

bailed out, VO, depends on the new level of insured deposits, and is therefore a conditional

expectation over δ′.

A bank that is bailed out receives an equity injection θ(δ, λ′, ℓ′, s′, b′) from the govern-

ment equal to the amount of equity needed to make the bank once again well-capitalized,

or that

G(λ′, ℓ′, s′)− δ − b′ + θ(δ, λ′, ℓ′, s′, b′)

ωrRℓ(1− λ′)ℓ′ + ωsRs′
= α

θ(δ, λ′, ℓ′, s′, b′) = δ + b′ − (1− αωR)R
ℓ(1− λ′)ℓ′ − (1− αωs)Rs

′
(7)

After receiving the equity injection, the value of the bailed out bank is E
δ′|δ

(V (δ′, λ′, ñ′(λ′))),

where

ñ′(λ′) = G(λ′, ℓ′, s′)− δ − b′ + θ(δ, λ′, ℓ′, s′, b′)

ñ′(λ′) = αωRR
ℓ(1− λ′)ℓ′ + αωsRs

′.
(8)

Each period, new banks can enter by paying an entry cost, cE. New banks will enter

with the smallest value of insured deposits in the Markov state vector, δS. Only after

paying this cost do new banks receive their initial loan default rate realization, which will

be distributed according to the distribution F̄ (λ). This bank has no retained earnings and

is therefore valued at V (δS, λ, 0). As described in Section 4.5, the mass of entrants will be

pinned down to satisfy the free entry condition.
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4.2 Timing

The timing for the benchmark model is as follows:

1. Banks with insured deposits δ, loan default rate λ and retained earnings n choose

risky lending ℓ′, safe assets s′, and uninsured debt b′. This pins down dividends/equity

issuance,which are paid to/collected from shareholders.

2. Banks realize λ′ and choose between continuing or entering resolution.

• Bank enters resolution: The bank is either bailed out or liquidated, based

on the predetermined size-dependent probability.

– Liquidation: The bank uses the proceeds from the sale of assets to repay

the fixed resolution cost, the insured deposits, and the uninsured debt, in

that order. If there is any remaining value, it is paid to the shareholders as

a “final dividend.”

– Bailout: The bank receives an equity injection from the government. The

bank repays its insured deposits and uninsured debt and realizes its new

insured deposits. It continues as a bank with δ, λ′, and n′ = αωrR
ℓ(1 −

λ′)ℓ′ + αωsRs
′. It is restricted from issuing dividends this period.

• Bank decides to continue: The bank repays insured deposits and uninsured

debt and pays applicable taxes. It realizes its new insured deposits δ′ and

continues as a bank with δ′, λ′, and n′ = G(λ′, ℓ′, s′)− δ′ − b′ − τ(λ′).

3. New banks pay the entry cost and receive their insured deposits and initial return

realization.

4.3 Uninsured Debt Prices

Uninsured debt for banks generally is lent by large intermediaries, such as mutual funds.

These intermediaries have access to unlimited external funding at the risk-free rate, rF ,

and complete information about the default risk of individual banks. There are many of

these intermediaries in the world and they compete among themselves to lend to banks.

Therefore, they are modeled as perfectly competitive and earn zero profits on each of their

lending contracts. However, because I assume the intermediaries diversify their lending to

the banks, they are risk-free and will not fail.
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DefineX(δ, λ′, ℓ′, s′, b′) = 1 if a bank with (δ, λ′, ℓ′, s′, b′) enters resolution andX(δ, λ′, ℓ′, s′, b′) =

0 if not. Then, Ω(δ, ℓ′, s′, b′) is the set of λ′ for which X(δ, λ′, ℓ′, s′, b′) = 1. Further, define

F (λ′|λ) as the probability that a bank with current loan default rate λ draws λ′ tomorrow.

The profit an intermediary makes on a loan contract to a bank with insured deposits δ,

current default rate λ, and choices of risky loans ℓ′, safe assets s′, and debt b′ is then

π(δ, λ, ℓ′, s′, b′) = −q(δ, λ, ℓ′, s′, b′)b′︸ ︷︷ ︸
debt lent

+
1

1 + rF

[ (
1−

∑
λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)
)
b′︸ ︷︷ ︸

expected repayment - no resolution

+(1− ρ(ℓ′, s′))
∑

λ′∈Ω(δ,ℓ′,s′,b′)

min{b′,max{cLG(λ′, ℓ′, s′)− cF − δ, 0}}F (λ′|λ)︸ ︷︷ ︸
expected repayment - liquidation

+ρ(ℓ′, s′)
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)b′︸ ︷︷ ︸
expected repayment - bailout

]
.

(9)

The intermediary discounts its expected repayment by its discount factor 1
1+rF

. The first

term after the discount represents the expected repayment to the creditor from liquida-

tion. This occurs with probability 1−
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ), where
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ) is the

probability of the bank receiving any λ′ such that it will enter resolution. Therefore, if the

bank does not draw one of these λ′s, the bank will continue and then must fully repay the

creditor the entire uninsured debt claim b′. The second line of Equation 9 represents the

expected repayment to the creditor if the bank is liquidation. This occurs with probability

(1− ρ(ℓ′, s′))
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ) as ρ(ℓ′, s′) banks entering resolution will be bailed out in-

stead. In the liquidation, the creditor will be repaid via the discounted value of the bank’s

assets, cLG(λ
′, ℓ′, s′), but only after the fixed cost of liquidation cF and insured deposits δ

are paid first. The creditor will not receive more than their claim b′, but very well could

receive less. The repayment to the creditor depends on the actual loan default rate λ′ that

the bank receives as it determines the value of the assets to be liquidated. The final line

represents the creditor’s expected repayment if the bank is bailed out, which occurs with

probability ρ(ℓ′, s′)
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ). In this case, the creditor will be repaid their full b′.

Therefore, the intermediary only risks partial repayment of the debt claim b′ in liquidation.

In equilibrium, intermediaries earn zero profit on each loan contract. The price of a given

contract can then be solved as
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q(δ, λ, ℓ′, s′, b′) =
1

1 + rF

[(
1−

∑
λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)
)

+(1− ρ(ℓ′, s′))
∑

λ′∈Ω(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

+ρ(ℓ′, s′))
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)
]
.

(10)

4.4 Too Big To Fail Subsidy

The TBTF subsidy on banks’ debt prices documented in the literature can be replicated

using Equation 10. First, define the discount that the creditors demand on the debt to

account for risk as

Discount(δ, λ, ℓ′, s′, b′) =
1

1 + rF
− q(δ, λ, ℓ′, s′, b′). (11)

Then, if the possibility of a bailout did not exist (ρ = 0 ∀ ℓ′, s′), the price of each debt

contract would be

qρ=0(δ, λ, ℓ′, s′, b′) =
1

1 + rF

[(
1−

∑
λ′∈Ωρ=0(δ,ℓ′,s′,b′)

F (λ′|λ)
)

+
∑

λ′∈Ωρ=0(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

]
.

(12)

where Ωρ=0(δ, ℓ′, s′, b′) is the set of default rate realizations λ such that a bank would choose

resolution in the equilibrium where ρ = 0 ∀ (ℓ′, s′). The TBTF subsidy can be thought of

as the decrease in the discount due to the possibility of bailout, or
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TBTF subsidy(δ, λ, ℓ′, s′, b′) = Discountρ=0(δ, λ, ℓ′, s′, b′)−Discount(δ, λ, ℓ′, s′, b′)

= −qρ=0(δ, λ, ℓ′, s′, b′) + q(δ, λ, ℓ′, s′, b′)

=
1

1 + rF

[ ∑
λ′∈Ωρ=0(δ,ℓ′,s′,b′)

F (λ′|λ)−
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)

+ρ(ℓ′, s′)
∑

λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)

−
∑

λ′∈Ωρ=0(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

+(1− ρ(ℓ′, s′))
∑

λ′∈Ω(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

]
.

(13)

If we suppose that in equilibrium, banks make the same resolution decisions in the world

without bailouts and the world with bailouts, or that Ω = Ωρ=0, then the subsidy is

=
ρ(ℓ′, s′)

1 + rF

[ ∑
λ′∈Ω(δ,ℓ′,s′,b′)

F (λ′|λ)

−
∑

λ′∈Ω(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

]
.

(14)

The TBTF subsidy is always greater than or equal to 0 as long as the sets of resolution

decisions are the same. This is because an increase in ρ puts less weight on the potentially

partial repayment from liquidation and more weight on the guaranteed full repayment from

bailout. If a large bank has a positive ρ while a small bank has a smaller, or even zero, ρ,

then the large bank is given a higher q (lower price) than the small bank.

4.5 Risky Lending Market Clearing

Banks charge Rℓ on the risky loans they make to firms. The difference between this return

and that of the safe assets, R, can be thought of as an excess return the banks charge

in order to compensate them for monitoring costs and non-diversifiable default risk. All

banks take this return as given. The return on risky lending can then be used to satisfy

the free entry condition
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(−cE + E
λ
(V (δS, λ, 0)))M = 0. (15)

Entrants enter with the smallest value of insured deposits δS, zero retaining earnings, and

a draw of λ from F̄ . A higher return on risky lending can increase E
λ
(V (δS, λ, 0)) both

directly and indirectly. Directly, it increases the return that the entrant expects tomorrow

on its risky lending today, incentivizing the bank to enter. However, even if the entrant

chose no risky lending today, a higher Rℓ can still increase the value of entering through

the continuation value. If the bank expects to lend in the future, a higher return on lending

increases the value of entering and operating.

A higher Rℓ implies higher costs to firms for borrowing from banks. Therefore, firm

demand for risky lending is decreasing in Rℓ. I set this exogenous demand function to be

LD(Rℓ) = ζ(Rℓ)ϵ. (16)

Risky loan supply by banks is equal to the amount of risky lending by continuing incum-

bents, bailed out incumbents, and entrants. As this is a steady state, the mass of entrants

M pins down the steady state distribution and total mass of banks. Therefore, Rℓ and

M can be used to jointly satisfy the free entry condition and clear the risky lending market.

4.6 Equilibrium

Given that all banks with the same (δ, λ, n) will make the same (ℓ′, s′, b′) decisions, we

can define n′(δ, λ, n, λ′) = G(λ′, ℓ′(δ, λ, n), s′(δ, λ, n))− b′(δ, λ, n)− δ − τ(δ, λ, n, λ′). Addi-

tionally, we can define the retained earnings of a bank after a bailout as ñ(δ, λ, n, λ′) =

αωrR
ℓ(1− λ′)ℓ′(δ, λ, n) + αωsRs

′(δ, λ, n). In the same way, we can describe the resolution

decision, X, based on (δ, λ, n, λ′). Entrants can also use this notation, where n = 0 for all

entrants. Let ∆, Λ, and N be the sets of insured deposits, loan default rates, and retained

earnings, respectively and ∆̄ ⊂ ∆, Λ̄ ⊂ Λ, and N̄ ⊂ N . The mass of incumbent banks

with insured deposits δ, loan default rate λ, and retained earnings n is Γ(δ, λ, n). Defin-

ing H(δ′|δ) as the probability of a bank with insured deposits δ receives insured deposits

δ′ tomorrow, the law of motion for the cross-sectional distribution of banks is then given by:
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Γ′(∆̄, Λ̄, N̄ ;M) =

∫
N̄

∑
Λ̄

∑
∆̄

{∫
N

∑
Λ

∑
∆

H(δ′|δ)F (λ′|λ)Γ(δ, λ, dn)

[
(1−X(δ, λ, n, λ′))1n′=n′(δ,λ,n,λ′) +X(δ, λ, n, λ′)ρ(δ, λ, n)1n′=ñ′(δ,λ,n,λ′)

]}
+M

∑
Λ̄

1n′=n′(δS ,λ,0,λ′)H(δ′|δS)F (λ′|λ)F̄ (λ)

(17)

where F̄ (λ) is distribution of initial loan default rates for entrants. A stationary equilib-

rium is a list {V ∗, q∗, X∗,Γ∗,Ω∗, π∗, Rℓ∗,M∗} such that:

1. Given q and Rℓ, the value function V ∗ and resolution decisions X∗ are consistent

with the firm’s optimization problem in Equation 5.

