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1 Introduction

Funding spreads such as the Treasury cash-futures basis and the Treasury swap spread

are large and persistent. Balance sheet cost has been advanced as the reason for these di-

vergences between the financing rate implied in security prices and the wholesale funding

rate that, in theory, prices these assets (e.g., Jermann (2019), Fleckenstein and Longstaff

(2020)). In this paper, I argue that an important and complementary reason for these

funding spreads is imperfect competition in wholesale funding markets. Specifically, I

show that dealers’ market power in the Triparty repo market causes the observed whole-

sale repo rate to deviate considerably from the ultimate financing rate available to finan-

cial market participants. My results illustrate the impact of intermediary competition on

asset prices and offer novel evidence in support of intermediary-based asset pricing.

The $2 trillion Triparty repo market is a key part of the money and bond market,

underpinning the working of Treasury and agency mortgage bonds (see the studies by

Copeland, Martin, and Walker (2014), Krishnamurthy, Nagel, and Orlov (2014)). Every

day, experienced and sophisticated actors on both sides of the Triparty repo market bor-

row and lend cash using homogeneous repurchase agreements (repo). Nevertheless, when

cash-lenders (e.g., BlackRock) lend to different dealers simultaneously (e.g., Goldman

Sachs and Wells Fargo), the rates that cash-lenders accept show persistent cross-dealer

differences, suggesting imperfect competition. To quantify the degree of competition,

I develop and structurally estimate the first equilibrium model of the Triparty market.

My estimates reveal that, although cash-lenders are professional money managers trad-

ing with many dealers, their desire to spread out the portfolio grants dealers substantial

market power. Between 2011 and 2017, dealers borrowed at rates that were on average

1



21 bps lower than their estimated marginal value of intermediating their borrowed funds.

Many financial market participants rely on dealer-intermediated repo funding to finance

their holdings, suggesting that these markdowns represent a significant but hitherto un-

acknowledged reason why observed wholesale funding rates differ from the financing rates

implied in security prices.

I start by documenting three new empirical facts about the Triparty repo market.

First, cash-lenders (henceforth, lenders) simultaneously and consistently accept different

repo rates for contracts that differ only in the identity of the dealers. Second, dealers’

identities drive repo rate dispersion in both the cross-section and time series; in contrast,

different lenders that lend to the same dealer do so at rates that are statistically indistin-

guishable. Third, larger lenders connect to more dealers, not to “rate shop” but to spread

out lending, giving smaller shares of their portfolios to each dealer.

These patterns provide new perspectives on how the Triparty market works. First,

because Triparty lenders repeatedly lend to a large and fixed set of dealers, lending

at persistently different rates is unlikely the result of search frictions but instead reflects

that dealers are differentiated. I speculate that lenders have a strong preference for stable

investment opportunities and, therefore, discriminate between dealers who vary in how

consistently they use their scarce balance sheet to take on repo loans. Second, although

repo contracts are bilaterally determined, the overwhelming importance of between-dealer

variation in explaining repo rate dispersion hints at a market where dealers set dealer-

specific repo rates for all lenders. As trades in the Triparty market are periodically

published,1 dealer-specific pricing corroborates the notion that dealers have distinct and

publicly observable attributes, which the lenders value. Finally, lenders seem to exhibit
1Many Triparty lenders are required to make regulatory filings. Data from these filings are publicly

available; I use these data for my analysis.
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a size-dependent aversion to concentration, whereby larger lenders are more keen to not

concentrate their portfolio in any one dealer. Such aversion compels lenders to spread out

their portfolios, possibly at the expense of more profitable lending opportunities. Fears

of operational risks, in particular fire sale risks stemming from operational disruptions,

could trigger this aversion.

These empirical insights motivate me to model the Triparty market using a supply-

and-demand framework, where the “good” traded is the cash extended against repo col-

lateral. On the supply side, lenders allocate their portfolio of cash among differentiated

repo borrowers (dealers). The lender’s utility reflects an aversion to concentration and

a non-pecuniary preference for stability in lending opportunities. These two forces de-

termine the lender’s optimal lending quantity and his sensitivity to repo rate changes.

On the demand side, borrowers set borrower-specific repo rates for all lenders. At her

optimum, the borrower offers a rate that can be marked down from her marginal value

of intermediation.2 The ability to build in a markdown is the borrower’s market power,

and the size of her markdown is a function of the lender’s supply elasticity. At a given

quantity of repo funding, the less the lender reacts to repo rate changes, the more the

borrower can mark down the rate she pays. Thus, the model embeds two forces that

affect the lender’s behavior and contribute to the presence of imperfect competition: the

preference for stability determines how each borrower’s borrowing consistency is valued,

and the aversion to concentration controls how easily the lender substitutes away from

each distinct borrower.

The key to pinning down these forces is understanding how lenders on average re-

spond to rate changes, which I estimate by using offerings at Treasury auctions as an
2For ease of exposition, throughout, I refer to the lender as “he” and the borrower as “she”.

3



instrumental variable.3 Over my sample period, a borrower needs to increase the repo

rate she pays by 1 bp on average to raise $0.64b in additional funding (about 4%). This

estimate is in line with the out-of-sample and recent funding flow to the Overnight Re-

verse Repo Facility (RRP) following an unexpected rate increase in June 2021.4 It also

signals relative inelasticity in the Triparty market compared to other large, short-term

wholesale funding markets such as the one for Treasury bills (e.g., Greenwood, Hanson,

and Stein (2015), Bernanke, Reinhart, and Sack (2004), Duffee (1996)).5

Leveraging this IV-estimated semi-elasticity and other key moments in the data, I

estimate my model parameters using indirect inference and maximum likelihood. My

parameter estimates accord with the notion that lenders exhibit size-dependent aversion

to concentrated portfolios, thus purposely spreading out their lending. This aversion

leads to lenders’ relatively inelastic responses in volume to repo rate changes, and grants

dealers market power in a market of homogeneous goods with observable prices from

many counterparties. The magnitude of dealers’ market power also depends on lenders’

non-pecuniary preferences. Consistent with the conjecture that these preferences capture

a taste for stable investment opportunities, the recovered preference values show a strong
3The U.S. Treasury Department conducts periodic auctions of Treasury securities. The quantity up

for auction influences the amount of repo borrowings sought by dealers because dealers buy securities,
which they finance with repo. At the same time, the amount offered — not purchased — at each auction
is likely driven by the Treasury Department’s fiscal concerns and is plausibly exogenous to concurrent
preference shocks. The instrument purposely excludes auctions of Treasury bills, which can be purchased
by money market funds who are cash-lenders on Triparty.

4The RRP is a Federal Reserve (Fed) policy tool that allows Triparty lenders to invest cash with
the Fed via repo. On June 17, 2021, the repo rate at the RRP increased unexpectedly from 0 to 5 bps.
The volume of repo placed at the RRP increased from $520.9b on June 16, 2021, to $755.8b on June 17,
2021. The $225b overnight increase relative to the total size of Triparty Treasury repo, which was $1628b
as of June 9, 2021, implies an elasticity of 2.9% per basis point increase. As the RRP is the lenders’
alternative to lending to repo borrowers (see Section 5.2 for more discussion), the lenders’ sensitivity to
changes in the RRP rate is also the lenders’ sensitivity to changes in the borrowers’ repo rates.

5As an example, Greenwood, Hanson, and Stein (2015) estimate that a 1-percentage-point decrease
in �Treasury

GDP leads to a 38.6 bps decrease in the two-week Treasury yield. The average annual GDP
between 2011 and 2017 was $18.7T. Together, these estimates imply that, over my sample period, a 1
bp change in yield is associated with a $4.8b change in volume. This response is much higher than in
the Triparty market ($0.6b for 1 bp).
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correlation with measures of dealers’ borrowing consistency. On average, I calculate that

the repo rates paid by dealers during the sample period reflect a 20.7 bps markdown from

their marginal value of intermediation. Compared to the 5.7 bps spread between the repo

rate and the lenders’ outside option, dealers command 78% of the 26.4 bps total surplus.

Imperfect competition in the Triparty market is an intermediation friction that affects

funding spreads. Dealer-intermediated funding is often the marginal funding that prices

assets. Consequently, the financing rate implied in security prices reflects what the dealers

charge their customers for intermediating funding. Unless the dealers charge exactly what

they pay to obtain funding on the wholesale market, funding spreads emerge. Triparty

dealers’ market power over cash-lenders allows the dealers to pay less than what they

charge, thus contributing to funding spreads in securities typically financed by repo.

Two such funding spreads are the spread between Treasury yields and benchmark rates

(Treasury swap spread), and between the implied financing rate in Treasury futures and

wholesale repo rates (Treasury cash-futures basis).6 The magnitude of these two funding

spreads indeed exceeds the estimated measure of Triparty dealers’ market power, and

is, in fact, approximately the sum of Triparty dealers’ markdowns and riskless arbitrage

profits that reflect the opportunity cost of using balance sheet.7 Importantly, competition

in wholesale funding markets can be altered by policy. Through counterfactual analyses,

I show that the Federal Reserve’s Overnight Reverse Repo Facility effectively reduces

dealers’ markdowns by offering the Triparty lenders a competitive outside option.

This paper adds to the intermediary asset pricing literature (see He and Krishna-
6See Du, Hébert, and Li (2022) and Jermann (2019) for examples of recent studies of the Treasury

swap spreads; see Fleckenstein and Longstaff (2020) and Barth and Kahn (2021) for examples of recent
studies of the Treasury cash-futures basis.

7Certain banking regulations impose surcharge based on the total size of the balance sheet. Because
a bank’s equity is fixed in the short-run, funding intermediation, which increases total asset, bears
opportunity costs (Duffie (2017)). Treasury securities are typically financed with dealer-intermediated
repo funds. Funding spreads involving Treasury should therefore reflect the cost of using balance sheet
space.
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murthy (2017) for a survey) by studying the role of intermediary competition in asset

prices. Relative to the focus on balance sheet cost in studies such as Jermann (2019)

and Fleckenstein and Longstaff (2020), this paper surfaces intermediary competition as a

complementary angle to interpreting funding spreads involving repo-financed securities.

To the extent that the competitive landscape varies in different funding markets, my re-

sults provide a micro-foundation for the segmentation in secured versus unsecured funding

spreads documented by Siriwardane, Sundarem, and Wallen (2021). More broadly, this

paper emphasizes that financing rates used to price assets can differ from observed rates

in wholesale funding markets, a point similarly made by van Binsbergen, Diamond, and

Grotteria (2021) in regard to the options market.

This study also contributes to the recent stream of research on market power in

wholesale funding: by using three innovative approaches, I provide the first quantification

of such market power. First, I tailor a supply-and-demand framework, informed by the

new facts that I document, to capture Triparty agents’ joint price and quantity decisions.