2. The set Ω∗ is consistent with bank decision rules.

3. The equilibrium uninsured debt price is such that intermediaries earn zero profits in

expected value on each contract, or that at q∗(δ, λ, ℓ′, s′, b′), π∗(δ, λ, ℓ′, s′, b′) = 0.

4. Γ∗ is a stationary measure consistent with bank decision rules, the law of motion for

stochastic variables, and M∗.

5. The free entry condition in Equation 15 is satisfied.

6. Given Rℓ′∗ and the stationary distribution Γ∗, the risky lending market clears at M∗

or ∫
N

∑
Λ

∑
∆

ℓ′(δ, λ, n)Γ∗(δ, λ, dn) +
∑
Λ

M∗ℓ′(δS, λ, 0)F̄ (λ) = LD(Rℓ∗) (18)

5 Mapping the Model to Data

In order to discuss the quantitative impact of a change in resolution policies, I match the

benchmark model with key moments of the banking industry. Matching these moments

ensures that the balance sheets and distribution of banks are similar to those observed in
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the data when a bailout policy for big banks was in place. By estimating deep parameters

outside of those governing the bailout policy, I can calculate the quantitative impact of

switching to a bail-in policy, with bank decisions governed by the same parameters. I

use data from the time period of 1992-2006 for estimating the benchmark model. This

time period starts with the passage of the FDIC Improvement Act, solidifying the PCA

requirements regarding liquidation of banks. Additionally, it corresponds to 8 years after

the bailout of Continental Illinois Bank and the beginning of the common phrase “too big

to fail”5.

5.1 Data Sources

Parameters in the model are informed from data and policy. The main data is from the

Federal Reserve’s Consolidated Report of Condition and Income (Call Reports), which

consists of commercial bank regulatory filings, including both independent commercial

banks and those belonging to a bank holding company. I consolidate the data to the bank

holding company level. I focus on larger banks, defined as those with $10B in assets in

1990 dollars. In the data, banks are defined as entrants due to entering the sample from

a de novo creation of a bank or because a smaller bank has grown above the $10B in

1990 dollars threshold. Once a bank has crossed the $10B threshold, it is not removed

from the sample nor counted as an exit if its assets drop below the threshold. Banks are

only defined as exits if designated as a closure or failure on the National Information Cen-

ter website. As I do not model acquisitions, these are not counted as exits in the data.

My focus in this paper is on commercial banks, so I have dropped banks whose primary

business activity is not commercial banking. To do so, I define a “commercial” bank as

one whose loan share out of all assets is greater than 25%, as in (Corbae and D’Erasmo

, 2021a). The sample of banks and their asset values as of 2006Q4 can be found in Table 10.

5.2 Estimation Strategy

The model period is one year. The estimation of the model consists of both external and

internal calibration. In the external calibration, a subset of the parameters are chosen

from outside the model. These are described in Table 1. In the internal calibration, the

5See https://www.federalreservehistory.org/essays/continental-illinois.
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remaining parameters are chosen to match a set of data moments via simulated method of

moments (SMM). Table 2 summarizes these parameters and the matching of moments.

External Calibration

The median interest earned by banks on their deposits during the time period was

1.76%. I therefore set the price of insured deposits qδ = 1
1.0176

= 0.9827. Additionally,

I normalize the bank’s discount factor β to be 0.9827 and set the uninsured creditor’s

risk-free rate, rF , equal to
1
β
− 1, keeping the discount factors of all agents (modeled or

unmodeled) equivalent.

Parameters related to banking regulation, such as the capital requirements α and the

risk-weights ωr and ωs, are taken from the FDIC Improvement Act of 1992. The liquidation

cost on assets cL is set at 72% to match results from Granja et. al. (2017) which finds

that the average cost to the FDIC to resolve banks during the GFC was 28% of the banks’

assets. The parameter for loan demand elasticity on behalf of firms, ϵ, is set to match

that from Basset et al. (2014). The probability of bailout will be a function of the bank’s

assets, ρ(ℓ′, s′). This is to capture that banks with large amounts of assets are costlier to

liquidate due to the financial stability implications of selling off so many assets at discount

prices. The function will be a piece-wise function

ρ(ℓ′, s′) =

0 ℓ′ + s′ < ā

ρ̄ ℓ′ + s′ ≥ ā.
(19)

ρ̄ is set to .9 to match results from Koetter and Noth (2016) who estimate the bailout

expectations in the U.S. to be between 90 and 93 percent. The asset threshold ā is set to

$100B based on the finding of Brewer and Jagtiani (2013) that during this time period,

banks paid significant merger premiums for mergers that would increase their size above

$100B. They do not find a significant premium at any other threshold size.

The loan default process is estimated using the Tauchen (1986) method of discretizing

an AR(1) process. In the data, I define a bank’s loan default rate as

Loan Default Rate =
Loans Past Due 30 Days + Charge-offs + Non-Accruals− Recoveries

Total Loans
.

(20)

I then estimate the following autoregressive process for loan default rates for bank i at

time t:
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λit = (1− ρλ)k0 + ρλλit−1 + uit (21)

where uit is iid and distributed N(0, σ2
u). I use the method proposed by Arellano and Bond

(1991) as this is a dynamic model and find the estimated values ρλ = 0.569, σu = 0.0078,

and k0 = 0.013. Using the Tauchen method, I solve for a 2-state vector and transition

matrix from the estimated parameters. However, this does not make up the entire pro-

cess for λ. In the model, the λ vector is a 3-state vector, where the third state is a very

high/crisis default rate. This third state represents a severe event that drives most big

bank failure. It is not estimated from the data as the data represents bank data at quarter

end. If a bank in the data failed, the last available quarter end data may not reflect the

state of defaults the bank faced at the time of its own default. Even if the bank was

given a bailout and continued in the data sample, it is not clear that the previous quar-

ter end’s default rate truly represent the extent of defaults at the time the bailout was

needed. Therefore, the third state λH will be estimated internally through SMM, not from

the discretization of this AR(1) process. In addition to λH , the probabilities of entering

the crisis state, F (λH |λ) will also be estimated via SMM. I set that the probability of a

bank transitioning from the crisis state to the state with the lowest default rate, λL, to

0, thus pinning down F (λM |λH) = 1 − F (λH |λH). I use the estimated state vector from

the Tauchen method for the other two values of loan default, λL and λM . For the transi-

tion probabilities F (λL|λL) and F (λM |λL), I use the estimated values from the Tauchen

method, but divide each by 1 + F (λH |λL) to ensure that the three probabilities add to

1. I repeat the procedure to obtain the transition probabilities F (λL|λM) and F (λM |λM).

For the distribution of default rates for the entrant, F̄ , I set that a bank cannot enter

with the highest default rate, F̄ (λH) = 0. Then, by definition, F̄ (λM) = 1 − F̄ (λL). I

find F̄ (λL) by requiring that the average expected loan default rate of entrants match the

average loan default rate of entrants in the data in the period after they enter. I calcu-

late this average in the data to be 2.47%. Therefore, F̄ (λM) can be pinned down by solving

2.47 = F̄ (λL)E(λ′|λL) + (1− F̄ (λL))E(λ′|λM). (22)

The state vector for insured deposits is chosen to match the distribution of insured

deposits in the data. I use the histogram of insured deposits as of 2006Q4, seen in Figure

1. From the figure, I use the general mass points of $10B, $60B, and $200B as the three

values of the state vector. The transition matrix H for the insured deposits is pinned down

22



Figure 1: Deposit Distribution of Bank Sample 2006Q4

via internal calibration with the following assumptions: 1) banks cannot transition from

the smallest value of deposits to the largest value in one period (H(δL|δS) = 0) 2) banks

cannot transition from the largest value to the smallest in one period (H(δS|δL) = 0) and

3) banks have equal probability of switching to the smallest value or largest value from the

middle value (H(δS|δM) = H(δL|δM)). These assumptions reduce the number of param-

eters needed to pin down the transition matrix to 3. The rest of the transition matrix is

solved via SMM, described under Internal Calibration.

Internal Calibration

Internal calibration is used to minimize the weighted difference between data and model

moments. These internally calibrated parameters are generally unobservable cost param-

eters of banks or the remaining parts of underlying transition matrices. These costs are

very influential for banks’ balance sheet, resolution, and entry decisions. To capture these

parameters, I focus on moments regarding banks’ lending and borrowing decisions and

aggregates of the industry. Further, I use moments about changes in banks’ decisions to

help pin down the transition matrices and the importance of the equity issuance costs,

which can act as an adjustment cost for banks’ portfolios. Data and model moments are

further defined in Section A.

The model does well capturing the data moments with a few small difficulties. First,

the model overestimates the average assets of banks. This is primarily due to the presence

of extremely large banks, such as JP Morgan & Co., in the data. These banks make up a

significant portion of bank assets in the data. Without an even larger state of deposits in

the model, I do not capture this monumental volume of assets. Therefore, in order to match
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Table 1: Externally Calibrated Parameters

Parameter Description Value Source
qδ Insured Deposits Price 0.9827 Call Reports
β Bank Discount Factor 0.9827 Normalization to qδ

rF Uninsured Creditors’ Discount Rate 0.0176 Normalize to 1
β
− 1

α Capital Requirement 0.04 FDICIA (1992)
ωr Risk-Weight on Lending 1.0 FDICIA (1992)
ωs Risk-Weight on Safe Assets 0.0 FDICIA (1992)
τC Corporate Income Tax 0.35 US Tax Code
cL Asset Liquidation Cost 0.72 Granja et. al. (2017)
ϵ Elasticity of Loan Demand -1.1 Basset et al. (2014)
ρ̄ Bailout Probability 0.9 Koetter and Noth (2016)
ā Asset Size Threshold $100B Brewer and Jagtiani (2013)
d̄ Dividend Curvature Scale 1.0 Normalization
σ Dividend Curvature 0.9932 Rı́os-Rull et al. (2023)
λL Lowest Default Rate 0.0043 Call Reports
λM Medium Default Rate 0.0226 Call Reports
F (λL|λL) P (λ′ = λL|λ = λL)

0.82667
1+F (λH |λL)

Call Reports

F (λM |λL) P (λ′ = λM |λ = λL)
0.17333

1+F (λH |λL)
Call Reports

F (λL|λM) P (λ′ = λL|λ = λM) 0.17333
1+F (λH |λM )

Call Reports

F (λM |λM) P (λ′ = λM |λ = λM) 0.82667
1+F (λH |λM )

Call Reports

F (λL|λH) P (λ′ = λL|λ = λH) 0.0 Call Reports

F̄ (λL) Prob. of Entering with λL
.0247−E(λ′|λM )

E(λ′|λL)−E(λ′|λM )
Call Reports

F̄ (λM) Prob. of Entering with λM 1− F̄ (λL) Call Reports
F̄ (λH) Prob. of Entering with λH 0 Call Reports
H(δM |δS) P (δ′ = δM |δ = δS) 1−H(δM |δS) Markov Relationship
H(δL|δS) P (δ′ = δL|δ = δS) 0 Markov Relationship

H(δS|δM) P (δ′ = δS|δ = δM) 1−H(δM |δM )
2

Markov Relationship

H(δL|δM) P (δ′ = δL|δ = δM) 1−H(δM |δM )
2

Markov Relationship
H(δS|δL) P (δ′ = δS|δ = δL) 0 Markov Relationship
H(δM |δL) P (δ′ = δM |δ = δL) 1−H(δL|δL) Markov Relationship
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average assets, the model must increase the asset volume of all banks. This also causes

the underestimation of the Gini coefficient (defined in Section A) for assets. In the data, a

significantly large fraction of assets are held by these largest banks, drastically increasing

the Gini coefficient. Without accurately modeling these few banks, I am understating this.

The calibration also underestimates the risky asset fraction and overestimates the unin-

sured leverage ratio. The overestimation of the uninsured leverage ratio is partly due to the

fixed nature of the insured deposits. When banks want to increase their assets, they cannot

do so by increasing their insured deposits. Therefore, banks can only raise costly equity or

borrow more uninsured debt. However, due to capital requirements, banks face a trade-off

when they increase their debt: they cannot invest in as many risky loans. Therefore, banks

reduce their risky asset fraction, thus leading to an underestimation of risky assets and an

overestimation of uninsured leverage. The underestimation of the risky asset fraction also

leads to the underestimation of the average Net Interest Margin, which is calculated using

the interest income on all assets. Banks investing more in the safe asset, which generates

lower interest income, and borrowing more uninsured debt, which requires higher interest

expense, significantly decreases the net interest margin earned by banks in the model.

A comparison of the data and model distributions of bank assets can be seen in Figure

Table 2: Internal Calibration

Parameter Description Value Moment Data Model
ce Entry Cost 10.1 Avg. Leverage of Entrants 0.91 0.95
cO Fixed Operating Cost 0.2 Agg. Lending ($T) 4.51 4.61
cM(δS) Loan Monitoring Cost δS 2.5 x 10−4 Avg. Assets ($B) 22.5 34.3
cM(δM) Loan Monitoring Cost δM 1.3 x 10−5 Avg. Change in Assets (%) 11.4 9.5
cM(δL) Loan Monitoring Cost δL 6.3 x 10−6 Avg. Change in Assets over Threshold (%) 55.2 69.2
λH High Default Rate 0.5 Avg. Dividend to Assets (%) 0.23 0.27
F (λH |λL) P (λ′ = λH |λ = λL) 0.025 Avg. Leverage 0.91 0.96
F (λH |λM) P (λ′ = λH |λ = λM) 0.0625 Avg. Interest Income on Loans (%) 5.5 4.8
F (λH |λH) P (λ′ = λH |λ = λH) 0.1188 Avg. Risky Assets Fraction (%) 63.4 47.5
ζ Loan Demand Scale 190.2 Share of Big Banks (%) 18.5 17.6
H(δS|δS) P (δ′ = δS|δ = δS) 0.99 Avg. Uninsured Leverage 0.25 0.45
H(δM |δM) P (δ′ = δM |δ = δM) 0.99 Small Bank Exit (%) 0.3 0.4
H(δL|δL) P (δ′ = δL|δ = δL) 0.975 Avg. Net Interest Margin 3.75 1.37

Gini Coefficient of Bank Assets 0.75 0.43
Avg. Loans to Deposits 1.1 1.2

2. The left-hand panel plots the data distribution of assets in 2006Q4 while the right-

hand panel plots the model distribution of banks’ assets after the realization of the returns

(Rℓ(1 − λ′)ℓ′ + Rs′). Both histograms demonstrate that majority of the mass is on the

lower end of the distribution and there exists a clumping at the $100B threshold. In the

data distribution, there is a mass of banks right below $100B, representing the inability
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Figure 2: Asset Distribution of Bank Sample 2006Q4

Data histogram truncates assets at $400B. Model histogram plots the realized value of assets (Rℓ(1 − λ′)ℓ′ + Rs′).

of banks to perfectly control their returns and guarantee they are exactly over the $100B
threshold. The model distribution also shows this mass just to the left of the threshold.

This is due to the fact that the threshold is based on the face value of assets (ℓ′ + s′), and

not the realized value (Rℓ(1−λ′)ℓ′+Rs′). Therefore, banks that have chosen ℓ′+ s′ = 100

but received the high default rate λ′ = λH will end up under the threshold. Majority of the

mass above the threshold is actually further to the right. This is due to the high returns

(Rℓ(1 − λ′) and R) earned on the assets when the banks receive a lower default rate on

their risky lending. While the model distribution does demonstrate a long right-tail, it

underestimates this tail in the data (which is truncated in the figure at $400B) due to the

difficulty in measuring the largest few banks in the data.

The final transition matrices for the loan default rate λ and insured deposits δ can be

found in Tables 3 and 4, respectively.

Table 3: Transition Matrix F (λ′|λ)

λL λM λH
λL .8065 .1685 .025
λM .1595 .778 .0625
λH 0 .8812 .1188
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Table 4: Transition Matrix H(δ′|δ)

δL δM δH
δL 0.99 0.01 0
δM 0.005 0.99 0.005
δH 0 0.025 0.975

6 Results

6.1 Benchmark Model

Figure 3 plots an example price schedule q(δ, λ, ℓ′, s′, b′) from the solution to the benchmark

model. The q’s are expressed as interest rates, which is equivalent to 1
q(δ,λ,ℓ′,s′,b′)

− 1. To

simplify the plotting of the five-dimensional schedule, I fix the level of insured deposits δ

to δM , the level of uninsured debt b′ to b′

ℓ′+s′
= .9, safe assets s′ to ℓ′

ℓ′+s′
= .9, and only

vary total assets ℓ′ + s′ and the loan default rate λ. In the model, banks generally only

enter resolution when they draw λ′ = λH . Banks that start with the higher default rates,

such as λM or λH , have a higher probability of receiving λ′ = λH , and therefore are priced

with higher interest rates than banks with λL. When banks choose assets ℓ′ + s′ < $100

B, they can only be liquidated if they fail. Therefore, the interest rates are lower when

banks choose assets ℓ′ + s′ ≥ $100 B, as they now have a 90% probability of being bailed

out and the creditors being fully repaid. Interest rates charged to banks with each λ drop

when these banks cross this threshold, but the largest drops come from the banks with the

higher λ’s and therefore the higher probabilities of drawing λ′ = λH . The bailout policy

therefore has a differential effect on the pricing of uninsured debt by the banks’ default

rate λ.

The differential effect of the bailout policy on interest rates by λ can also be seen in

the policy functions. Figure 4 plots the asset decisions (left panel) and uninsured leverage

decisions (right panel) of banks with δM by their initial default rate λ and retained earnings

n. When banks have low retained earnings n, they are more constrained. Due to capital

requirements and costly equity issuance, banks may not be able to choose high volumes of

risky loans or safe assets. They generally choose assets in an increasing (with n) amount

over the insured deposit level. However, as n increases further, these constraints are less

binding, and we see that banks start to increase assets at a faster pace and fund these

assets with uninsured debt (right panel). Banks with lower default rates can increase

assets quicker because the interest rates they are charged on uninsured debt are lower.
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Figure 3: Uninsured Debt Price Schedules

Risky asset fractions are held constant at .9. Total leverage ratios are held constant at .9.

Figure 4: Policy Decisions

Then, banks will discontinuously choose asset levels over the $100 B threshold, in order to

take advantage of the bailout policy. Again, this increase occurs at lower levels of retained

earnings for banks with lower default rates, and is in fact never chosen by banks with

the highest default rate. These asset choices are once again funded primarily through

increasing uninsured borrowing. The discontinuous behavior of banks leads to a clumping

in the distribution around $100B, as seen in the right-hand plot of Figure 2.

6.2 Counterfactual

I will now adapt the model to replace the bailout policy with a modified version of the

bail-in policy described in the Dodd-Frank Act. While the U.S. has had a bail-in policy in
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place since 2010, no bail-in has occurred yet. Further, it is not clear that we have reached

a new steady state equilibrium after the adoption of the bail-in policy. Additionally, at

the time that the bail-in policy was adopted, many other banking reforms were enacted,

such as size-dependent capital requirements. In order to properly calibrate the model to

the true bail-in regime, I would also need to include all of these other policy changes into

the model, so I could isolate the sole effect of the bail-in policy. Instead, I will use the esti-

mated parameters from the benchmark model to study how the equilibrium would change

if the bail-in policy was in place from 1992-2006 instead of the implicit bailout policy.

In this counterfactual model, if a bank enters resolution, it is bailed in with the

same probability function ρ(ℓ′, s′) and liquidated with the complementary probability of

1− ρ(ℓ′, s′). These probabilities are chosen to keep consistency with the benchmark model

and for easier comparison to those results. In a bail-in, all of the uninsured debt will be

converted into equity and the bank will only need to repay insured deposits. Therefore,

the new retained earnings of the bank is equal to

n̂′(λ′) = Rℓ(1− λ′)ℓ′ +Rs′ − δ. (23)

This new restructured bank is then valued at E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′)) as the bail-in oc-

curs before the realization of the new deposit base and the bailed-in bank is restricted

from issuing dividends in that period. In exchange for the forgiveness of their debt

claims, the creditors receive shares in the new bank, up to the value of their claim, or

min{b′, E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′))}. The original shareholders only retain shares in the bank

if the value of the bank exceeds that of the original debt claim. They still have lim-

ited liability, however, so the value to the original shareholders of a bailed-in bank is

max{0, E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′)) − b′}. The bank problem can be written as in Equation 5,

except that now

VR(δ, λ
′, ℓ′, s′, b′) = (1− ρ(ℓ′, s′))VL(δ, λ

′, ℓ′, s′, b′)

+ρ(ℓ′, s′)max{0, E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′))− b′}. (24)

To price the uninsured debt in the counterfactual model, define XC(δ, λ
′, ℓ′, s′, b′) as

the resolution decision for a bank with insured deposits δ, loan default rate realization λ′,

loans ℓ′, safe assets s′, and uninsured debt b′. The set of loan default rate realizations such
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that a bank would choose to enter resolution is

ΩC(δ, ℓ
′, s′, b′) = {λ′ ∈ Λ : XC(δ, λ

′, ℓ′, s′, b′) = 1}. (25)

The profit an intermediary makes on a loan contract to a bank with insured deposits δ,

current realization λ, lending choice ℓ′, safe asset choice s′, and borrowing choice b′ is then

πC(δ, λ, ℓ
′, s′, b′) = −qC(δ, λ, ℓ′, s′, b′)b′︸ ︷︷ ︸

debt lent

+
1

1 + rF

[ (
1−

∑
λ′∈ΩC(δ,ℓ′,s′,b′)

F (λ′|λ)
)
b′︸ ︷︷ ︸

expected repayment - no resolution

+(1− ρ(ℓ′, s′))
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

min{b′,max{cLG(λ′, ℓ′, s′)− cF − δ, 0}}F (λ′|λ)︸ ︷︷ ︸
expected repayment - liquidation

+ρ(ℓ′, s′)
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

F (λ′|λ)min{b′, E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′))}︸ ︷︷ ︸
expected repayment - bail-in

]
.

(26)

The first two lines of this equation are identical to those in Equation 9 except for potential

differences in the sets of λ′ at which the bank enters resolution. The final line, the expected

repayment in bail-in, is where this equation could differ drastically from that of the bailout

equilibrium. Unlike under the benchmark model, the intermediary is now at risk for not

being fully repaid under both bail-in and liquidation. Using the fact that intermediaries

make zero profit on each contract in equilibrium, the price can be solved as

qC(δ, λ, ℓ
′, s′, b′) =

1

1 + rF

[(
1−

∑
λ′∈ΩC(δ,ℓ′,s′,b′)

F (λ′|λ)
)

+(1− ρ(ℓ′, s′))
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

+ρ(ℓ′, s′))
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

min{1,
E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′))

b′
}F (λ′|λ)

]
.

(27)

A TBTF subsidy is not as clear here. Varying ρ simply changes the weight placed on

two types of potentially partial repayment — one from liquidation and one from bail-in.

If the repayment under bail-in is always full repayment, then bail-in is no different for

creditors than bail-out, aside from possible differences in resolution decisions. However, if

not, then large banks will have to pay more expensive prices to the creditors to compensate
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them for extra losses compared to the equilibrium with bailouts.