This approach departs from the traditionally sole emphasis on pricing and search frictions

in over-the-counter markets (e.g., Duffie, Gârleanu, and Pedersen (2005), Hendershott

et al. (2020)). Moreover, in contrast to the discrete choice model increasingly employed

in finance (e.g., Koijen and Yogo (2018), Benetton (2021), Di Maggio, Egan, and Franzoni

(2022)), my lender’s model is bespoke to reflect portfolio allocation considerations that

lead to the simultaneous selection of multiple choices at the optimum. The modeling

style takes inspiration from Martin and Yurukoglu (2017), Crawford et al. (2018), and

Kim, Allenby, and Rossi (2002) in the industrial organization literature. Third, this

paper explores preferences instead of market structures as the source of market power. In

the foreign exchange market, dealers’ market power owes to the quarter-end regulatory
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implementation that limits the number of active dealers (Wallen (2020)), and in the

European repo market, dealers’ market power arises from customers’ isolation in a core-

periphery network (Eisenschmidt, Ma, and Zhang (2021)). In contrast, the Triparty

market features many large and well-connected counterparties active on both sides of the

market. The preferences that grant Triparty dealers market power — for example, the

aversion to concentration motivated by operational rather than credit risks — could be

applicable in other centrally-cleared derivatives markets, and beyond the financial system

in areas such as supply chain management.

This paper examines market power in wholesale funding through an in-depth study

of the Triparty repo market. In so doing, I advance the understanding of the Triparty

repo market and related short-term money markets. The Triparty repo market has long

drawn the attention of scholars. Examples include Krishnamurthy, Nagel, and Orlov

(2014), Copeland, Martin, and Walker (2014), Martin, Skeie, and Thadden (2014), Hu,

Pan, and Wang (2021), Weymuller (2013), Han, Nikolaou, and Tase (2022) and Anbil and

Zeynep (2018).8 To this vibrant literature, I add new empirical facts, and use these facts

to discipline a structural model that generates the first joint determination of rate and

volume. The structural model highlights the economic forces that motivate agents, and

sheds light on dealer intermediation by quantifying otherwise unobserved market power.

Dealers’ intermediation of repo funding has profound implications for asset pricing, yet

data on this remains elusive. Studies that try to examine and explain repo intermediation

have therefore relied on theory or proprietary or indirect data (e.g., Infante (2019), Gor-

ton and Metrick (2012), Gorton, Metrick, and Ross (2020)). Recently, Barth and Kahn
8Krishnamurthy, Nagel, and Orlov (2014), Copeland, Martin, and Walker (2014), and Martin, Skeie,

and Thadden (2014) investigate the role of the Triparty market in the Financial Crisis of 2007-09. Hu,
Pan, and Wang (2021) and Weymuller (2013) study how haircuts are determined, especially for repo
involving risky collateral such as equities. Han, Nikolaou, and Tase (2022) and Anbil and Zeynep (2018)
examine the role of relationships and regulations in Triparty activities.
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(2021) used data on cleared bilateral repo, which contain some intermediation activities,

but the vast majority of dealer intermediation is uncleared and remains uncaptured.9

The markdowns I estimate help bridge this data gap by providing a gauge of the inter-

mediation spread using available Triparty data. Finally, because money market funds

are important providers of capital (Anderson, Du, and Schlusche (2019)), studying their

interactions with dealers on the Triparty market complements our understanding of not

just money market funds’ behaviors but the dynamics of the short-term funding markets

more broadly (e.g., Aldasoro, Ehlers, and Eren (2022), Li (2021), Macchiavelli and Zhou

(2022), Chernenko and Sunderam (2014)).

In the next section, I provide details on the Triparty market and the data used to study

it. In Section 3, I present and discuss the salient empirical observations that motivate my

modeling choices. Then, in Section 4, I outline my model of the two sides of the Triparty

market. I estimate the lender’s model in Section 5, and discuss results and implications

in Section 6. In Section 7, I conclude.

2 Triparty repo market and data

In this section, I highlight the distinct features of the Triparty market, outline the role

the Triparty market plays in collateral financing, and describe my data.

2.1 The Triparty market and the RRP

Repurchase agreements are contracts between two counterparties to exchange cash against

collateral. I refer to the party that provides the cash as the lender and the party that

pledges collateral to get cash as the borrower. The posted collateral, often valued at a
9Eisenschmidt, Ma, and Zhang (2021) uses regulatory data in Europe, which does capture bilateral

repo transactions. However, the European repo market is structured differently from that in the U.S.,
limiting the applicability of these findings to the U.S.

8



haircut, is returned to the borrower when the cash is repaid — with interest. I refer to

the rate used to determine that interest as the repo rate. Because repo lending is secured,

repo contracts can differ depending on the collateral used. The Triparty market offers a

way to standardize over-the-counter repo collateralization.

The Triparty market derives its name from its institutional setup. On Triparty, every

transaction involves a third agent, who is the clearing bank that handles the logistics of

cash and collateral transfers. All Triparty borrowers and lenders maintain accounts with

the same clearing bank.10 Once a borrower and a lender agree on the terms of a repo,

the clearing bank makes collateral allocation behind-the-scenes and monitors the value of

the collateral. Triparty repo contracts specify only the class of collateral, e.g., Treasury

securities, but not the exact securities used, e.g., CUSIPs of specific five-year on-the-run

Treasury securities.11 These features make Triparty repo contracts standardized within

a collateral class, and make Triparty repo convenient for funding.

The Triparty market is a crucial step in the intermediation process that channels cash

through the financial system to market participants looking to finance their holdings.

Cash-rich individuals and corporations place cash in vehicles such as money market funds

(MMFs). MMFs keep a stable fraction of their assets under management (AUM) in

overnight cash for liquidity. This overnight cash is lent out via Triparty repo to broker-

dealers. Dealers, in turn, intermediate their borrowed cash to clients in the broader

financial market who rely on repo to finance their securities. Every day, over $2 trillion

is injected into the secured funding market through the Triparty market.

The wholesale repo rates in the Triparty market affect the price of many assets. Repo
10The sole Triparty clearing bank in the U.S. is Bank of New York Mellon. J.P. Morgan used to also

provide Triparty clearing service for about 15% of the market. It discontinued its service in 2017.
11In contrast, repos done outside of the Triparty market allow the borrower and lender to maintain

accounts at different custodial banks, and the borrower typically needs to stipulate the CUSIPs of all
securities used as collateral.
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allows financial market participants to purchase security with as little capital as the

haircut on the collateral, and is thus widely used for financing safe, government-backed

securities, whose haircut is modest and stable.12 In fact, over 90% of the collateral

pledged in Triparty repo are Treasury and agency mortgage-backed securities (MBS).

Consequently, the conditions on the Triparty market directly affect the price of these

securities. Moreover, Triparty repo trades enter into the construction of the Secured

Overnight Financing Rate (SOFR), which has replaced LIBOR as the new dollar interest

rate benchmark, affecting a large swath of dollar-denominated contracts and derivatives.

The Federal Reserve (Fed) has long been a keen observer of the Triparty repo market.

In September 2013, in anticipation of a change in the stance of monetary policy, the Fed

set up an overnight, fixed-rate, full-allotment reverse repo facility (RRP) on the Triparty

market.13 The RRP gives a wide array of Triparty cash lenders14 the ability to lend to

the Fed in the form of overnight repo at a pre-announced interest rate. When the RRP

was first set up in September 2013, access to the facility was capped at $500 million per

eligible lender. This cap was subsequently raised six times, eventually reaching $30 billion

per eligible lender by September 2014, at which point the cap no longer seemed binding

for any lender. September 2014 was also when the Fed stated in the FOMC’s Policy

Normalization Principles and Plans that “the Committee intends to use the RRP facility

as a tool to help control the federal funds rate during the normalization of the stance of

monetary policy”. This policy bolstered lenders’ confidence in the Fed’s commitment to

the RRP. In effect, by September 2014, Triparty lenders had an attractive alternative to

lending to repo borrowers, in the form of the RRP.
12For example, over 95% of the Treasury repo in my sample has a haircut of 2%.
13https://www.newyorkfed.org/markets/opolicy/operating_policy_130920.html
14https://www.newyorkfed.org/markets/rrp_counterparties
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2.2 Data

To study the Triparty market, I use monthly filings with the Securities and Exchange

Commission (SEC) made by MMFs domiciled in the United States. MMFs are the largest

class of cash lenders on the Triparty market, accounting for 40% to 60% of all repo trans-

actions. Other Triparty lenders include security lenders, pension funds, insurance com-

panies, and various municipalities with temporary excess cash (Copeland et al. (2012)).

MMFs are regulated and are required to file monthly N-MFP reports. These filings

are snapshots of an MMF’s entire portfolio as of the last business day of each month.15

For each repo contract that the MMF has, information is available on the counterparty,

the amount, the repo rate,16 the maturity date, and the collateral type and value.

I obtain all N-MFP reports between 2011 and 2017 from the SEC EDGAR data base

and collapse the filings by money market fund families.17 Each MMF family (e.g., Black-

Rock) can have a number of different money market funds (e.g., government-security-only

funds, tax-exempt funds). Importantly, money market fund families enter into repo con-

tracts on behalf of all funds in the family and then distribute the investment across funds

(Copeland, Martin, and Walker (2014)). Consequently, to analyze the equilibrium rate

and volume determination, I consider all funds in the same fund family as one entity.18

Money market funds manage their liquidity by keeping a steady fraction of their AUM

in overnight cash. As there are limited options to invest cash overnight, Triparty repo,
15Although N-MFP filings are done monthly, these reports are likely representative of the MMF’s repo

activities throughout the month. Anderson, Du, and Schlusche (2019) use proprietary data available from
the Federal Reserve and show that repo activities are stable throughout the month, with the exception
of window-dressing activities on the last day of the quarter.

16Before April 2016, repo rates were not separately reported. I parse the title of each contract to
obtain rates where available. To address potential misreporting issues, I winsorize repo rates at 1% and
99%.

17My sample ends in 2017 because I am interested in the effect of imperfect competition in an abundant
reserve regime. The Fed started shrinking its balance sheet in 2018.

18To illustrate, the standard deviation of rates obtained by funds within a fund family is 0 at the
median and less than 1 basis point at the 73rd percentile.
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which is typically overnight, forms an important part of MMFs’ overnight portfolio. I

explicitly focus on Triparty repos that are overnight in duration.19

Triparty repo activities are concentrated in a relatively small set of agents. As Ap-

pendix Figure A1 illustrates, over 85% of the activities in the N-MFP filing data are done

by 18 MMFs and 20 dealers. My analysis thus focuses on these agents. My final data set

is a MMF-dealer-month panel of repo transactions from January 2011 through December

2017 on 84 month-ends, for a total of 14,571 observations.

I supplement the data from N-MFP filings with the Federal Reserve’s releases on RRP

activities, TreasuryDirect’s reporting of Treasury securities auctions, and credit default

swap (CDS) pricing from Markit and Bloomberg.

3 Empirical patterns on Triparty

In this section, I present three facts of the Triparty market and discuss possible reasons

for these empirical observations.

Fact 1: MMFs simultaneously and consistently accept different repo rates

from different dealers.

Given repo contracts that differ only in the identity of the dealer, MMFs simultaneously

lend to multiple dealers and do so at consistently different rates. To compare repo rates

across dealers, I focus on a subsample of overnight repo contracts that are collateralized

only by Treasury securities with a 2% haircut,20 which retains 75% of all MMF-dealer-
19The N-MFP reports the maturity date without reporting the start date. I therefore identify

overnight contracts as those that mature on the first business day of the following month. This ap-
proach is universal in papers that use N-MFP filing data. See Aldasoro, Ehlers, and Eren (2022) for a
discussion of potential shortcomings.

20I restrict the sample to contracts with a collateral-to-principal ratio of 102%± 0.1%.
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month observations.21 Prior research has documented differences in repo rates between

contracts backed by different collateral, even though the haircut on collateral theoretically

adjusts for the quality of the underlying assets (Weymuller (2013)). I therefore compare

repo rates only across repos that are backed by the same collateral. This choice is not

restrictive because Triparty repo differentiates collateral not by CUSIP but by asset class.

By focusing my analysis of repo rates on Treasury-backed overnight repo contracts that

all have a 2% haircut, I retain a sizeable subsample whose repo rate is not affected by

differences in duration, collateral, or haircut, leaving dealer identity the only other factor

that differentiates repo.

In this subsample of homogeneous repos, MMFs are seen to simultaneously accept

different repo rates from different dealers. As an example, Figure 1 plots the repo rate

that BlackRock MMF received from lending to Goldman Sachs and Wells Fargo in 2016

and 2017.22 Although Goldman Sachs and Wells Fargo consistently borrowed at different

rates, BlackRock nonetheless lent to both dealers month after month.

This observation is surprising because the difference in repo rates cannot be due to

differences in the contractual terms of the repo. Moreover, although the creditworthiness

of dealers can often be a source of price dispersion, especially in OTC markets, in 2016

and 2017, the average short-term (6M) CDS rate of Goldman Sachs was in fact 12 bps

above that of Wells Fargo. This observation is all the more surprising when considering

that the same three agents transacted every month. It is unlikely that BlackRock was

unaware of the systematically different rates paid by Goldman Sachs versus Wells Fargo.
21I start with 14,571 MMF-dealer-month observations. Focusing on transactions that use Treasury

securities as collateral decreases the sample to 11,486 observations. Further restricting the sample to a
2% haircut leaves me with 10,938 observations.

22To remove the effect of general interest rate trends, I restate the transacted repo rate as the deviation
to the volume-weighted median on that day. Doing so both conforms to the convention in the repo market
and minimizes the impact of outliers. All published repo-based indices are calculated as the volume-
weighted median. Examples include the Secured Overnight Financing Rate (SOFR), the Triparty repo
index, and the DTCC GCF repo index.
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Informational friction cannot explain such a persistent difference.

More generally, MMFs in my sample on average lend to 10 dealers at a time, and the

difference between the highest and the lowest rate simultaneously accepted by MMFs is

on average 4 bps. This dispersion is, again, present in the context of repeated interaction.

Indeed, the AR(1) persistence of whether a MMF-dealer pair trades is 85% (R2 = 0.72).

Between sophisticated financial institutions that repeatedly interact with each other,

repos that differ only in the identity of the dealer trade at persistently different rates.

These observations lead me to wonder, what is the pattern in the Triparty rate dispersion,

and what is the pattern in MMFs’ lending?

Fact 2: Dealer identity drives repo rate dispersion.

The dispersion in apparently homogeneous repo contracts is driven by dealer identities.

Using the overnight Treasury repo subsample, I show that dealer identities explain the

preponderance of the repo rate variation in both the cross-section and time series.

In Figure 2, I examine the dispersion of repo rates in the cross-section by regressing

repo rates in each month on MMF or dealer fixed effects.23 The plotted R
2 from these

regressions show that dealer identities alone explain about 50% of the variation, while

MMF identities explain much less. Even if MMF identities did not affect dispersion, I

would expect MMF fixed effects to have some explanatory power as long as the sorting of

dealer to MMF is not completely symmetric. I thus regress repo rates in each month on

both dealer and MMF fixed effects. Once dealer identities are controlled for, adding MMF

fixed effects does not improve the R
2 by much. I formally test whether the additional

23Comparing the explanatory power of models with different fixed effects is the focus of the figure and
tables in this subsection. To avoid fitting fixed effects over one or two data points, I exclude observations
in which a borrower or a lender has fewer than three transactions in a month. Doing so reduces the
sample for Figure 2 and Tables 1 and 2 to 10,453 observations.
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MMF fixed effects are jointly 0, and I cannot reject the null at the 10% significance level

in 72 of the 84 months.24

Not only is repo rate dispersion mostly driven by between-dealer variation, but within

a dealer, variation cannot be explained by MMF or MMF-dealer pair characteristics. In

Table 1, I test the following characteristics: the amount of Treasury-backed overnight

repo lending between a MMF-dealer pair (Pair Treasury repo volume), the share —

or importance — of this pair’s lending volume to the MMF’s overall Treasury-backed

overnight repo lending (Pair vol as percent of MMF ), the share of this pair’s lending

volume to the dealer’s overall Treasury-backed overnight repo borrowing (Pair vol as

percent of borrower), the MMF’s total Treasury-backed overnight repo lending (MMF

total Treasury repo vol), and the number of dealers to whom the MMF lends (MMF

number of counterparty). None of these characteristics statistically significantly explains

the rate dispersion, judging by either the individual coefficients’ statistical significance

or the improvement in R
2 from including these regressors (difference between R

2 (proj

model) and R
2 (full model)). Together, the results from Figure 2 and Table 1 indicate

that while different dealers systematically pay different rates for repo funding, different

MMFs lending to the same dealer do not receive statistically different rates.

Dealer identity is also the principal driver of repo rate variation in the time series.

Given the OTC nature of repo transactions, prior studies such as Han, Nikolaou, and

Tase (2022) focus on differences in MMF-dealer pairs to explain rate variations. In Table

2, I compare the goodness of fit between models that include only dealer fixed effects and

models that include pair fixed effects. Moving from Model (1) to Model (2), including all

the pair fixed effects improves the R
2 by about 0.07, yet this is achieved with 251 more

regressors. Therefore, the Akaike information criteria (AIC) ranks these two models
24Multiple hypothesis testing is corrected using the method described in Holm (1979).
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similarly, and the Bayesian information criteria (BIC) prefers the more parsimonious

model with only dealer fixed effects. The same pattern holds when comparing Models

(3) and (4), both of which include year fixed effects. In short, dealer identities are of

first-order importance in explaining Triparty repo rate dispersion.

Fact 3: Larger MMFs connect to more dealers to spread out lending.

MMFs construct their overnight cash portfolios in a systematic and size-dependent way.

As an example, Figure 3 compares the repo lendings done on October 31, 2016, by two

MMFs. The larger MMF (BlackRock) lent to more dealers and lent smaller shares of the

portfolio to each dealer. Table 3 shows that this relationship between portfolio size and

both the extensive and intensive margins of the portfolio holds across MMFs.

In Model (1) of Table 3, the number of dealers to whom an MMF lends increases

by about 3 as the size of MMF’s overnight cash portfolio doubles.25 This finding is

perhaps intuitive. An MMF incurs some fixed costs, such as setting up master repurchase

agreements, before it can lend to a dealer,26 and larger MMFs can afford to establish

lending relationships with more dealers. But why do MMFs want to lend to more dealers?

MMFs are not establishing more lending relationships to better “rate shop”. If MMFs

willingly incur fixed costs because lending to more dealers allows MMFs to find more

attractive rates, then I would expect the portfolios of more connected MMFs to change

more frequently and significantly.27 However, as Figure 4 shows, more-connected MMFs

maintain portfolios that are just as stable, if not more stable, over time. I measure the
25Overnight cash portfolios are measured as the sum of all overnight repo lending, inclusive of repo

placed in RRP.
26Master repurchase agreements (MRAs) typically set out the protocols for margin maintenance and

default; thus, day-to-day, cash-lenders and cash-borrowers only need to decide on the repo rate and
volume.

27Fact 2 revealed that having more connections does not grant an MMF preferential pricing vis-à-vis
any one dealer. Hence, if there is a price-related advantage to forming more connections, it is likely the
ability to shift lending to whichever dealer offers the best rate on a given day.
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similarity between MMFs’ overnight repo portfolios across time using cosine similarity:

CosSim(x,y) = x·y
kxkkyk , where x and y denote a given MMF’s portfolio at time t and

t+ n, respectively. The closer the cosine similarity is to 1, the more stable the portfolio.

Panel (a) of Figure 4 shows that, irrespective of the number of dealers MMFs lend to at

time t, MMFs maintain very similar portfolios at time t + 1. In fact, for portfolios that

start with 10 or more dealers, the mean cosine similarity is about 0.9, slightly higher

than the 0.8 mean of portfolios that start with fewer than 10 dealers. Panel (b) of Figure

4 shows that the stability in portfolios is not a quirk of short-term stickiness, but that

portfolios at time t and time t+ 6 also exhibit high degrees of similarity across MMFs.

Instead, by connecting to more dealers, MMFs are able to lend a smaller share of the

portfolio to each dealer, achieving a distributed portfolio. Model (2) of Table 3 shows that

as MMFs double in size, the median portfolio share lent to dealers decreases by 6.7% on

average. Unlike the mean share of the portfolio, the median share of the portfolio need not

change as the number of dealers in the portfolio changes. Rather, this declining median

share signals MMFs’ desire to reduce exposure to any one dealer. Indeed, in Models

(3) and (4), we see that the maximum share and the minimum share also decrease with

portfolio size, and by similar magnitude, reflecting a deliberate effort to spread out the

portfolio.

Discussion of empirical patterns

Faced with dealers that borrow at different repo rates (Fact 2), MMFs lend to multiple

dealers simultaneously (Fact 1) and show a size-dependent tendency to spread out their

portfolios (Fact 3). These facts about the Triparty market suggest at least two economic

forces that work in tandem.

17



First, MMFs knowingly accepting different rates indicates that dealers’ identities dif-

ferentiate repo lending in a way that rationalizes differences in pecuniary returns. How

do lenders differentiate among dealers? Conversations with over a dozen industry partic-

ipants point to the importance of consistency. MMFs have a strong preference for stable

repo investments because low volatility in yield helps them market themselves as higher-

yielding cash-alternatives. Dealers, however, may not be able to consistently borrow

because repo is balance-sheet intensive and can come at a high opportunity cost. MMFs

therefore likely favor dealers who devote a consistent amount of their balance sheet space

to repo intermediation. I test this hypothesis in Section 6 and find that MMFs’ estimated

non-pecuniary preferences for dealers indeed exhibit strong correlations with measures of

borrowing consistency. The presence of this preference makes lenders perceive lending to

different dealers as differentiated investment opportunities that warrant differential rates.