TBTF subsidyC(δ, λ, ℓ
′, s′, b′) =

1

1 + rF

[−
∑

λ′∈Ωρ=0
C (δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

+(1− ρ(ℓ′, s′))
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)

+ρ(ℓ′, s′)
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

min{1,
E
δ′|δ

(V (δ′, λ′, n̂′(λ′)))

b′
}F (λ′|λ)].

(28)

Once again, if we suppose that in equilibrium, banks make the same resolution decisions

when ρ = 0 ∀ ℓ′, s′ and ρ > 0 for at least one ℓ′, s′ combination, or that ΩC = Ωρ=0
C , then

the subsidy is

=
ρ(ℓ′, s′)

1 + rF
[

∑
λ′∈ΩC(δ,ℓ′,s′,b′)

min{1,
E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′))))

b′
}F (λ′|λ)

−
∑

λ′∈ΩC(δ,ℓ′,s′,b′)

min{1,max{cLG(λ
′, ℓ′, s′)− cF − δ

b′
, 0}}F (λ′|λ)].

(29)

It is no longer true that the first term in the brackets must be greater than or equal to the

latter term.

The counterfactual equivalent to Equation 17, or the mass and law of motion equations,

respectively, is then

ΓC ′
(∆̄, Λ̄, N̄ ;MC) =

∫
N̄

∑
Λ̄

∑
∆̄

{∫
N

∑
Λ

∑
∆

H(δ′|δ)F (λ′|λ)ΓC(δ, λ, dn)

[
(1−XC(δ, λ, n, λ′))1n′=n′(δ,λ,n,λ′) +XC(δ, λ, n, λ′)ρ(δ, λ, n)1n′=n̂′(δ,λ,n,λ′)

]}
+MC

∑
Λ̄

1n′=n′(δS ,λ,0,λ′)H(δ′|δS)F (λ′|λ)F̄ (λ)

(30)

where n̂′ now represents the retained earnings of a bailed-in bank. This is equivalent to

n̂′ = G(λ′, ℓ′, s′)− δ.
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6.3 Counterfactual Results

As in the benchmark equilibrium, banks enter resolution when they receive the highest de-

fault rate λH and are very leveraged. However, in the counterfactual equilibrium, creditors

are repaid on average 55.8% and a maximum of 64.5% of their uninsured debt claim b′ in a

bail-in. This is significantly less than the 100% repayment that creditors were guaranteed

from the bailout. Therefore, the equilibrium interest rate schedules are higher under the

counterfactual, as illustrated in Figure 5. This figure plots interest rates charged to the

same (δ, λ, ℓ′, s′, b′) banks under the benchmark and counterfactual equilibria. When the

banks are choosing assets less than the $100B threshold, the interest rates are virtually the

same. This is because in either equilibria, the bank will be liquidated and the parameters

governing this liquidation value have been held constant. However, when the bank chooses

assets greater than or equal to $100B, then the bank will be bailed out with probability ρ

in the benchmark and bailed-in with the same probability in the counterfactual. Due to

the significantly lower repayment under bail-in compared to bailout, the drop in interest

rates is not as severe. However, there is still a drop as the repayment under bail-in is higher

than that of liquidation. This implies that while the banks can no longer access the low

interest rates available under the bailout, there may still be an incentive for the banks to

jump over the threshold as the interest rates will still be cheaper compared to when they

are below the threshold.

As the creditors are never being fully repaid in a bail-in in equilibrium, the original

shareholders are always losing their shares and receiving a value of zero from the bail-in.

Due to the higher funding costs and the reduced value to shareholders from a bail-in,

banks need to earn more profit on their risky lending in order for the free entry condition

to be satisfied. The equilibrium Rℓ is now 1.069, compared to 1.067 under the benchmark.

However, an increase in the interest rate on risky lending decreases firm demand for loans.

Using the formula in Equation 16, the aggregate amount of lending must be $4.46 T, a

3.3% decrease from the benchmark aggregate lending.

Although in equilibrium, creditors are never fully repaid in a bail-in, this does not

imply that there do not exist debt contracts in which the creditor could be fully repaid.

As an illustration, I plot the interest rate charged to a bank with (δM , λL) as a function

of total leverage b+δM
ℓ′+s′

, holding ℓ′ + s′ = 100 and ℓ′

ℓ′+s′
= .9, in Figure 6. These banks enter

resolution when they receive λ′ = λH . Because the value of the shares from a bail-in are

based on the retained earnings Rℓ(1 − λ′)ℓ′ + Rs′ − δ, all of which are held constant in

this figure, then the value of the shares is constant. What does vary is the total amount of
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Figure 5: Comparison of Uninsured Debt Price Schedules

Risky asset fractions are held constant at .9. Total leverage ratios are held constant at .9.

Figure 6: Uninsured Debt Price Schedules as a Function of Leverage

Risky asset fractions are held constant at .9. Total assets is held constant at $100B.

uninsured debt b′ that the shares must be used to repay the creditor. When the bank has

little uninsured debt, or that total leverage is low, the creditors are actually fully repaid

as the value of the shares are worth enough to repay all of b′. Therefore, the interest rate

is the same between the bailout and the bail-in. However, as leverage increases, the shares

are no longer enough to repay the creditor and therefore, the interest rate is increased. I

find that banks only borrow from this part of the state space, never from the part in which

the creditor is fully repaid, and therefore, the creditors are never fully repaid from a bail-in

in equilibrium.

Banks’ behavior reacts to the change in debt prices and continuation values heteroge-

neously. Figure 7 compares the policy functions for asset and uninsured leverage choices
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of banks under the bailout and bail-in. The first row plots the asset and uninsured debt

decisions of banks with (δM , λL) as a function of retained earnings n under the benchmark

and counterfactual equilibria. These banks are not drastically affected by the change in

resolution policy. Instead, they adjust dividend payouts to be lower in order to continue to

increase assets at about the same rate as they did under the benchmark despite the higher

interest rates. Like the banks in the benchmark, these banks also “jump” over the TBTF

threshold, but they do not do so until they have a higher level of retained earnings. Be-

cause of this, the “jump” is also smaller, as banks with retained earnings slightly below the

level at which banks jump are already choosing more assets than under the benchmark. As

seen in the right-hand plot of this first row, the asset choices are funded primarily through

uninsured debt.

The second row of Figure 7 shows a key change from the bailout to bail-in equilibria:

the behavior of banks with (δM , λM). In the benchmark model, these banks jump over

the $100B threshold quickly after becoming less constrained by using with a large frac-

tion of uninsured debt. However, the same banks under the counterfactual choose much

lower values of assets, borrowing very little uninsured debt, and never growing over the

threshold. This change leads to the decrease in the share of big banks from 18% to 10%,

as seen in the right panel of Figure 8. While the bottom left panel of Figure 7 makes it

clear that the change from the bailout to bail-in reduces the incentives for these banks to

be over the $100B threshold, it is unclear from the graph whether this is due to the loss

of the bailout continuation value to the shareholders or due to the higher interest rates on

uninsured debt. Section 8.1 investigates this further.

Figure 8 compares the size distributions under the benchmark and counterfactual

equilibrium. The left-hand plot overlays the two distributions while the right-hand plot

graphs the percent change from the bailout distribution to the bail-in one. The largest

change occurs around the $100B threshold: the bail-in distribution has significantly less

mass in this area than the bailout distribution. In fact, this group of banks can instead

be seen in the bar representing banks with $60-80B in assets. These banks are primarily

those with (δM , λM) that no longer jump over the $100B threshold.

The first two columns of Table 5 compare moments between the benchmark and coun-

terfactual equilibria. Once again, due to the decreased repayment to creditors in the event

of a bail-in, the return on risky lending Rℓ that satisfies the free entry condition increased

from 1.067 to 1.069. With a higher Rℓ, firms demand fewer loans and aggregate lending

declines from $4.61T to $4.46T. However, there are fewer big banks. This leaves room for
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Figure 7: Comparison of Policy Functions

Figure 8: Comparison of Size Distributions
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more banks to enter to meet the demand for firm loans. The measure of banks increases

32%. With the addition of new entrants, average lending decreases from $34.3B to $26.1B.
The average change in assets when banks cross the threshold decreases slightly. As shown

in the first plot in Figure 7, banks do not jump over the threshold until they have a higher

value of retained earnings. This generally comes from having had higher values of assets

last period, thus decreasing the change in assets.

The average risky asset fraction decreases over 10%, from 47.4% under the bench-

mark to 42.5% under the counterfactual. This change is primarily driven by the behav-

ior/distribution of (δM , λM) banks. When retained earnings (n) is low for these banks, they

are very constrained. Under each equilibria, these banks borrow very little uninsured debt

and invest in primarily safe assets. The net interest margin of such banks is very low; and

therefore, they stay relatively constrained even if they receive low default rates. However,

under the benchmark, these banks end up drastically increasing their assets, borrowing a

lot of uninsured debt and choosing a high risky asset fraction. If these banks receive a

lower default rate, they earn high net interest margins and remain above their equity con-

straint. This shifts the distribution of banks with (δM , λM) further to the unconstrained

part of the distribution. These banks continue to invest in high risky assets in order to

grow their returns. Under the counterfactual though, these banks never end up greatly

increasing their assets and instead stay in the more constrained part of the distribution.

They continue to choose low risky asset fractions. This shift in the distribution has large

effects on the industry averages due to the substantial portion of (δM , λM) banks in the

distribution. This shift is also primarily responsible for the decrease in average uninsured

leverage from 0.45 under the benchmark to 0.36 under the counterfactual.

The rate at which a bailout or bail-in occurs drops significantly from 0.41% to 0.03%,

due to both 1) the reduced probability of resolution of any big bank and 2) the reduction of

big banks in the economy. The former can be seen in Table 5 as the Big Bank Failure Rate.

Conditioning for the bank being above the $100B threshold, the average probability the

bank will enter resolution is 2.88% under the benchmark and 1.0% under the counterfac-

tual. This drastic change is due to selection: fewer banks with higher default rates become

big banks6. Under the benchmark, both banks with (δM , λL) and (δM , λM) would grow to

be big banks, but only banks with (δM , λL) become big banks under the counterfactual.

Due to the higher probability that a bank with λM will receive the high default rate λH

6This also explains the increase in the small bank failure rate. These banks with higher default rates
are staying smaller and still enter resolution if they receive the highest default rate next period.
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next period, these banks have a higher probability of failure than the banks with λL, thus

increasing the average probability of failure of big banks under the benchmark. Instead, in

the counterfactual, these banks are now classified as small banks. However, the small bank

exit rate (Failure Rate−Share of Big Banks∗Big Bank Failure Rate
1−Share of Big Banks

) has not increased significantly, only

up to .388 from .38. This is because the (δM , λM) banks are choosing fewer risky assets

and borrowing less uninsured debt now that they are not trying to grow above the $100B
threshold. They are now better able to weather the adverse shocks to their risky loans and

continue operating.

With fewer bank failures, resolution costs are significantly reduced. In Table 5, I define

the resolution costs of a liquidated bank as

Liquidation Resolution Costs = (1− cL)(R
ℓ(1− λ′)ℓ′ +Rs′) + cX (31)

which is equivalent to the discounted portion of the liquidated assets and the fixed cost

of liquidation. I define the resolution costs of a bailed-out bank as the value of the cash

transfer

Bailout Resolution Costs = b′ + δ − (1− αωr)R
ℓ(1− λ′)ℓ′ − (1− αωs)Rs

′. (32)

Given that the bail-in policy uses only the banks’ internal funds, there are no resolution

costs associated with a bail-in.

In the benchmark model, resolution costs include the liquidation costs of the small

banks entering resolution and the (1− ρ) fraction of big banks entering resolution as well

as the transfers for the bailouts of the remaining big banks, amounting to an average cost

of $44.8B a period, $29.7B of which is due to the bailout transfers. Under the counter-

factual, however, this cost includes only the liquidation costs of the small banks and the

(1− ρ) fraction of big banks entering resolution. This equals only $8.3B. The difference in
resolution costs of $36.5B exceeds the reduction in lending of $15B.