At the same time, MMFs lend to multiple dealers simultaneously, suggesting that

MMFs have an aversion to concentration and purposely spread out their lending.28 At

first blush, this sounds perplexing. Triparty repo carries little credit risk: these contracts

are largely overnight and are backed by high-quality, bankruptcy-remote collateral valued

with conservative haircuts (Hu, Pan, and Wang (2021)). Even during the depth of the

Financial Crisis of 2007-09, there was no run or default on Triparty (Krishnamurthy,

Nagel, and Orlov (2014)). Nevertheless, MMFs may want to limit their dollar exposure

to any one dealer to minimize operational risks. Tail risks such as cyber attacks could

prevent a dealer from returning its repo loan on time. If MMFs take possession of the

posted collateral, regulations require that MMFs liquidate the collateral immediately.29

28There are regulated counterparty caps on certain assets that MMFs own (e.g., commercial paper).
However, such caps do not apply to repo. Repo is treated as a “look-through” asset, so it is as if MMFs
are holding the underlying Treasury collateral, which bears no cap.

29Regulations limit the tenor of securities held by MMFs to 397 days. Securities posted as repo
collateral exceed this tenor requirement.
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Fire sales could materially compromise the value of the collateral if the total amount

to be sold is large. Worries over fire sales are consistent with the pattern of portfolio

diversification that intensifies with size: even small shares of a large portfolio could be

difficult to quickly liquidate. Although no such operational risks have come to pass in

recent memory, concerns about them could still be powerful forces.

One manifestation of MMFs’ aversion to concentration is that on quarter-ends, when

some dealers window dress and cut back on repo borrowing, MMFs do not redistribute

lending to non-window-dressing dealers. As Table 4 shows, on quarter-ends, the 10 deal-

ers governed by regulations in the European Union (EU) and the United Kingdom (UK)

cut back on repo borrowing,30 both in dollar terms (Models (1) and (2)) and in per-

centage measures (Models (3) and (4)). On average, an EU or UK dealer reduces its

repo borrowing by about $5 billion on quarter-ends, even after controlling for the average

repo borrowing in a given quarter (Model (2)). Yet the repo borrowing by dealers in

Canada (CA), Japan (JP), and the US barely changes on quarter-ends. MMFs’ apparent

reluctance to shift their lending to CA, JP, or US dealers is not because these dealers

offer dramatically lower repo rates on quarter-ends (Model (5)). Rather, this behavior

suggests that MMFs are averse to lending too much of the portfolio to any one dealer.

This aversion, coupled with MMFs’ tendency to lend to the same dealers over time, means

that MMFs may not nimbly respond to rate changes because shifting volumes may push

MMFs against their concentration limits. This, in effect, gives dealers monopsony power

over the MMFs that lend to them. Differently sized MMFs exhibit different levels of aver-

sion. Therefore, dealers who borrow from different subsets of MMFs face supply curves

of differing elasticity, providing a second reason for differential rates.
30UK banks reported their balance sheet size as quarter-end snapshots through 2015. During calendar-

year 2016, UK banks reported month-end snapshots. Starting in 2017, UK banks reported quarter
averages. UK banks’ quarter-end window-dressing activities decreased starting in 2016.
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Hence, both MMFs’ preference for stable investment and their aversion to concen-

tration could contribute to the observed empirical patterns. To account for the effect

of these forces in the equilibrium, I next build and estimate a structural model of the

Triparty market. Such a model must account for the patterns in the data. A search

model is unlikely to be useful, as the dispersion is observed in the context of repeated

interactions between the same set of agents. A model that relies purely on linear utility

from pecuniary returns is also likely insufficient, as the agent’s optimal choice in a linear

utility is to concentrate everything in a single best choice, which is at odds with the

observed pattern of lending to multiple dealers. The first-order importance of dealers’

identities in explaining rate dispersion, and the striking simultaneity in MMFs’ lending,

therefore, lead me to develop a model that features lenders with possibly concave utilities

responding to posted, borrower-specific pricing.

4 Model

I now develop a model for borrowing and lending overnight cash via repo in the Tri-

party market. My aim is to construct a model that captures the key economic forces

that generate the distinct patterns in the data. The model should provide a reasonable

representation of the market, so that it can be used to quantify the degree of competition.

The model has two types of agents interacting in the supply and demand of repo

funding. On the supply side, lenders, e.g., MMFs, allocate their overnight cash with

possible aversion to portfolio concentration and non-pecuniary preferences for borrowers.

On the demand side, borrowers, i.e., dealers, act as monopsonies and set the repo rates

used to attract funding.
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4.1 The lender’s problem

Let i index lenders and j borrowers. Lender i has a portfolio of investments with one-day

maturity. At each time t, he chooses the share of this overnight portfolio going to each

of the J borrowers, xijt. The share of the portfolio not lent out, xizt, goes to the lender’s

outside option: safe investments that mature overnight and for which the lender harbors

no concentration aversion.31

U(xit;!,↵) = max
xit

JX

j=1

!ijtRjt

↵it
{exp(↵itxijt)� 1}+Rztxizt,

s.t.
JX

j=1

xijt + xizt = 1, xi1t, ..., xiJt � 0.

The lender’s utility is quasi-linear: linear in his portfolio allocation to the outside

option, which earns a gross return of Rzt. His utility from lending to one of the J borrowers

is possibly concave in the shares lent, with the degree of the curvature controlled by an

aversion to concentration parameter ↵it  0. The utility from lending to a borrower

further depends on the gross return, Rjt, set by the borrower and taken as given by the

lender, and the lender’s non-pecuniary preference for that borrower, !ijt � 0.

From the lender’s first-order condition (FOC), the optimal share of the portfolio lent

to borrower j is

x
⇤
ijt =

log(Rjt) + log(!ijt)� log(Rzt)

�↵it
. (1)

The optimal share increases in the attractiveness of borrower j relative to the outside

option (Rzt), where borrower j’s attractiveness is a function of the repo rate she pays
31Examples of the lender’s outside option include the RRP and Treasury bills. See Section 5.2.
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(Rjt) and the non-pecuniary preference she garners (!ijt).32 At a given Rjt, Rzt, and !ijt,

different lenders will allocate different shares based on their concentration aversion (↵it).

The concentration aversion, ↵it, controls how quickly the lender’s utility diminishes

when lending to a given borrower. It therefore determines how distributed lender i’s

portfolio is and how i reacts to repo rate changes. Consider the extreme case of ↵it ! 0:

lender i’s utility becomes linear, and he would concentrate all of his lending into one

single best repo investment. As ↵it becomes more negative, the utility becomes more

concave, compelling the lender to spread out his lending. Consequently, the lender lends

concurrently to multiple borrowers, reflecting an aversion to concentration. Intuitively,

if the lender is averse to lending too much to any one borrower, then when one of the

borrowers raises her rate, the lender will not consolidate his lending to take advantage of

this rate increase. The concentration aversion parameter, ↵it, is thus intimately tied to

the lender’s semi-elasticity. This relation becomes apparent by differentiating the lender’s

FOC (Equation 1) with respect to the log of the repo rate. The optimal response in share

to a (percent) rate change is exactly @x⇤
ijt

@ log(Rjt)
= � 1

↵it
. That is, if a borrower doubles the

repo rate she offers, the lender who is lending to her would increase his lending by � 1
↵it

of his portfolio.

As documented in Fact 3, there is an empirical relationship between a lender’s portfolio

size and his aversion to concentration. I therefore parameterize ↵it as

↵it = �0 + �1 ·
p
yit,

32The FOC emphasizes the trade-off between returns from borrower j and the outside option, and
assumes the between-borrower cross-elasticity to be 0. This modeling assumption is supported by the
minimal substitution between borrowers observed on quarter-ends, when a subset of borrowers experience
funding shocks. See Discussion of empirical patterns in Section 3.
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where yit is the size of the lender’s overnight cash portfolio.33,34 I take yit as exogenous,

as the overnight cash portfolio serves to meet an MMF’s liquidity needs and tends to be

a stable fraction of the MMF’s overall AUM.

The attractiveness of lending to borrower j depends on the non-pecuniary preference

!ijt. This preference affects both whether and how much i lends. The marginal utility

of lending the first dollar to borrower j is @U
@xijt

���
x=0

= !ijtRjt. Given that the lender’s

cash could otherwise earn a return of Rzt, lending to j occurs if and only if !ijtRjt >

Rzt. Therefore, !ijt differentiates borrowers and determines to whom the lender lends.

Moreover, because the utility from lending depends on an !ijt-scaled Rjt, differences in

!ijt govern how much different borrowers can get from the same lender. I parameterize

!ijt as

!ijt = �ijt · (⌫ijt + ✏jt); (2)

�ijt ⇠ Bernoulli(Logistic(⇢ij + � log(yit))),

⌫ijt ⇠ 1 +Gamma(shape = k, scale =  j/k),

✏jt ⇠ LogNormal(
��2

2
, �

2).

�ijt is a binary random variable that determines whether lender i has a nonzero pref-

erence for borrower j. Its mean depends on borrower-lender pair-specific parameters, ⇢ij.

This parameterization is motivated by the high persistence in trading, and is necessitated

by the fact that trading relationships on Triparty were established long before my sam-
33The results in Table 3 suggest that the relationship between portfolio construction and portfolio

size is concave. The square root transformation of yit captures this concavity while ensuring positivity.
The estimation results are robust to alternative concave transformations; see Appendix Section A.

34Concentration aversion (↵it) is modeled to not depend on borrower attributes because this aversion
is likely motivated by fears of operational disruption, and collateral pledged by borrowers is comparable
and would not be differentiated in fire sales. Independence of ↵it from borrower attributes is helpful
though not necessary for identification.
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ple began. �ijt further depends on the size of the lender’s overnight cash portfolio, yit,

through �. This provision allows lenders to lend to more borrowers as lenders grow in

size.

If the lender has a nonzero preference for a borrower, then the intensity of the pref-

erence, ⌫ijt, is drawn from a gamma distribution whose mean depends on public and

borrower-specific  j.35 Thus, in reduced-form,  j captures the systematic variations in

!ijt, conditional on lending. Perceptions of a high non-pecuniary preference could prompt

the lender to either lend at a lower rate or lend more at a given rate. I speculate that

variations in  j are driven by a preference for consistent borrowing. This interpretation is

supported by the results in Table 7, which show a correlation between the  j parameters

I recover and measures of borrower consistency (see Section 6 for more discussion).

Finally, the model explicitly accounts for possible borrower-time-specific shocks to the

lender’s preference, which are known to market participants but not to the econometri-

cian. These “supply shocks”, ✏jt, if present, threaten the ordinary least squares (OLS)

identification of the relationship between rate and volume, because these shocks affect the

observed lending volume without having observable proxies that one can use to control

for their effect.

4.2 The borrower’s problem

At each t, borrower j maximizes her profit by choosing the gross repo rate Rjt that she

pays to all lenders for repo funding:

max
Rjt

[Sjt(Qjt)�Rjt] ·Qjt(Rjt),

35The choice of gamma ensures positive preferences and gives flexibility in fitting the data. If shape
parameter k is large, the gamma distribution approximates Normal; if k is small, then the gamma
distribution approximates Exponential.
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where Qjt(Rjt) =
P

i[E[xijt(Rjt)] · yit] is the total quantity of funds borrower j expects

to obtain at rate Rjt, and Sjt(Qjt) is the average value of intermediating funds at Qjt.

Triparty borrowers demand repo funds because these funds can be intermediated to

generate value. For example, the funds could be lent out (via repo again) to a borrower’s

clients, such as hedge funds, that do not have access to the Triparty market but need

to finance security holdings using repo. Alternatively, the repo funds could be used to

finance a borrower’s own security holdings, such as those purchased during a Treasury

security auction. The value that a borrower requires to intermediate her repo funding,

Sjt, could depend on the total amount of funds that she obtains. Importantly, this

intermediation value reflects the pure economic benefit accruing to the borrower and is

thus net of any opportunity cost from taking up balance sheet space. Balance sheet costs

also matter for asset prices (see Duffie and Krishnamurthy (2016) and Du, Hébert, and

Huber (2020)). In fact, the full cost of repo funding a borrower’s clients face should be

the sum of the modeled value of intermediation and the unmodeled balance sheet cost.

Section 6 explores this relationship in depth.

Differentiating the borrower’s problem with respect to the repo rate, the FOC yields

that borrower j’s optimal repo rate is

R
⇤
jt = S

0
jt ·Qjt + Sjt| {z }

marginal value of
intermediation at Q

� Qjt

Q0
jt|{z}

markdown

. (3)

The optimal rate offered by the borrower could embed a markdown from her marginal

value of intermediation. The magnitude of the markdown is therefore a measure of the

borrower’s market power. This markdown is a direct function of the funding supply the

borrower faces, Qjt(Rjt). At a given quantity Qjt, if the supply is highly responsive to
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rate changes, then Q
0
jt would be large and the markdown would be small. Conversely,

the borrower can build in a large markdown if the lenders’ response to her repo rate

changes is small. To measure the borrower’s ability to set a markdown — or the extent

of her market power — I therefore must find the lenders’ concentration aversion (↵it) and

non-pecuniary preferences (!ijt, captured by  j).

4.3 Model discussions

The lender’s and the borrower’s problems together describe the equilibrium of the Triparty

market. In trying to capture the most salient features of the data, the model deliberately

de-emphasizes certain considerations, which I discuss below.

Concentration aversion among borrowers. The model’s inclusion of the lender’s

aversion to concentration is motivated by the fact that MMFs (lenders) maintain sys-

tematically distributed portfolios. This observation alone could also stem from dealers’

(borrowers’) having an aversion to concentration, possibly out of a desire for a diversified

funding base. Yet even if present, concentration aversion among dealers is unlikely a dom-

inant force. Aversion to concentration means that, on the margin, the utility of one more

dollar invested with the same counterparty is not as high as previous dollars. If dealers

harbored strong concentration aversion, then they would optimally attract marginal new

lenders with better rates to achieve diversification. The empirical data show no statisti-

cally significant distinctions in rates received by MMFs lending to the same dealer (Fact

2 in Section 3). I therefore choose to emphasize lenders’ concentration aversion in the

economic model.

The fact that this aversion is pronounced in MMFs but not dealers suggests that it is

likely caused by considerations unique to MMF. I speculate that MMFs’ inability to hold
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long-duration assets leads to worries over operational risks and fire sales, giving rise to

this aversion; see also Discussion of empirical patterns in Section 3.

The role of private information. Information in this model is mostly public. The

only private information that the lender has is the realization of the intensity of his non-

pecuniary preference (⌫ijt in !ijt). These realizations affect equilibrium volume but not

rates because the rate is set by the borrower using the mean level of the preference,  j,

which is public knowledge.36 The lender’s preferences in this model thus contrast with

those in models of bank lending relationships, which tend to reflect an informational

advantage (e.g., through better monitoring) that often leads to preferential rates (e.g.,

Darmouni (2020)).

The model here downplays the role of relationships and private information for two

reasons. First, the amount of private information is likely limited because the advantage of

superior information is muted when lending is standardized, secured against high-quality

collateral, and renewed daily. Second, even if private relational information exists, it does

not seem to be of first-order importance. The fact that each dealer borrows at a distinct

price from all MMFs suggests that dealers’ public attributes determine pricing. I therefore

intend for the lender’s non-pecuniary preferences in the model to reflect the borrower’s

public attributes in reduced-form. An example of the borrower’s public attributes is her

borrowing consistency; see Discussion of empirical patterns in Section 3. My modeling

choice underscores that rent in the Triparty market does not come from information

asymmetry.
36The borrower will take into account borrower-time specific preference shocks, which are unobservable

to the econometrician but known to both the borrower and the lender.
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5 Estimation

In this section, I outline the estimation strategy that separately quantifies the two key

parameters necessary to compute the borrower’s markdown: ↵it and !ijt (captured by

 j). I discuss sources of variation, measurement of Rzt, the instrumental variable analysis,

and the indirect inference and maximum likelihood estimation approach I use to estimate

all model parameters.

5.1 Sources of variation

From the lender’s FOC (Equation 1), I know that both ↵it and !ijt can affect how much

lender i lends to borrower j (xijt) at a given repo rate (Rjt). It is possible to separate

their effects because ↵it captures differences across lenders and !ijt centers on means that

vary across borrowers. Specifically, comparing lending to the same borrower by different

lenders can provide information about the relative magnitude of ↵it. Similarly, comparing

lending received by two different borrowers from the same set of lenders can reveal the

relative magnitude of  j.

Cross-sectional comparisons alone are insufficient to pin down the level of these pa-

rameters. Instead, I also leverage the direct relationship between ↵it and lenders’ semi-

elasticity. As discussed in Section 4.1, lender i’s portfolio allocation response to borrower

j’s repo rate change depends on the lender’s ↵it. Hence, the supply schedule each bor-

rower faces is a function of all the individual ↵it associated with the lenders that lend to

her. Estimating lenders’ supply semi-elasticity can garner information about the average

level of ↵it, which in turn provides information about the levels of  j.

From estimated ↵it and  j, I can calculate borrowers’ markdowns. The borrower’s

unobserved marginal value of intermediation is then the sum of the estimated markdown
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and the observed borrower repo rates (Equation 3).

5.2 Measuring Rzt, the lender’s outside option

In the lender’s FOC (Equation 1), the lending decision directly depends on the difference

between a borrower’s offered repo rate (Rjt) and the return on the lender’s outside option

(Rzt). An outside option is a safe, overnight investment, for which the lender harbors

no concentration aversion. Two plausible outside options are the Fed’s RRP and the

Treasury bills. I measure Rzt as the higher of the RRP rate or the 1-day Treasury bill

yield.

The RRP is a fixed-rate, full-allotment facility that allows lenders to lend to the Fed

via repo (see also Section 2.1). The rate offered by the RRP provides a good measure

of the lender’s outside option. MMFs can also invest in Treasury securities that have

a maturity of less than one year. Similar to placing repo at the RRP, buying Treasury

securities is investing with the U.S. government and is an outside option to lending to

Triparty dealers. However, there is no reported overnight Treasury yield. I thus impute a

1-day Treasury yield by adjusting for the term structure using the 1-day and the 1-month

overnight indexed swap (OIS).

I generate the time series of Rzt as the 1-day Treasury bill yield before September

2013, when the RRP was introduced, and the RRP rate thereafter; the RRP rate is

always higher than the 1-day Treasury bill yield in my sample. In the data, the correlation

between the 1-day Treasury bill yield and the median Triparty repo rate is 0.78 before

the introduction of the RRP and 0.13 thereafter, supporting my choice of Rzt.

The introduction of the RRP in 2013 was followed by a year of testing, during which

the RRP had a constraining counterparty cap (see Section 2.1). In the estimation, I
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purposely leave out this testing period of September 2013 to September 2014, as the

counterparty cap makes the true marginal outside option difficult to ascertain. I also

exclude all quarter-end months because many regulations are enforced only on quarter-

ends. Numerous studies have focused on quarter-ends to study how regulations distrot

markets (Du, Tepper, and Verdelhan (2018), Wallen (2020)). My study aims to reveal

the extent of imperfect competition even outside of quarter-ends. The final estimation

sample therefore consists of 48 month-ends from 2011 through 2017.

5.3 Instrumental variable

Lenders’ supply semi-elasticity is an essential ingredient in my estimation strategy. How-

ever, I cannot measure the relationship between rate and volume using OLS due to

preference shocks that are unobserved by the econometrician (✏jt in Equation 2). For

example, if negative preference shocks occur, a borrower will be seen to offer a high repo

rate but will attract only a modest amount of funds, biasing the true relationship to 0.

I therefore estimate the inverse supply semi-elasticity by using an instrumental vari-

able that shocks the borrowers’ funding needs. The U.S. Treasury Department periodi-

cally auctions marketable debt securities of various maturities. Dealers bid, make mar-

kets, and take speculative positions around Treasury auctions (Fleming and Rosenberg

(2008)), and they typically finance their Treasury holding with repo. Consequently, the

amount of Treasury securities auctioned likely correlates with how much borrowers want

to borrow. Using Treasury auctions as an instrument for borrowers’ demand for funding,

I can find by how much borrowers need to raise their repo rates to attract additional

funding.

Specifically, I construct the instrument as the amount of non-bill Treasury securities
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offered at auction such that they settle on the same days as MMFs’ reporting dates.

On these settlement dates, titles transfer and dealers must finance their acquisitions.

Repo volumes on settlement days are therefore mostly directly impacted by Treasury

auctions. To avoid potential endogeneity between repo rates and how much dealers decide

to purchase, I focus on the amount of Treasury securities offered for sale, which likely

reflects the Treasury Department’s fiscal needs and is plausibly exogenous to borrower-

specific preference shocks.37 Finally, I include only auctions of Treasury securities with

maturities of 1 year or more. Non-bill securities cannot be purchased by MMFs. Auctions

of these securities thus do not change the lenders’ trade-offs.38

Table 5 summarizes the instrument-induced inverse semi-elasticity. All regressions in

the table are run at the borrower-time level, as borrowers set borrower-time-specific repo

rates. Because identification relies on shocks that impact borrowers at each point in time,

standard errors are clustered by time (month).