Finally, the average dividend payment increases when switching to the bail-in policy.

In the benchmark model, banks would often forgo larger dividend payments in order to

invest in more risky assets to grow. With the reduction in the size incentive, banks pay

more of their funds out as dividends to their shareholders.
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6.4 Non-Targeted Bail-in Policy

The results from the counterfactual exercise in Section 6.2 are based on implementing the

same size threshold as seen in the bailout policy as well as a probability function to de-

termine whether a bank receives the bail-in or liquidation. However, this size-based policy

could create inefficiencies in the banking sector. To examine further, I solve for a second

counterfactual equilibrium in which any bank can receive the bail-in when they enter reso-

lution. Further, banks will only be liquidated if the value to the creditors is greater under

liquidation than it is under bail-in. The value to the creditors of liquidation can be defined

as

V CL = min{b′,max{cLG(λ′, ℓ′, s′)− cF − δ, 0}} (33)

and the value to the creditor of bail-in as

V CI = min{b′, E
δ′|δ

(V d≤0(δ, λ′, n̂′(λ′))} (34)

where n̂′ = G(λ′, ℓ′, s′) − δ. Due to the firesale and fixed costs of liquidation, it is most

likely that the value of bail-in will be higher in equilibrium. However, it is possible that

the fixed cost of operating cO as seen in Equation 5 is high enough that continuing even

after a bail-in is very costly and the creditor would prefer the repayment from liquidation.

The value of resolution is then

VR(δ, λ
′, ℓ′, s′, b′) = 1V CL>V CI

VL(δ, λ
′, ℓ′, s′, b′)

+(1− 1V CL>V CI
)max{0, E

δ′|δ
(V d≤0(δ′, λ′, n̂′(λ′))− b′}. (35)

This implies price schedules of

qN(δ, λ, ℓ
′, s′, b′) =

1

1 + rF

[(
1−

∑
λ′∈ΩN (δ,ℓ′,s′,b′)

F (λ′|λ)
)

+
∑

λ′∈ΩN (δ,ℓ′,s′,b′)

min{1,max{
E
δ′|δ

(V d≤0(δ′, λ′, n̂′(λ′))

b′
,max{cLG(λ

′, ℓ′, s′)− cF − δ

b′
, 0}}}F (λ′|λ)

]
(36)

where ΩN is the set of loan default rate realizations such that the bank will enter resolu-

tion. The last row of Equation 36 represents the repayment to the creditors in resolution,

either from liquidation or bail-in. The repayment is a maximum of 100% and a minimum
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of 0% of the debt claim b′, but the interior value of repayment depends on if the value of

bail-in or liquidation is higher to the creditor.

The results of the non-targeted bail-in are summarized in the third column of Table 6.

In equilibrium, the value of a bail-in is always greater than the value of liquidation due

to the costly firesale and fixed costs associated with the liquidation. This policy decreases

the price of uninsured debt for banks below the TBTF threshold due to their access to

the bail-in. For these banks, I find that the average repayment to creditors in the event

of a bail-in is 81% of their original debt claim. This is in great contrast to the average

11% repayment that the creditors would have received in liquidation in this equilibrium.

With access to cheaper funding, these banks lend more compared to both the benchmark

and the counterfactual, which can be seen in the bottom row of Figure 9. These figures

calculate the change in the size distribution from the bailouts or bail-ins equilibria to the

non-targeted bail-ins equilibrium. Compared to either solution, the non-targeted bail-in

policy decreases the mass of banks with less than $10B in assets as these small banks now

have cheaper funding to invest in higher quantities of assets. However, without the size

threshold of $100B, fewer banks grow to such a level, as seen by the decrease in the mass of

banks just to the right of the threshold. The share of big banks decreases to 6%, compared

to 18% under the benchmark and 10% under the counterfactual.

Borrowing uninsured debt is now cheaper for entering banks, who receive the smallest

value of insured deposits and are constrained from making large quantities of risky loans

due to having no internal funding to start. Now, with cheaper debt, these entrants do

not need to earn as high of a return on their lending to choose to enter. Therefore, the

risky loan return that satisfies the free entry condition is 1.066, down from 1.067 under the

benchmark. At this lower return, firm demand for bank loans increases, and the aggregate

amount of lending increases from $4.61T under the benchmark to $4.72T.
The average risky asset fraction decreases to 39.8% under the non-targeted bail-in pol-

icy. Without the incentive to quickly surpass the $100B threshold, banks choose to smooth

their returns more by investing in more safe assets. However, average uninsured leverage

and total leverage increase compared to the counterfactual. Debt prices have decreased for

banks and there are greater returns to earn from borrowing to fund investment in assets

rather than using internal funding. The change in assets when banks cross the $100B
threshold appears very large under the non-targeted bail-in policy. However, this is driven

by a composition effect. Under the benchmark and the counterfactual, there were banks,

specifically those with δ = δM who would drastically increase their assets to grow over the

39



Figure 9: Size Distribution under Non-Targeted Bail-ins

threshold. Under this policy in which the threshold is not needed for access to the bail-in,

the banks that grow over the threshold are only banks who are switching from δM to δH ,

creating a very large increase in assets.

The failure rate of banks is lower under the non-targeted bail-in policy than the bench-

mark or counterfactual. This is due to the decreased mass of banks engaging in very risky

lending or over leveraging themselves in order to grow quickly above the TBTF threshold.

However, the rate of bail-ins is higher under the non-targeted policy than the counterfac-

tual because small banks, who fail at the highest rates, are bailed in now. Nonetheless,

bail-ins avoid the deadweight losses from the firesale of assets that occurs in liquidation,

so total resolution costs are the lowest under the non-targeted bail-in policy.
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Table 5: Comparison of Results Across Resolution Policies

Non-Targeted
Bailouts Bail-ins Bail-ins

Rℓ 1.067 1.069 1.066
Avg. Interest Income on Loans (%) 4.8 5.2 4.7
Agg. Lending ($T) 4.61 4.46 4.73
Avg. Assets ($B) 34.3 26.1 45.7
Share of Big Banks (%) 17.6 10.2 6.0
Gini Coefficient of Bank Assets 0.43 0.46 0.43
Avg. Change in Assets (%) 9.5 9.7 9.0
Avg. Change in Assets over Threshold (%) 69.2 63.9 112.4
Avg. Risky Assets Fraction (%) 47.4 42.5 39.8
Avg. Leverage of Entrants 0.95 0.95 0.94
Avg. Leverage 0.96 0.94 0.96
Avg. Uninsured Leverage 0.45 0.36 0.40
Avg. Net Interest Margin 1.37 1.36 1.32
Avg. Repayment under Bailout/Bail-in (%) 100.0 45.7 81.2
Max Repayment under Bailout/Bail-in (%) 100.0 48.0 100.0
Avg. Interest Rate (%) 2.17 2.12 1.92
Avg. TBTF Subsidy (bps) 254 40 33
Failure Rate (%) 0.82 0.45 0.45
Bailout/Bail-in Rate (%) 0.41 0.03 0.40
Big Bank Failure Rate (%) 2.88 1.00 0.44
Resolution Costs ($B) 44.8 8.3 7.1
Avg. Dividend to Assets (%) 0.27 0.67 0.38
Share of Dividend Issuers (%) 53.2 60.6 46.0
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7 Efficiency

To study the efficiency of the banking sector under each resolution policy regime, I first

solve for a “frictionless benchmark” that removes the financing frictions but keeps the

underlying technology behind bank lending and the supply of insured deposits. This is

analogous to a Hopenhayn (1992) framework. Specifically, I

1. Set the costs of liquidation, cL and cF , to 1 and 0, respectively

2. Remove limited liability

3. Set the dividend issuance function to be ψ(d) = d for the entire state space

4. Set the corporate tax rate to zero

5. Remove capital requirements

6. Remove bailouts/bail-ins

The first change implies costless exit for banks. They can now sell off their assets at face

value and do not pay a fixed cost of liquidation. Without limited liability, the banks must

now fully repay their creditors if they do exit. Coupled with costless exit, this results in all

debt being priced at the risk-free rate. With change number three on the list, the banks now

have costless equity issuance. They can now raise either type of funding — equity or debt

– at the risk-free rate and the bank is therefore indifferent between which to use. For this

reason, the bank is also indifferent between investing excess funds in the safe asset or pay-

ing it out as a dividend today. Even if the bank does not have the funds tomorrow to repay

the deposits, it can raise equity at the risk-free rate, rendering it indifferent between raising

it tomorrow versus saving the money from last period to pay back the deposits7. After all

of these changes, the resulting world is one in which the Modigliani-Miller theorem holds.

Without loss of generality, I assume that the bank does not invest in safe assets and uses

equity instead of risk-free debt for funding. The problem of the bank can then be written as

7The bank still has the same level of insured deposits, following the same Markov process, as this is a
fundamental element of the environment.
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V (δ, λ, n) = max
ℓ′

d+ β E
λ′|λ

(
max{n′(λ′), E

δ′|δ
(V (δ′, λ′, n′(λ′))}

)
s.t.

d = n+ βδ − ℓ′ − cM(δ)ℓ′
2 − cO

n′(λ′) = Rℓ(1− λ′)ℓ′ − δ

ℓ′ ≥ 0.

(37)

We can compare this to the bank problem in Equation 5. The value of resolution VR(δ, λ
′, ℓ′, s′, b′)

is replaced with the new value of retained earnings n′ as there are no longer costs asso-

ciated with liquidation, there are no bailouts, and banks no longer have limited liability.

The bank is only choosing the volume of risky lending ℓ′ in order to maximize its value

now. Further, the insured deposits are priced at the risk-free rate β. Without liquidation

costs and limited liability, the pricing equation for uninsured debt is meaningless. Banks

must still pay the entry cost cE to enter and the mass of banks is still pinned down by

equating bank supply of loans with firm inverse demand.

In equilibrium, I find that a bank’s retained earnings n has no effect on their lending

and exit decisions. Without costly equity issuance, costly uninsured debt, capital require-

ments, and corporate income taxes, banks’ lending decisions are pinned down solely by

their expected loan default rates and monitoring costs cM(δ). In fact, the first-order con-

dition renders

−1− 2cM(δ)ℓ′ + βRℓ(1− E(λ′|λ)) = 0

ℓ′
∗
= max{βR

ℓ(1− E(λ′|λ))− 1

2cM(δ)
, 0}

(38)

where the maximum operator represents the restriction that ℓ′ ≥ 0.

If the optimal amount of lending for a bank with a given (δ, λ) exceeds its retained

earnings n and insured deposits βδ, the bank will simply raise the equity to pay for the

lending. If the bank’s funds exceed the optimal level of lending and the monitoring costs

associated with it, then the bank will pay the extra funds out as a dividend.

In equilibrium, only the banks with the lowest default rate λL choose to invest in risky

lending. For all other banks, if n + βδ − cO is positive, they will pay this value out as

a dividend today and raise equity tomorrow to repay insured deposits δ. If this value is

negative, they will raise the equity today as well. Further, no bank exits. Despite the

operating costs cO, the charter value of the bank is large enough that the bank is willing to
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continue, even if they must keep raising equity to pay the operating cost. When it comes

to pinning down the risky loan return Rℓ via the free entry condition, the lending banks

already earn relatively high returns given that their default rates are so low. Addition-

ally, they are paying much less for their funding for these loans. Therefore, Rℓ decreases

compared to the benchmark model and aggregate lending increases. However, the share of

big banks decreases significantly. The optimal volume of loans for (δM , λL) banks is only

$73B; therefore, the only banks that are large enough to be characterized as big banks are

those with the highest value of insured deposits, δH .