Models (1) and (2) of Table 5 report the first-stage impact of Treasury auction offers

on repo volume, as in V oljt = �1stTreasuryOffert + BorrowerFE + Y earFE + e1st,jt.

Model (1) shows a strong correlation between the amount of Treasury securities offered in

auctions and the amount of Triparty repo funding obtained by borrowers. As there may

be macroeconomic shocks that affect both the Triparty repo market and the Treasury

Department’s decision to issue debt, I add year fixed effects in Model (2). Thus, the

preferred instrument of Model (2) relies on auction variations within the calendar year,

which typically reflect tax revenue fluctuations.39 The magnitude of the volume response
37Another potential endogeneity comes from macroeconomic shocks that could simultaneously affect

Treasury’s auction offers and borrowers’ purchases. To allay this concern, year fixed-effects are included
in the estimation.

38In unreported robustness checks, I confirm that the amount of non-bill securities offered in Treasury
auctions is not significantly correlated with either the level or the volatility of MMF AUM flows.

39The year fixed effects are, specifically, separate indicator variables for 2011, 2012, 2015, 2016, and
2017, and one indicator variable for the first 6 non-quarter-end months in 2013 and the last 2 non-
quarter-end months in 2014. The two calendar months included in 2014 are the two calendar months
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reduces from 46.8 to 16.3 but is still significant at the 5% level. As I measure Treasury

auction offers in trillions of dollars, the estimated coefficient implies that a $40 billion, or

one-standard-deviation, increase in the amount offered in Treasury auctions is associated

with an average increase of $0.65 billion in a borrower’s repo funding.

Model (3) of Table 5 reports the repo rate response to instrumented volume change,

as in log(Rjt)� log(Rzt) = �
IV [V oljt+BorrowerFE+Y earFE+ eIV,jt.40 The estimated

coefficient shows that to raise $1 billion more in repo funding, a borrower needs to increase

her repo rate by 1.57 bps. In other words, a 1 bp increase in the repo rate is associated

with a $0.64 billion increase in funding. For the average borrower, this is about 3.6%

of her funding. This estimate is comparable to recent events in the Triparty market.

When the Fed unexpectedly raised the RRP rate by 5 bps on June 17, 2021, the RRP

saw an overnight inflow of $225 billion from a base of $1628 billion in Treasury-backed

Triparty repo,41 implying a semi-elasticity of 2.9% per 1 bp change. At the same time, this

estimate is higher than comparable estimates for the Treasury bills market in Greenwood,

Hanson, and Stein (2015),42 Duffee (1996),43 and Bernanke, Reinhart, and Sack (2004),44

suggesting that the supply on Triparty is more inelastic.

The first-stage specification in Model (2) of Table 5 features a market-wide instrument

missing from 2013, which completes the fiscal year. Robustness checks using separate fixed effects for
2013 and 2014 show similar results but are more noisily estimated.

40I obtain borrower-time-specific repo rates (Rjt) by volume-weighting the observed borrower-lender
pair repo rates for Treasury-backed repo with a 2% haircut.

41The closest public release of the size of the Triparty market is as of June 9, 2021:
https://www.newyorkfed.org/data-and-statistics/data-visualization/tri-party-repo.

42Greenwood, Hanson, and Stein (2015) use an IV approach on a 1983–2007 sample. They find that a
one-percentage-point decrease in �Treasury

GDP leads to a 38.6 bps decrease in the two-week Treasury yield.
The average annual GDP between 2011 and 2017 was $18.7T. Together, these figures imply that a $1b
increase in the supply of Treasury bills increases the yield by 0.21 bps.

43Using data for each January from 1983 to 1994, Duffee (1996) estimates that a 1% increase in 1-
month Treasury bills outstanding increases the yield by 1.012 bps. The average Treasury bill outstanding
over my sample period is $1.6 trillion, of which roughly 30% is due within a month. This implies that,
again, a $1b increase in 1-month Treasury bills outstanding increases the yield by 0.21 bps.

44Bernanke, Reinhart, and Sack (2004) uses Japanese purchase of Treasury securities to estimate that
a $1b reduction in Treasury securities outstanding decreases the yield on 3-month Treasury by 0.18 bps
and on 2-year Treasury by 0.55 bps.
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that applies to all Triparty borrowers, TreasuryOffert. The IV estimate in Model (3)

is therefore the average rate response to the average induced volume. Borrowers may

have heterogeneous volume responses to Treasury auction offers. If I knew the borrower-

specific participation rate in Treasury auctions, I could refine my instrument to capture

individual shocks that are the product of Treasury auction offers and individual auction

participation. Unfortunately, these data are not publicly available. In Models (4) and

(5), I run a version of this heterogeneous-response IV by using a borrower’s average repo

share as a proxy for her auction participation. Specifically, I calculate each borrower’s

share of the overall Triparty repo volume at each point in time and take the time series

average to arrive at a time-invariant borrower share. The assumption behind using the

product of Treasury auction offerings and borrower repo share as an instrument is two-

fold. First, borrowers that are more active in repo are also more likely to participate in

Treasury auctions. Second, because this share is time-invariant, it is not correlated with

errors in the IV regression. The estimated inverse semi-elasticity from Model (5) is very

similar in magnitude to the estimate in Model (3).

The precision of the IV estimation depends on the strength of the instrument. The

cluster-robust effective F-statistic of the instrument in Model (2) of Table 5 is 5.8, below

the rule-of-the-thumb threshold of 10. To better understand the implications of using a

possibly weak instrument on the IV inference, I compute the Anderson-Rubin confidence

interval. This confidence interval has the correct coverage regardless of the strength of the

instrument and is efficient in just-identified models with a single instrument (Andrews,

Stock, and Sun (2019)), as is the case here. The 95% Anderson-Rubin confidence interval

for the IV coefficient estimate in Model (3) is (0.5, 8.6). See Appendix Figure A2 for more

details. This interval is bounded away from the imprecise and near-zero OLS estimate
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in Model (6), suggesting that the instrument is useful. At the same time, this interval

is very wide in the other direction. In other words, I am reasonably confident that the

instrumented semi-elasticity is not zero; however, I am much less certain that the true

value is not larger. A larger estimate would mean that borrowers need to raise their rates

even more in order to induce additional volume, implying an even more inelastic supply.

5.4 Estimation approach

I estimate the parameters of the lender’s model using a mixture of indirect inference

(Gourieroux, Monfort, and Renault (1993)) and maximum likelihood.

Applying indirect inference, I choose parameters such that the data simulated by

these parameters would generate moments matching those generated from the original

data. I include three groups of moments that summarize the distinct data patterns

discussed so far. First, because the size-dependent concentration aversion parameter,

↵it, controls the lender’s response to rate changes, my moments include the IV coeffi-

cient on [V oljt from Model (3) of Table 5. This coefficient is a direct function of ↵it —

�IV = 1
T

1
J

P
t2T

P
j2J

⇣P
i2xijt>0 �

yit
↵it

⌘�1

— and can inform the average level of ↵it. The

parameter �1 in ↵it governs the dependence of ↵it on the lender’s portfolio size. I therefore

include as a moment the coefficient from regressing the lender’s median portfolio share on

portfolio size (Model (2) of Table 3). Next, because  j in !ijt reflects borrower-specific

influences on portfolio allocation, I include as moments each borrower’s conditional av-

erage lender share and unconditional average probability to borrow.45 Finally, as �2 and

k (shape) determine the variance of ✏jt and ⌫ijt, respectively, they determine how much
45Unconditional probabilities are necessary to inform  because for some observations the borrower’s

repo rate (Rjt) is less than the return on the outside option (Rzt). To rationalize these observations, not
only would �ijt need to take on a value of 1 (as opposed to 0) but  j would also need to be sufficiently
large.
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variation in the observed data can be explained by the included model parameters. I

use the R
2 from regressing portfolio shares on lender portfolio size and borrower fixed

effects,46 and on lender portoflio size and borrower-time fixed effects47 to learn about

these two parameters.

The �ijt in !ijt controls whether a borrower can attract any lending. I recover the pa-

rameters of �ijt by maximizing the proportion of correctly predicted lending occurrences

between each pair at each time. Given the logistic transformation of the underlying

parameters, the estimation of pair-specific ⇢ij poses a potential incidental parameter

problem. I apply the analytical bias correction suggested by Hahn and Newey (2004) to

address this concern. The difference between the bias-corrected estimates and the simple

maximum likelihood estimates are small because the sample period is moderately large

(T = 48 for most pairs).

The parameters of my model are over-identified. I weigh the moments using the in-

verse of the variance-covariance matrix for moment conditions calculated in bootstrapped

samples. The bootstraps are done in blocks of time (month) clusters, in accordance with

the IV regression.

6 Results and Discussions

In this section, I present estimation results and discuss the derived dealers’ (borrow-

ers’) markdowns. I consider in particular the relationship between these markdowns and

various funding spreads, and the role of policy in shaping intermediary competition.
46xijt = b1,� log(yit) + BorrowerFE + e�,ijt, where log(yit) absorbs the effect from ↵it and

BorrowerFE absorbs the effect from  j
47xijt = b1,k log(yit) + BorrowerMonthFE + ek,ijt, where log(yit) absorbs the effect from ↵it and

BorrowerMonthFE absorbs the effect from  j and ✏jt
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6.1 Parameter estimates

Table 6 summarizes all parameter estimates, along with their time-clustered block-bootstrapped

confidence intervals.48 Data simulated from these parameter estimates generate both

targeted and untargeted moments that closely match those found in the original data,

suggesting that the estimated model provides a reasonable representation of actuality.

Appendix Section B discusses the model fit in detail.

I use the estimated �0 and �1 to calculate ↵it, which has a median of -0.033, a mean

of -0.034, and an interquartile range of (-0.025, -0.043). Because the possible support of

↵it is [�1, 0), the fact that ↵it is bounded away from 0 shows that lenders do exhibit an

aversion to portfolio concentration. Based on calculated ↵it, dealers on average need to

raise repo rates by 24 bps to increase their funding by 100%. The negative �1 indicates

that the aversion to concentration increases with size. This result coheres with the notion

that fire sale risks induce the lender to spread out his portfolio, and larger lenders are more

sensitive because — should operational disruptions force the lender to take possession of

the posted collateral — even a small share of a large portfolio could be costly to liquidate.

The estimated  j (capturing !ijt) has a median of 12 bps, a mean of 13 bps, and

an interquartile range of (7.3 bps, 14.6 bps). One way to interpret these estimates is to

recall that  j reflects the lender’s marginal utility from lending the first dollar. All else

being equal, the dealer at the 25th percentile would, therefore, have to offer 7 bps more

than the dealer at the 75th percentile to attract the same first dollar of lending.49

Yet  j is not merely ranking dealers based on rates because dealers seldom stop after

getting that first dollar. For example, although Goldman Sachs pays among the lowest
48Estimates of the pair-specific ⇢ij are omitted from Table 6 for brevity but are available upon request.
49In the model, !ijt (which has conditional mean of  j) enters the lender’s utility as a multiplier for

gross repo rates. Here, I suggest an additive increase heuristically because gross repo rates are close to
1 and the first-order condition is based on the logs of Rjt and !ijt.