7.1 Allocative Efficiency

Another measure of efficiency is the allocation of loans in the economy across heteroge-

neous banks. I focus on the allocation of loans across banks’ expected loan default rates as

these represent the effectiveness of banks’ monitoring abilities/the diversification of their

client base. Further, the model results present significant heterogeneity in the impacts of

bailouts and bail-ins on banks’ funding costs and risk choices. Following Olley and Pakes

(1996), I define the default rate allocative efficiency by decomposing the loan-weighted

average bank-level expected loan default rate λ̂′ into

λ̂′ =
∑
λ

∑
δ

∫
E
λ
(λ′)ω(ℓ′(λ))Γ(δ, λ, dn) = λ̄′ + cov(E

λ
(λ′), ω(ℓ′(λ))). (39)

E
λ
(λ′) is the expected default rate of a bank with current default rate λ and ω(ℓ′(λ)) is

the loan share of banks with that λ. λ̄′ is the unweighted average expected default rate

(
∑
λ

∑
δ

∫
E
λ
(λ′)Γ(δ, λ, dn)). Therefore, the loan-weighted average expected default rate can

be decomposed into the unweighted average expected default rate and a covariance term

between expected default rates and loan shares, where the covariance term is the key to

understanding allocative efficiency. A smaller value represents a shift in loans towards

banks with lower expected default rates. When banks with lower expected default rates

lend majority of the loans in the economy, the total number of defaults is minimized and

there are greater overall returns to the banking sector.

In the frictionless benchmark, all loans are made by the banks with the lowest expected

default rate. Therefore, that equilibrium provides the highest possible value of default rate

allocative efficiency (lowest covariance) given the lending technology, which is equal to -

44



Table 6: Results from Frictionless Benchmark

Non-Targeted
Bailouts Bail-ins Bail-ins Frictionless

Rℓ 1.067 1.069 1.066 1.057
Avg. Interest Income on Loans (%) 4.8 5.2 4.7 4.6
Agg. Lending ($T) 4.61 4.46 4.73 5.91
Share of Big Banks (%) 17.6 10.2 6.0 5.4
Avg. Interest Rate (%) 2.17 2.12 1.92 1.18
Failure Rate (%) 0.82 0.45 0.45 0.0
Big Bank Failure Rate (%) 2.88 1.00 0.44 0.0
Default Rate Allocative Efficiency -0.0038 -0.0072 -0.0077 -0.0078

.0078. The default rate allocative efficiency of the benchmark model was -.0038, only 48.7%

of the value in the frictionless benchmark. The counterfactual, however, had a measure of

-.0072, or 91.6% of the frictionless benchmark’s measure. This large improvement comes

from the change in behavior of the banks with the medium default rate λM and the medium

level of insured deposits λM . Under the benchmark, these banks lend a lot in order to grow

above the TBTF threshold and take advantage of the positive probability of bailout. How-

ever, they lend significantly less under the counterfactual, shifting a higher percentage of all

loans to the banks with the lowest default rate. Default rate allocative efficiency improves

even more under the non-targeted bail-in policy. Under this policy, smaller banks have

access to cheaper funding due to the higher repayment to their creditors under bail-in than

liquidation. Therefore, these banks lend more, but most importantly, small banks with the

lowest default rate lend significantly more. This shifts the share of loans even further to

the lowest default rate banks, achieving a default rate allocative efficiency measure equal to

97.5% of the frictionless benchmark. Given that the frictionless benchmark removes many

frictions that would be difficult to alleviate in the real world, the non-targeted bail-in policy

represents a more realistic resolution policy for achieving efficiency in the banking industry.

8 Quantitative Exercises

In this section, I take advantage of the quantitative nature of the model to conduct various

exercises to 1) better understand the mechanisms driving the paper’s main results and 2)

explore the implications of aggregate shocks in the bailout and bail-in equilibria.
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8.1 Decomposition of Debt and Equity Channels

Bail-in policies change the payoffs to both creditors and shareholders relative to bailouts.

Therefore, it is difficult to tell if banks are changing their behavior because the debt is

more expensive or because shareholders have less value from a bail-in than a bailout.

With my model, however, I can decompose these two channels. To do so, I solve for a

new equilibrium with an adapted “bailout” policy. In this equilibrium, I use the bailout

probability function as in the benchmark model where only banks with assets above $100B
are eligible for the bailout and only 90% of those will actually receive it. Under this

bailout, the new retained earnings of the bank will once again be as set in Equation 8.

This value is retained by the original shareholders, therefore holding the equity channel

constant. However, the creditors will only be repaid the repayment they receive in the

counterfactual and the price equation will be the same as in Equation 27, keeping the debt

channel consistent with the counterfactual.

If the results of this decomposition exercise look more like the benchmark equilibrium,

then the equity channel is the dominant channel. Banks’ decisions are driven more by the

value to the shareholders in the bailout, not by the pricing of the debt based on the bailout

repayment to creditors. However, if they look more like the counterfactual equilibrium,

then the debt channel dominates as it is the pricing of the debt that matters more for bank

decisions.

Overall, I find that the decomposition exercise more closely resembles the counterfactual

exercise, and therefore, the debt channel dominates. However, looking at the heterogeneity

of the banks, the decomposition results vary based on the banks’ default rates λ. Figure 10

plots the asset and uninsured debt decisions of banks with the lowest default rate λL and

the medium value of insured deposits δM . While these banks need greater retained earnings

n in order to finance the jump over the $100B asset threshold compared to the benchmark

banks, they increase assets and debt sooner than under the counterfactual. This implies

that both the equity and debt channels matter for these banks. Further, it is clear that

the equity payoff to shareholders from the bailout matters for the decisions of these banks

by looking at the dividend/equity issuance behavior of the banks. Under the benchmark

and this decomposition exercise, banks will issue equity to finance their jump over the

$100B threshold. The shareholders are actually willing to put more “skin-in-the-game” in
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Table 7: Results of Decomposition Exercise

Non-Targeted
Bailouts Bail-ins Bail-ins Decomposition

Agg Lending ($T) 4.61 4.46 4.73 4.53
Bailout/Bail-in (%) 0.41 0.03 0.40 0.09
% Big Banks 17.6 10.2 6.0 10.4
Default Rate Allocative Efficiency -0.0038 -0.0072 -0.0077 -0.0073

order to grow large and take advantage of the bailout policy. This is not true under the

counterfactual with the true bail-in. Here, banks will wait to grow over the threshold until

they can completely finance it with retained earnings n, insured deposits δ, and uninsured

debt b′. These shareholders will not put more “skin-in-the-game” to take advantage of the

bail-in policy. The fact that the shareholders will invest more equity for the jump in this

“alternative” bailout proves that the equity channel is important for the decisions of the

low expected default rate banks.

The banks with the medium default rate λM behave completely differently, as seen in

the bottom row of Figure 10. These banks behave almost exactly the same as they do

under the counterfactual. Therefore, it is the debt channel that dominates here. Banks

with this medium default rate λM make up a larger part of the distribution than the other

λ’s, so quantitatively, the debt channel is the dominant channel driving the changes from

the benchmark to the counterfactual.

Table 7 summarizes key moments comparing the equilibrium under the decomposition

exercise to the benchmark, counterfactual, and non-targeted bail-in equilibria. The last

line of the table presents the default rate allocative efficiency measure for this equilibrium,

which is actually lower (higher efficiency) than that of the counterfactual. The reason

is that the (δM , λL) banks lend more under this decomposition than they do under the

counterfactual because of the higher equity payoff if they were to be bailed out. As these

are the banks with the lowest default rate, the increased loan share increases allocative

efficiency. However, the measure is still lower than that of the non-targeted bail-in policy.

The (δM , λL) banks make up a smaller portion of all banks than the (δL, λL), and therefore,

lowering the cost of borrowing for the (δL, λL) banks increases the loan shares of low default

rate banks more.
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Figure 10: Policy Functions under Decomposition Exercise
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8.2 Fragility to Aggregate Shocks

The model assumes bank failure is driven by idiosyncratic shocks to the asset value of in-

dividual banks. In reality, many bank failures occur due to aggregate shocks. As a simple

framework to capture the resiliency of the banking system under bailout and bail-in to

aggregate shocks, I introduce a one-time, unanticipated shock to the loan default rates of

all banks in the benchmark and counterfactual steady-state equilibria. In this exercise,

I increase each loan default rate λ′ by η = .05 for one period only. The shock in this

one period is unanticipated and therefore banks do not ex-ante adjust their expectations

of λ′. Further, the shock is for only one-period and therefore, banks do not change their

expectations of future λ′s either. In the period of the shock, more banks may fail if this

new total loan default rate λ′ + η is high enough that banks would prefer resolution over

continuation. Further, even for continuing banks, this will decrease the retained earnings

n′ with which the banks enter the next period. The extent of this effect will depend on

the fraction of the bank’s risky loans to total assets ( ℓ′

ℓ′+s′
) as returns to the safe asset will

not change.

As this is a one-time shock, in the next period, there is no change to the banks’ expected

returns. Therefore, the value of entering is the same as in the steady state and the same

mass of banks enter. Changes to aggregate lending and the bank size distribution then

come from the increase in liquidations from the additional banks entering resolution as well

as the change in n′ for continuing and bailed out/in banks. The response of banks under

the frictionless benchmark is not plotted. Because banks do not have limited liability but

can raise new equity at the risk-free rate, the unanticipated shock does not change bank

behavior and there is no effect on aggregate lending.

Figure 11 plots the aggregate lending responses to this unanticipated shock under the

benchmark (Bailouts), counterfactual (Bail-ins), and Non-Targeted Bail-ins equilibria. The

largest decline in aggregate lending comes from the benchmark. Banks in the benchmark

are the most leveraged and have the highest risky asset fractions. Therefore, they are the

most susceptible to additional failures due to the increased defaults. Aggregate lending

decreases more under the counterfactual than under the non-targeted bail-in policy for

two reasons. First, the average risky asset fraction is higher in the former, and banks are

therefore more susceptible to this bad shock. Further, only big banks can be bailed-in in

the counterfactual. The liquidation of banks is then larger under the counterfactual than

the non-targeted bail-in policy, leading to a greater exit of banks and fewer banks who can

lend in the periods moving forward.
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Figure 11: Aggregate Lending Response to Shock

Aggregate lending recovers faster under the two bail-in equilibria than the bailout equi-

librium. Under the non-targeted bail-in policy, aggregate lending recovers to its steady

state value shortly before five years after the shock. The counterfactual takes slightly

more than five years to recover. However, the benchmark takes approximately ten years

to recover due to the large failure of banks and the low values of retained earnings of the

surviving banks. Further, the steady state aggregate lending under the counterfactual is

approximately 97% of that under the benchmark. It still takes the benchmark equilibrium

over nine years to reach this level of lending. Due to the lower leverage ratios and risky

asset fractions, banks are more resilient to unexpected shocks in equilibria with bail-in

policies.

9 Policy Counterfactuals

The enactment of the bail-in policy was just one example of new regulations imposed on

banks in response to the financial crisis. Another includes the adjustment of capital re-

quirements, a frequently studied and discussed way to combat bank moral hazard. In this

section, I solve for two new counterfactuals related to changing capital requirements and

compare the steady state distributions and statistics to those from the original bailout and

bail-in equilibria.
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Table 8: Comparison of Capital Requirement Counterfactuals

Higher Size Incorrect Size
Bailouts Bail-ins Cap. Req. Dependent Dependent

Rℓ 1.067 1.069 1.072 1.069 1.068
Agg. Lending ($T) 4.61 4.46 4.20 4.46 4.52
Avg. Assets ($B) 29.7 21.8 30.23 21.7 29.2
Share of Big Banks (%) 17.6 10.2 16.9 9.5 18.2
Avg. Risky Assets Fraction (%) 47.4 42.5 52.4 42.7 47.9
Avg. Leverage of Entrants 0.95 0.95 0.92 0.95 0.95
Avg. Leverage 0.96 0.96 0.92 0.95 0.96
Avg. Uninsured Leverage 0.44 0.36 0.37 0.32 0.30
Failure Rate (%) 0.82 0.45 0.79 0.45 0.77
Bailout/Bail-in Rate (%) 0.41 0.03 0.37 0.05 0.36
Big Bank Failure Rate (%) 2.88 1.00 2.92 1.45 2.87
Resolution Costs ($B) 44.9 6.5 31.0 15.4 33.5
Default Rate Allocative Efficiency -.0038 -00.72 -.0036 -.0074 -.0043

This table compares statistics of the steady state equilibria of the benchmark model with higher capital
requirements (Column 4), with the size-dependent capital requirements (Column 5), and with incorrect
size-dependent capital requirements (Column 6) to those of the original benchmark model (Column 2) and
bail-in counterfactual (Column 3).