36



rates, its estimated estimated  j is far from being the highest. This is because Goldman

Sachs cannot borrow much at the low rate it offers. In contrast, dealers such as Wells

Fargo are estimated to have higher  j than Goldman Sachs because they can borrow a

lot more by paying a slightly higher rate. In short,  j conveys how preferred a dealer is

perceived to be by lenders, and this preference can be reflected in a combination of rates

and volume.

One possible explanation for lenders exhibiting dealer-specific preferences is that deal-

ers vary in how consistently they take on repo loans. I test this hypothesis by proxying

a dealer’s borrowing consistency with its average coefficient of variation in volume vis-

à-vis lenders: CoefV arj = meanj(
SDij(volijt)

meanij(volijt)
). The lower the coefficient of variation,

the more consistent a dealer is in using its balance sheet to take on repo loans. Figure

5 shows that the estimated  j is strongly and negatively correlated with the dealer’s

average coefficient of variation. In Table 7, I explore the correlation between estimated

 j and the average and median of the dealer’s coefficient of variation (Models (1) and

(2)), and between estimated  j and the dealer’s creditworthiness as measured in CDS

rates (Models (3)–(5)). The conventional CDS contract varies by jurisdiction.50 Even

after controlling for jurisdictions, that is, comparing estimated  j with CDS rates among

dealers within the same jurisdiction, CDS rates still do not appear to be a significant

predictor of  j (Models (4) and (5)). In contrast, measures of dealer consistency are

strongly correlated with estimated  j.
50The most common CDS terms are no restructuring (XR) in the U.S., modified restructuring (MM)

in the EU, and full-restructuring (CR) in Japan.
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6.2 The dealer’s markdown

Having estimated ↵it and !ijt in the lender’s problem, I can now calculate the dealer’s

markdown in Equation 3. In the cross-section, the time-series average of each dealer’s

markdown has an interquartile range of (18 bps, 31 bps; see Table 8). Because the Sjt

in the model, representing the dealer’s value of repo intermediation, is net of balance

sheet costs, these markdowns are the economic rents dealers extract. Considering that

the mean dealer repo volume is about $18b per day, these estimates imply a midspread

of mean annual profits that ranges from $32m to $55m.

The cross-sectional variation in markdowns arises from the interaction between ↵it and

!ijt. Preferences for investment stability differentiates lending to different dealers, making

each dealer a local monopsony over its funding needs. How much rent a dealer can then

extract depends on how easily lenders can substitute away and is thus linked to lenders’

concentration aversion. As shown in Table 8, dealers differ in their demand consistency for

repo loans and thus draw varying degrees of non-pecuniary preferences from the lenders

( j, capturing !ijt). Dealers further differ in the set of lenders with whom they trade and

therefore face supply curves of varying elasticity (f(↵it)). Goldman Sachs, for example,

commands a mean non-pecuniary preference ( j) that ranks at the 30th percentile, a

respectable value partially reflecting the fact that lenders are willing to lend to Goldman

Sachs at low rates. Yet because Goldman faces a group of lenders that have low aversion

to concentration, its repo funding supply is highly elastic. The combination of these two

forces results in Goldman Sachs having one of the lowest markdowns.

Remarkably, the low rate that Goldman Sachs pays is not the aftermath of wedging

in a large markdown; rather, it is indicative of the high opportunity cost of repo inter-

mediation. Regulations, especially those imposed in the wake of the Financial Crisis of
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2007-09, require banks to maintain a minimum capital ratio against all assets. Because

a bank’s equity is fixed in the short run, repo intermediation activities, which increase

the bank’s total asset size, compete with other potential trades for balance sheet space

(Duffie (2017)). Goldman Sachs likely has more lucrative trades that it can do with its

limited balance sheet space, making its post-balance-sheet-cost value of repo intermedia-

tion rather modest. This situation rationally leads Goldman to price its repo aggressively

and to borrow sparingly and opportunistically. Although Goldman pays among the least

for repo funding, it does not earn much rent because of its limited trading volume. This

point is reminiscent of the model of Berk and Green (2004), in which mutual fund man-

agers’ skills are reflected not in excess returns alone but in the fund-size-adjusted alpha.

6.3 Markdowns and funding spreads

Taking the median dealer markdown at each point in time to be representative, I next

construct the time series of dealer markdowns through the estimation period. Figure 6

shows that the average of the median markdown over my estimation period is 20.7 bps.

Compared to the 5.7 bps average spread between the median Triparty repo rate and

lenders’ outside option, I find that dealers extract 78% of the (20.7 + 5.7 =) 26.4 bps

total surplus in the Triparty market.51

The presence of markdowns means that dealers pay less for obtaining funding than

what they charge their customers for intermediating funding. The higher, markdown-

incorporated rate of dealer-intermediated repo funds is likely the marginal rate that prices

securities. Imperfect competition in the Triparty market thus contributes to large and

persistent funding spreads involving repo-financed securities such as Treasurys. Take the
51This split of surplus should not be interpreted to mean that if the Fed raises its policy rate by 1 bps,

the passthrough would be 100%� 78% = 22%. Changes in the policy rate could also change the dealer’s
marginal value of intermediation and consequently the dealer’s optimal rate setting and markdown.
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Treasury cash-futures basis as an example. The Treasury futures contract is priced by

the cost of buying an equivalent physical Treasury security and holding that security till

the futures’ maturity. The financing rate implied in Treasury futures is therefore the repo

rate on the funds used to purchase and hold the physical Treasury. There would be no

funding spread if dealers intermediated repo funds at cost. Instead, the implied financing

rate in Treasury futures consistently exceeds the wholesale repo rate. What explains

the wedge between these two rates? Studies of this and other Treasury funding spreads

have advanced regulation-induced balance-sheet costs as the cause (e.g., Fleckenstein and

Longstaff (2020) and Jermann (2019)). Market power in the wholesale funding market

offers a complementary explanation.

Indeed, funding spreads reflect the presence of frictions in dealer intermediation. One

friction is the opportunity cost of using balance sheet space, which has been substantial

since the financial crisis of 2007-09. This friction exists in all dealer-intermediated funds.

For securities typically financed using repo funds, there is also the friction of monopsony

rent, which the dealers extract from cash lenders. In Table 9, I study the composition of

funding spreads by looking at two examples: the Treasury cash-futures basis, as discussed

above, and the Treasury swap spread, which is the difference between the yield of Treasury

securities and a maturity-matched unsecured wholesale funding rate, e.g., LIBOR or OIS.

Specifically, I compare the magnitude of these two funding spreads with the estimated

markdowns in the Triparty market and measures of balance sheet cost.

There is no standard measure of balance sheet cost, but it could be reflected in

profits from risk-less arbitrage opportunities. I explore two such arbitrages.52 First is
52For these two arbitrages to provide a proxy of balance sheet cost, the key assumption is that their

profits do not also reflect dealer market power. Neither of these two arbitrages relies on repo funding.
At a minimum, profits from these two arbitrages exclude the kind of dealer market power studied in this
paper.
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the IOER-EFFR arbitrage. The bank holding companies (BHCs) to which the dealers

in my sample belong have access to the federal funds market and maintain accounts at

the Federal Reserve. The interest on excessive reserve (IOER), paid by the Fed, can be

earned risk-free if the BHC borrows extra reserve in the Fed funds market at the effective

federal funds rate (EFFR). Therefore, any activity that a BHC does should earn at least

the IOER-EFFR spread. This spread is on average 13 bps between 2011 and 2017.53

Another measure of balance-sheet cost is the deviation from the covered interest-rate

parity (CIP) (Du, Tepper, and Verdelhan (2018), Du, Hébert, and Huber (2020)). CIP

deviations happen across many currency pairs and tenors. Following Du, Hébert, and

Li (2022), I use the 3-month EUR-USD basis to approximate balance sheet costs and

I use OIS to measure the risk-free interest that could be earned. Different from Du,

Hébert, and Li (2022), I use LIBOR to measure the cost of borrowing unsecured funds

to conduct this arbitrage, which reflects funding value adjustments, as emphasized in

Andersen, Duffie, and Song (2019).54 Hence, if a dealer has excess balance sheet space,

the dealer could raise 1 USD at its unsecured funding rate, LIBOR, and convert that

1 USD to 1 EUR at the spot exchange rate. The dealer would earn the risk-free OIS

indexed to EONIA. At the end of 3 months, the dealer could convert the proceeds back

to USD at the forward rate and pocket the profit after paying back the borrowed funds.

On average, such a trade would have generated a profit of 12 bps between 2011 and 2017.

The magnitude of Treasury funding spreads suggests that the intermediation friction

in repo funding comprises both balance sheet cost and dealers’ market power. Between
53Although dealers cannot conduct IOER-EFFR arbitrage themselves because they are not depository

institutions, the internal setup of BHCs allows the reserve desk and the trading desks to seamlessly
communicate and dynamically adjust balance sheet positions.

54Andersen, Duffie, and Song (2019) show that unsecured borrowing incurs debt overhang costs, which
can be approximated with LIBOR-OIS or similar credit spreads. The relevant CIP deviation that gives
balance-sheet costs can thus be equivalently calculated as the LIBOR-OIS CIP deviation or OIS-OIS
CIP deviation adjusted for the LIBOR-OIS spread.
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2011 and 2017, the balance sheet cost was approximately 12 bps, and the Triparty mark-

down was about 21 bps. Together, these figures suggest that the financing cost implied

in repo-financed Treasury should exceed the wholesale repo rate by about 30 bps. This

prediction is borne out in the Treasury-swap spread, where, averaging across the 5-year,

10-year, 20-year, and 30-year tenor, the yield of Treasury securities exceeded that of

maturity-matched OIS by 35 bps between 2011 and 2017.55,56 This prediction is also

borne out in the Treasury cash-futures basis. Fleckenstein and Longstaff (2020) show

that the financing rate implied in Treasury futures exceeded repo rates by about 50 bps

between 2011 and 2017.57

In addition to the two discussed here, there are many other types of funding spreads,

such as the basis between option-implied funding rates and wholesale funding rates (van

Binsbergen, Diamond, and Grotteria (2021)). Many of these funding spreads involve

securities that rely on dealer-intermediated funding, yet these spreads show limited cor-

relations with each other (Siriwardane, Sundarem, and Wallen (2021)). Imperfect com-

petition provides a natural micro-foundation for the observed low correlation: differences

in the competitive landscape in different funding markets may well lead to divergences

in funding spreads.
55This spread is, by convention, relative to OIS, or the unsecured federal funds rate. Over my sample

period, the federal funds rate is on average 6.5 bps above Triparty repo rate index (median), indicating
an even larger spread between the Treasury yield and the repo rate.