9.1 Higher Capital Requirements

In this section, I solve for a counterfactual in which the capital requirement α is increased

from the level used in the benchmark model, 4%, to the Basel II regulatory level, 8%, in the

benchmark framework of bailouts. Aggregate statistics from the steady state distribution

under this scenario can be found in Column 4 of Table 8.

Higher capital requirements for all banks decrease the value of entering as a bank.

Therefore, the equilibrium return on lending Rℓ must increase compared to the benchmark

model. In fact, the new equilibrium Rℓ is even higher than that of the bail-in counterfactual

model. Despite big banks having a positive probability of bailout and therefore a TBTF

subsidy on their debt prices, these big banks are constrained by capital requirements, low-

ering their value. Further, a bank has to grow large enough to take advantage of this

subsidy and therefore, the entrants require a higher return on lending to choose to enter.

With a higher required return on lending, aggregate lending decreases to $4.20B, compared
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to $4.61B under the benchmark model and $4.46 under the counterfactual bail-in model.

Asset choice policy functions of banks with the medium insured deposits (δM) under

the higher capital requirement can be found in Figure 12. The top left figure plots the

asset choices of banks with the lowest default rate λL under the benchmark bailout model

and this higher capital requirement bailout model. Despite the higher return on lending,

higher capital requirements have a substantial effect on the asset decisions when retained

earnings is low and capital requirements are more binding. The banks still jump above the

$100B threshold, but not until they have over $11B in retained earnings, compared to the

only $6.5B they need under the benchmark model. However, when the banks do choose

asset values over the threshold, they actually choose a higher level of assets than chosen

under the benchmark model due to their increased expected return on lending. The same

result can be seen in the bottom left figure in which I plot the asset policy functions of

banks with λM instead. The higher capital requirement banks are again more constrained

and need to build more retained earnings before they can grow above the $100B threshold.

Further, the choice of assets once they cross the threshold is once again higher due to the

higher return on lending.

The top right figure compares the policy functions of banks with the lowest default

rate λL under the bail-in counterfactual and this counterfactual with bailouts but higher

capital requirements. The higher capital requirement banks are again more constrained

than the banks in the bail-in model and choose fewer assets when retained earnings is low.

When the higher capital requirement banks do choose assets over $100B, they once again

choose an asset value higher than that chosen by the bail-in banks due to the higher return

on lending and the positive value of the bailout probability. However, the largest change

between the bail-in counterfactual and the higher capital requirement one can be seen in

the bottom right figure, which plots the asset policy functions of λM banks. A key feature

of the bail-in counterfactual is that these banks do not grow over the $100B threshold and

become big banks. The higher capital requirements is not enough though to offset the

additional value from a positive bailout probability though, and there is a much larger

share of big banks in this counterfactual. As seen in Table 8, the share of big banks in the

higher capital requirements model is 15.8% compared to the 10.2% in the bail-in model.

The corresponding debt policy functions can be found in Figure 13. Given the higher

capital requirements, banks borrow less uninsured debt. However, given that banks still

grow above the $100B threshold when they have the medium default rate λM , this corre-

sponds to higher overall uninsured leverage than under the bail-in counterfactual.
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Figure 12: Asset Policy Functions under Higher Capital Requirements

The resulting size distributions can be found in Figure 14, in comparison to those

under the bailout (left) and bail-in (right) distributions. The share of big banks under

the higher capital requirements is only 0.7% lower than that under the benchmark model.

However, big banks stay slightly smaller on average due to the constraints from higher

capital requirements. There is a smaller share of banks with assets between $0 and $20B
and a higher share between $20-40B due to two complementary forces. First, banks earn

a higher return on lending under the higher capital requirements, therefore the gross value

of assets Rℓ(1−λ′)ℓ′+Rs′ can be higher, even for the same value of ℓ′. Second, due to the

higher required return on lending Rℓ, demand for loans from firms is significantly lower.

However, there are still big banks lending a significant amount. These banks meet a large

amount of the demand for loans by firms and leave less room for entrants; therefore, the

mass of entrants is smaller. This same effect can be seen to an even greater extent in the

right graph, which compares the size distribution under higher capital requirements to that

of the bail-in model. In addition to a smaller mass of the smallest banks, the key difference

between these two distributions is the missing mass between $60 and $100B under higher

capital requirements and the increased mass point just above $100B. Even with higher

capital requirements, banks with both λL and λM will jump above the $100B threshold,

unlike under bail-in where only the λL banks do so. The discrete increase in asset choices
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Figure 13: Uninsured Leverage Policy Functions under Higher Capital Requirements

results in missing mass just under the threshold and increased mass just over it. Despite

the higher return on lending, capital requirements restrict banks and the average assets

level is lower at $24.7B, compared to $34.3B. Further, a smaller share of banks grow large,

only 15.8%, compared to under the benchmark model, but this is still significantly higher

than the share of big banks under bail-in.

An interesting finding is that the average uninsured leverage ( b′

ℓ′+s′
) of banks decreases

under the higher capital requirements, but the average risky assets fraction ( ℓ′

ℓ′+s′
) increases.

While we would expect banks to decrease this fraction, as risky assets hold a risk weight of

Figure 14: Comparison of Size Distributions under Higher Capital Requirements
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1, banks can more substantially decrease the capital requirement by decreasing leverage.

Further, the banks now earn a greater return on risky lending. Therefore, banks appear to

decrease their uninsured debt by a greater extent but increase their risky asset fractions

slightly in order to raise their expected profits.

Even though banks need to hold more capital, the failure rate of big banks is actually

slightly higher (2.92% compared to 2.88%). This difference stems from a greater portion

of banks with λM in equilibrium, which have a greater probability of receiving λH next

period, thus increasing the overall failure rate. There are more λM big banks due to the

slower growth rate of banks with λL, which increases the probability that they will switch

to λH before they raised enough retained earnings to weather negative shocks.

Individual big banks may have a higher probability of failing under the higher capital

requirements scenario, yet the cost of these resolutions is lower. Banks are choosing lower

levels of uninsured debt, which reduces the necessary transfer in a bail-in. Further, the

return on lending is higher, and therefore, the bank has more funds from its loans that

were not defaulted upon, further decreasing the transfer needed in a bailout.

Finally, the last row of Table 8 summarizes the default rate allocative efficiencies for

each equilibria. The default rate allocative efficiency measure under these higher capital

requirements is -.0036, even higher than -.0038 under the benchmark. While banks lend

less under the higher capital requirements, the higher capital requirements apply to all

banks, and therefore have little effect on the relationship between default rates and share

of lending. The increase in the measure is driven by the choice of banks to relatively

decrease their leverage more than their risky asset fraction to meet the higher capital re-

quirements. This is particularly true of the medium default rate banks jumping over the

$100B. To qualify for the bailout, these banks need $100B in total assets and they choose

to reach this with a greater fraction of risky assets compared to the benchmark, resulting

in a greater share of risky lending by banks with higher expected default rates.

While increasing capital requirements for all banks does decrease the failure rate of

banks and the cost of resolution, the decrease in aggregate lending is substantial. Replac-

ing bailouts with bail-ins dominates increasing capital requirements in regards to promoting

lending and reducing big bank failure.
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9.2 Size Dependent Capital Requirements

In this section, the capital requirement is increased to 8% if the bank has assets greater

than $100B, the asset threshold at which the bailout probability becomes positive. Results

from this counterfactual can be found in Column 5 of Table 8. This policy counterfactual

is in-line with size-dependent capital requirements enacted in the Dodd-Frank Act and can

be used to compare how higher capital requirements for banks with bailout expectations

can reduce big bank failure relative to replacing bailout expectations with bail-in expecta-

tions.

Figure 15 plots the asset policy functions of banks as a function of their retained earn-

ings and current default rate for banks with the medium insured deposits under the bailout,

bail-in, and size-dependent capital requirements models. Banks avoid crossing the $100B
threshold until they have built up enough retained earnings to help them meet the higher

capital requirements. We can see that they stay in the realm of $90-96B in assets when

their retained earnings n varies from $7.5-11B. However, once they do choose assets above

the threshold, their assets are actually higher than under bailout or bail-in, for the same

value of retained earnings n. Despite having to hold more capital, banks are actually earn-

ing more on their risky lending than under the benchmark model. Therefore, the optimal

choice of assets has increased, as long as they can use more equity to fund it to avoid vio-

lating the capital requirements. Compared to the bail-in world, banks earn approximately

the same rate on their lending. However, these banks benefit from the subsidy on their

debt prices and increased equity value from a bailout compared to a bail-in. This increases

the optimal choice of assets relative to the bail-in counterfactual.

The corresponding uninsured leverage policy functions can be found in Figure 16. The

plots in the top row demonstrate the uninsured leverage policy functions of banks with the

lowest default rate λL. When banks are below the $100B threshold and are not subject to

the higher capital requirements, they make similar uninsured leverage decisions as those by

banks under both the original bailout (left) and bail-in (right) models. However, because

the banks stall growing over the threshold and having to face the higher constraint, they

borrow less. Even when the banks do choose assets above the threshold, they still borrow

less uninsured debt. This is because more leverage binds the capital requirement, so banks

are more willing to fund their assets with equity. In the plots in the bottom row, we see

that the λM banks behave just like those in the bail-in model. Due to the higher capital

requirements over the threshold, these banks choose assets significantly below it. They

will always be liquidated if they fail, and therefore, their debt and equity values are very
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Figure 15: Policy Functions under Size Dependent Capital Requirements

similar to those in the bail-in counterfactual.

Figure 17 plots the corresponding size distributions. Compared to the original bailout

model, the distribution of banks around the $100B threshold is substantially smoother.

The constraint of higher capital requirements offsets some of the benefit of having a posi-

tive probability of bailout and more λL banks stay below the threshold. Further, the λM

banks no longer grow above the threshold, and therefore, this size distribution is more

similar to that under bail-in. The main difference between the bail-in and size dependent

capital requirement distributions is that the latter has more mass between $80-99B and less

above $100B due to the penalty of the higher capital requirements reducing the number of

λL banks jumping over the threshold. These banks specifically benefit the most from the

bail-in pricing and still jump in that counterfactual scenario. However, the higher capital

requirements from the size-dependent requirement negates much of this value and banks

purposely grow at a slower rate. The share of big banks in the economy is reduced from

10.2% to 9.5%.

Aggregate statistics for the size-dependent capital requirements steady state can be

found in Column 5 of Table 8. In general, these statistics are very similar as those un-

der bail-in. However, due to the higher capital requirements when over the threshold,

banks choose lower uninsured debt levels and increase their risky asset fractions slightly.
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Figure 16: Uninsured Leverage Policy Functions under Size Dependent Capital Require-
ments

Figure 17: Comparison of Size Distributions under Size Dependent Capital Requirements
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The largest deviation between this equilibrium and the bail-in one is in resolution costs,

which are almost double for the size-dependent capital requirements scenario due to the

cost of bailout transfers that are still needed. This suggests that bail-ins may be a bet-

ter option to reducing big bank failure costs while promoting aggregate lending, but that

size-dependent capital requirements still provide vast improvements if reducing bailout ex-

pectations to zero is not possible.

In fact, size-dependent capital requirements improve default rate allocative efficiency

more than the bail-in does. Higher capital requirements lead to banks increasing their

risky asset fraction slightly as they decrease leverage instead. As majority of banks sub-

ject to the higher capital requirements in this scenario are the lowest default rate banks,

this results in a slight increase in the share of lending by banks with the lowest expected

default rates.

9.3 Mismatched Size Dependent Capital Requirements

Section 9.2 demonstrated that size dependent capital requirements can replicate many of

the benefits of bail-in expectations without the commitment to bail-ins. However, these

results rely on capital requirements increasing at the same threshold at which bailout ex-

pectations increase. If these two thresholds were not aligned, the benefits of bail-ins may

not be realized. In this section, I solve for an equilibrium in which banks with assets above

$100B are considered “too big to fail” and subject to a ρ̄% probability of bailout when

they fail, but higher capital requirements are only imposed on banks with at least $110B
in assets.

Figure 18 compares the size distribution of banks in this equilibrium to that of the

benchmark model (left) and the bail-in counterfactual model (right). Compared to the

benchmark model, the main difference in this distribution is that banks previously in the

$110-120B range now stay in the $100-110B range. These banks will still have the positive

probability of bailout if they fail, but are not subject to the higher capital requirements yet.

In order to remain in this range, big banks borrow less and issue more dividends instead of

borrowing more to grow slightly larger. This can be seen in Column 6 of Table 8. Average

uninsured leverage decreases from 0.44 under the benchmark to only 0.30. However, these

banks still borrow enough such that they will not be able to repay their debt if they receive

the high default rate, and the big bank failure rate barely changes from 2.88% to 2.87%.
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Figure 18: Comparison of Size Distributions under Mismatched Size Dependent Capital
Requirements

Failure rates and the share of big banks are much closer to those of the benchmark

equilibrium than the bail-in counterfactual, thus depleting the bail-in benefits associated

with size dependent capital requirements in Section 9.2. Further, aggregate lending is 2.0%

lower than in the benchmark model, suggesting even fewer advantages to size dependent

capital requirements if they do not align with “too big to fail” beliefs.

10 Conclusion

In this paper, I develop a model of the U.S. banking industry to evaluate the effects of

bailout and bail-in policies on industry dynamics. Heterogeneous banks fund a portfolio

of risky loans and safe assets via a mix of equity, insured deposits, and uninsured debt

in order to maximize current and future dividends to shareholders. Upon realizing their

returns on their assets, banks can choose between continuing to operate or entering reso-

lution. In the benchmark model, big banks have a probability of being bailed out instead

pf liquidated when they enter resolution. The bailout is a cash injection that guarantees

the repayment to current creditors. Therefore, in equilibrium, creditors price their loans

to big banks at a lower rate than would be expected due to their risk, creating the TBTF

subsidy that is heavily documented in the empirical literature. I then adapt the model

to replace the probability of bailout for big banks with one of a simplified version of the

bail-in policy included in the Dodd-Frank Act. In a bail-in, the uninsured debt of the bank

is converted to equity and the creditors receive shares in the new bank instead. Original

shareholders only retain some shares if the value of the total shares exceeds the creditors’

original claims.
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With the bail-in policy in place, the bail-in rate is 93% lower than the bailout rate in

the benchmark. The bail-in process is more costly to both creditors and shareholders as

the shares given to creditors in the bail-in are always worth less than the value of their

original claim. This increases the price on the uninsured debt and decreases the attrac-

tion of resolution for current shareholders as they always lose their shares in the bail-in.

Banks choose to have lower uninsured leverage ratios under the counterfactual than the

benchmark and are thus better able to weather adverse shocks and repay their debt. The

TBTF subsidy is reduced under the counterfactual to reflect decreased payouts to creditors

under bail-in. These findings suggest that the bail-in policy achieves its goals of promoting

market discipline and enhancing financial stability. However, due to the higher funding

costs, aggregate lending decreases by 3.3% under the counterfactual.

A key finding of the model is that bailouts have an unintended consequence of en-

couraging riskier growth and higher leverage specifically by banks with an ex-ante higher

probability of failing. Under bail-ins, creditors are paid the value of the bank with no

debt, instead of a guaranteed subsidy as under bailout. This places greater emphasis on

the bank’s probability of failure in the creditor’s pricing equation and therefore, banks with

higher probabilities of failing pay significantly more for their debt. These banks lend less,

leaving more room for lending by banks with lower probabilities of failure. The allocative

efficiency of the banking sector is improved, and aggregate lending declines only 3.3% de-

spite a decrease of 17.4% in average lending. These results highlight the importance of

market discipline in reducing bank failure without limiting aggregate lending.
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A Moment Definitions

Table 9: Model Definitions

Leverage b′+δ
ℓ′+s′

Uninsured Leverage b′

ℓ′+s′

Risky Lending ℓ′

Safe Assets s′

Risky Asset Fraction ℓ′

ℓ′+s′

Assets ℓ′ + s′

Dividend to Assets d
ℓ′+s′

Interest Income on Loans Rℓ(1− λ′)

Loans to Deposits ℓ′

δ

Net Interest Margin (NIM) is defined as the difference in a bank’s interest income and

interest expense, divided by interest-earning assets. In the model, this corresponds to

NIM =
(Rℓ − 1)(1− λ′)ℓ′ + (R− 1)s′ − ( 1

q(δ,λ,ℓ′,s′,b′)
− 1)b′ − ( 1

qδ
− 1)δ

ℓ′ + s′
. (40)

The Gini coefficient is a measure of the concentration of asset by banks. For the data

moment, where I have a finite number of banks, I calculate the Gini coefficient using the

formula

GiniData =
1

N

(
N + 1− 2

∑N
i=1(N + 1− i)Assetsi∑N

i=1Assetsi

)
(41)

where i represents an individual bank in a given year and N is the total number of banks in

the sample in that year. The banks are first sorted in ascending order by Assets. I use the

average Gini over the time period as my moment to match. The Gini coefficient is meant

to capture the area between a 45 degree line and the Lorenz curve, multiplied by 2 so that

it will be on the scale of [0,1]. The Lorenz curve plots the cumulative percentage of loans

made by a cumulative percentage of banks. If this curve perfectly lies on the 45 degree line,

it means that the assets are held equally by banks (each bank’s asset share is
∑N

i=1 Assetsi
N

).

The Gini coefficient would then be 0. If all assets were held by one bank, then the area

between the 45 degree line and the Lorenz curve would be 1
2
, and the Gini coefficient would

be 1. The Lorenz curve for assets in 1992Q4 and in 2006Q4 is plotted in Figure 19. Given

that the model solution is a continuum of banks, I must adapt this formula to solve for

a continuous distribution to calculate the corresponding model moment. First, we must
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Figure 19: Lorenze Curve of Assets from Bank Sample

calculate the cumulative distribution function of banks with given a = ℓ′+s′ values. Define

Γa(a) =
∑
Λ

∑
∆

∫
N

1a(δ,λ,n)=aΓ(δ, λ, dn) (42)

We define the weighted loan distribution then as

Γωa(a) =
∑
Λ

∑
∆

∫
N

1a(δ,λ,n)=aa(δ, λ, dn)Γ(δ, λ, dn) (43)

I therefore use the formula

GiniModel = 2

∫ Ā

0

( ∫ a

0
Γa(x)dx∫ Ā

0
Γa(x)dx

−
∫ a

0
Γωa(x)dx∫ Ā

0
Γωa(x)dx

)
Γa(da) (44)

to capture the model equivalent of the Gini coefficient. This is equivalent to the difference

between the cumulative probability of banks with a given level of assets and the cumulative

probability of total assets at that level, weighted by the mass of that level of assets in the

distribution.

B List of Banks 2006Q4
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Table 10: List of Banks

Name Assets ($B)
JPMORGAN CHASE & CO. 1617.1
CITIGROUP INC. 1443.4
BANK OF AMERICA CORPORATION 1416.7
WACHOVIA CORPORATION 532.4
WELLS FARGO & COMPANY 428.6
U.S. BANCORP 223.6
SUNTRUST BANKS, INC. 182.6
HSBC HOLDINGS PLC 171.2
ROYAL BK OF SCOTLAND 163.2
REGIONS FINANCIAL CORPORATION 138.7
NATIONAL CITY CORPORATION 134.4
ABN AMARO HOLDINGS N.V. 122.7
CAPITAL ONE FINANCIAL CORPORATION 117.5
BB&T CORPORATION 117.3
FIFTH THIRD BANCORP 102.9
PNC FINANCIAL SERVICES GROUP, INC. 95.0
BANK OF NEW YORK COMPANY, INC. 93.0
COUNTRYWIDE FINANCIAL CORPORATION 92.8
KEYCORP 90.2
BNP PARIBAS 67.6
MERRILL LYNCH BK USA 67.2
NORTHERN TRUST CORPORATION 65.6
COMERICA INCORPORATED 58.5
ALLIED IRISH BANKS, P.L.C. 56.9
MITSUBISHI UFJ FINANCIAL GROUP, INC. 56.5
TD BK 55.0
MARSHALL & ILSLEY CORPORATION 52.2
ZIONS BANCORPORATION 47.4
COMMERCE BANCORP, INC. 45.8
BK OF MONTREAL 42.2
DEUTSCHE BK 41.9
POPULAR, INC. 40.7
FIRST HORIZON NATIONAL CORPORATION 37.6
HUNTINGTON BANCSHARES INCORPORATED 34.9
COMPASS BANCSHARES, INC. 34.2
SYNOVUS FINANCIAL CORP. 32.9
NEW YORK COMMUNITY BANCORP, INC. 29.4
ROYAL BK OF CANADA 23.1
COLONIAL BANCGROUP, INC. 22.7
CHARLES SCHWAB CORPORATION 22.1
UBS 22.0
MORGAN STANLEY BK 21.0
BOK FINANCIAL CORPORATION 20.9
ASSOCIATED BANC-CORP 20.5
GMAC BK 19.9
BANCO BILBAO VIZCAYA ARGENTARIA 19.5
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Name Assets ($B)
MERCANTILE BANKSHARES CORPORATION 18.1
NEW YORK PRIVATE BANK & TRUST CORPORATION 17.6
SKY FINANCIAL GROUP, INC. 17.5
W HOLDING COMPANY, INC. 17.0
WEBSTER FINANCIAL CORPORATION 16.8
FIRST BANCORP 16.5
FULTON FINANCIAL CORPORATION 15.7
LAURITZEN CORPORATION 15.4
COMMERCE BANCSHARES, INC. 15.2
TCF FINANCIAL CORPORATION 14.8
CITY NATIONAL CORPORATION 14.7
SOUTH FINANCIAL GROUP, INC. 14.4
CITIZENS BANKING CORPORATION 13.4
FIRST CITIZENS BANCSHARES, INC. 13.3
CULLEN/FROST BANKERS, INC. 13.3
FREMONT INV & LOAN 12.7
VALLEY NATIONAL BANCORP 12.4
FBOP CORPORATION 12.3
BANCORPSOUTH, INC. 12.0
FIRST REPUBLIC BK 11.7
WILMINGTON TRUST CORPORATION 11.2
INTERNATIONAL BANCSHARES CORPORATION 10.9
EAST WEST BANCORP, INC. 10.8
BANK OF HAWAII CORPORATION 10.6
FIRSTMERIT CORPORATION 10.2
WHITNEY HOLDING CORPORATION 10.2
FIRST BANKS, INC. 10.1
STERLING FINANCIAL CORPORATION 9.9
CORUS BANKSHARES, INC. 9.8
WINTRUST FINANCIAL CORPORATION 9.6
UMB FINANCIAL CORPORATION 9.2
TRUSTMARK CORPORATION 8.9
ARVEST BANK GROUP, INC. 8.8
OLD NATIONAL BANCORP 8.0
FIRSTBANK HOLDING COMPANY 7.9
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