56The yield on Treasury bonds was in fact lower than OIS before the Financial Crisis of 2007-09. This
does not necessarily mean that dealer market power is a recent phenomenon. As Du, Hébert, and Li
(2022) argue, the switch in the sign of the spread reflects a regime shift in dealers’ Treasury inventory.

57Barth and Kahn (2021) provide an alternative measure of the Treasury cash-futures basis by using
replicating portfolios of Treasury bills. The average for 5-year futures across the 1st, 2nd, and 3rd roll
from 2010 to 2020 is about 21 bps. One possible reason for the discrepancy is the spread between
Treasury bills and repo rates. Depending on the maturity of the Treasury bill, the spread with the
overnight Triparty repo rate is between -4 bps for 1-month Treasury bills and 17 bps for 12-month
Treasury bills.
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6.4 The effect of the RRP on markdowns

The Fed instituted the Overnight Reverse Repo Facility in anticipation of increasing its

policy interest rate. The RRP is thought to have helped the Fed successfully raise the

interest rate four times between 2015 and 2017, during a period when the Fed’s usual

tool — reserve supply adjustment — was made obsolete by the abundance of reserves.

Did this monetary policy tool also affect dealers’ market power? I explore this question

through counterfactual analyses detailed in Internet Appendix Section IA-A. Specifically,

I ask, what would have happened to the Triparty repo rate and dealers’ market power if

the RRP were not established?

To conduct the policy counterfactual, I first parameterize and estimate the borrower’s

problem introduced in Section 4.2. The parameterization features a marginal value of

intermediation that decreases in quantity. I estimate the parameters by using the 2016

Money Market Fund Reform as an exogenous shock to the lenders’ supply of funds. The

estimated parameters reflect a demand sensitivity that sees the borrower reducing her

repo rate by about 0.6 bps for every additional billion dollars of funding absorbed.

Next, I consider the effect of the RRP on dealers’ market power. The RRP gives

Triparty lenders an alternative to lending to dealers. Compared to the lender’s other

possible outside option, the RRP is very attractive: the RRP rate was on average 12 bps

higher than the 1-day Treasury yield between 2014 and 2017. Imagine that the RRP were

not established and the alternative to lending to Triparty dealers earned the historical

1-day Treasury yield (Panel (a) of Internet Appendix Figure IA2). The counterfactual

median Triparty repo rate would then be 8 bps lower than historical (Panel (b)). Im-

portantly, the counterfactual median markdown would be 4 bps larger (Panel (c)), and

this increase would happen at a time of increased volume lent to borrowers (Panel (d)),
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leading to even more economic rent extracted by the dealers. In other words, although

the RRP is a policy tool intended to raise the level of Triparty repo rates, it also con-

strained dealers’ market power and consequently narrowed funding spreads. The result

of this counterfactual highlights one tangible way in which policy makers can effectively

alter the competitive environment of the Triparty market.

7 Conclusion

I document new facts about the Triparty repo market that shed light on the nature of

competition. These facts motivate me to describe the equilibrium of this vital wholesale

funding market as cash-lenders allocating their portfolios among differentiated dealers

(cash-borrowers) who set repo rates. My estimated model reveals that Triparty deal-

ers enjoy substantial market power. This market power causes the observed wholesale

repo rate to diverge from the unobserved, dealer-intermediated financing rates market

participants face. Imperfect competition thus contributes to large funding spreads in

repo-financed securities, such as the Treasury cash-futures basis and the Treasury swap

spread.

More broadly, this study is a first step in a quantitative investigation of intermediary

competition and its impact on asset prices. For months since May 2022, the rate offered

by the Federal Reserve at the Overnight Reverse Repo Facility (RRP) in fact exceeded

the median repo rate on the Triparty market. Such a phenomenon is difficult to rational-

ize in a perfectly competitive market, where the RRP ought to set the floor for repo rates

in the Triparty market. The market power of financial intermediaries, which I explore

in this paper, offers a plausible explanation. In general, if intermediaries are central to

asset prices, and intermediaries, by definition, interface with many agents, then study-
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ing the competitive landscape intermediaries face is indispensable to a more complete

understanding of the financial market.
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Tables and Figures

Figure 1: Select repo rates of BlackRock MMF’s lending

Notes: This figure plots the repo rates accepted by BlackRock MMF for lending to Goldman Sachs and
Wells Fargo via overnight repo collateralized by Treasury securities with a 2% haircut. The repo rates
are reported as gross rates less the daily median repo rate and are stated in basis points. Two outliers
are omitted: the repo rate by Goldman Sachs was 20 bps below the median in September 2016, and 12
bps below the median in December 2017.

Figure 2: Decomposition of cross-sectional variation in rate dispersion

Notes: This figure plots the 3-month rolling average of the R2 from monthly cross-sectional regressions
of repo rates on MMF and dealer fixed effects. Repo rates are measured as gross repo rates less the daily
median repo rate, and are for overnight repo collateralized by Treasury securities with a 2% haircut. The
solid red line is the R2 from regressing repo rates on dealer fixed effects; the dotted purple line is the
R2 from regressing repo rates on MMF fixed effects; and the dashed blue line is the R2 from regressing
repo rates on both dealer and MMF fixed effects. The sample period is January 2011 through December
2017.
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Figure 3: Select MMF repo portfolios on October 31, 2016

Notes: This figure plots the repo lending to dealers by BlackRock and Legg Mason on October 31,
2016. The size of the pie corresponds to BlackRock and Legg Mason’s overnight repo lending volume,
as labeled. The size of each slice represents the share of the portfolio lent to different dealers.

Figure 4: Stability in MMF overnight portfolios

(a) Between t and t+ 1 (b) Between t and t+ 6

Notes: This figure plots the average cosine similarity between MMFs’ overnight portfolios at time t and
t + n against the number of dealers in the portfolio at time t. Cosine similarity between portfolio x
and y is defined as CosSim(x,y) = x·y

kxkkyk . Panel (a) compares portfolios at time t and at time t + 1,
Panel (b) compares portfolios at time t and at time t + 6. The sample period is January 2011 through
December 2017.
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Figure 5: Correlation between estimated dealer preference and coefficient of

variation in volume

Notes: This figure plots estimated  j against the dealer’s average coefficient of variation. The blue
line represents the fitted value from regressing  j on the dealer’s average coefficient of variation, and
the shaded regions represent the 95% heteroskedasticity-robust confidence bands. The dealer’s average
coefficient of variation is the by-dealer average of the dealer-lender coefficient of variation in repo volume
throughout the model estimation period. The model estimation period is January 2011 to December
2017, excluding September 2013–September 2014, when the RRP was first introduced and was in testing,
and excluding months that fall on quarter-ends.

Figure 6: Triparty dealer markdown

Notes: This figure plots the time series variation in the median dealer markdown over the model esti-
mation period (solid red line). The dotted black line indicates the average of this value over the whole
sample. The shaded area corresponds to September 2013–September 2014, when the RRP was in testing.
The model estimation period is January 2011 to December 2017, excluding September 2013–September
2014 and months that fall on quarter-ends.
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Table 2: Model fit with dealer vs. relationship FE

Deviation of Treasury repo rate from median

Model 1 Model 2 Model 3 Model 4

Dealer FE Yes No Yes No
MMF-Dealer Pair FE No Yes No Yes
Year FE No No Yes Yes
N 10453 10453 10453 10453
Num of FE 20 271 26 277

R2 0.18 0.24 0.19 0.25
AIC (in 1000s) 41.53 41.22 41.38 41.07
BIC (in 1000s) 41.68 43.19 41.58 43.08
Notes: This table reports the goodness of fit for regressions of repo rates on dealer fixed effects or
MMF-dealer pair fixed effects. Repo rates are for lending between MMF-dealer pairs via overnight
repo collateralized by Treasury securities with a 2% haircut, and they are measured as the deviation
from the daily median. Goodness-of-fit measures are R2, the Akaike information criterion (AIC), and
the Bayesian information criterion (BIC). The sample period is January 2011 through December 2017.

Table 3: MMF size and portfolio composition

Number of
dealers

Median
portfolio share

Max portfolio
share

Min portfolio
share

Model 1 Model 2 Model 3 Model 4

Constant 1.403 0.266⇤⇤⇤ 0.399⇤⇤⇤ 0.188⇤⇤⇤
(1.021) (0.037) (0.033) (0.042)

Log(MMF size) 3.022⇤⇤⇤ -0.067⇤⇤⇤ -0.074⇤⇤⇤ -0.055⇤⇤⇤
(0.290) (0.013) (0.012) (0.014)

Num. obs. 1467 1467 1467 1467
R2 0.556 0.524 0.369 0.439
Standard errors in parentheses.
Notes: This table reports regressions of the extensive and intensive margins of MMFs’ portfolio on
MMFs’ overnight portfolio size and a constant. The dependent variable in Model (1) is the number of
dealers to which a MMF lends. The dependent variables in Models (2) through (4) are, respectively,
the median, the maximum, and the minimum share of an MMF’s portfolio lent to dealers. The sample
period is January 2011 through December 2017. Standard errors are clustered by MMF. *, **, and ***
denote significance at the 10%, 5%, and 1% confidence levels, respectively.
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Table 6: Estimates of model parameters

Parameter Estimate 95% CI

Concentration aversion
↵it

�0 2.28 (1.92, 4.12)
�1 -7.92 (-8.71, -7)

Non-pecuniary preference
!ijt

⌫ijt

 j

Barclays 13.99 (10.57, 16.07)
BNP Paribas 7.30 (2.21, 7.93)
Bank of America 10.75 (6.93, 11.12)
Citi 12.59 (9.91, 14.36)
Crédit Agricole 19.31 (15.6, 19.92)
Credit Suisse 11.67 (9.69, 13.84)
Deutsche Bank 15.56 (11.93, 16.93)
Goldman Sachs 8.40 (6.31, 9.24)
HSBC 7.13 (3.93, 7.15)
JP Morgan 5.90 (3.71, 6.22)
Mitsubishi 13.14 (10.84, 14.84)
Natixis 33.87 (29.55, 37.79)
Royal Bank of Scotland 12.06 (8.18, 12.85)
Nomura 47.25 (40.96, 51.63)
Nova Scotia 7.28 (4.77, 8.3)
Royal Bank of Canada 6.93 (4.94, 7.91)
Société Générale 14.63 (11.71, 15.38)
Sumitomo 34.09 (26.84, 40.9)
UBS 4.30 (1.67, 6.84)
Wells Fargo 19.20 (16.11, 20.63)

k (shape) 137.43 (134.98, 137.45)
✏jt

�
2 6.05 (4.88, 12.29)

�ijt

� 0.63 (0.5, 0.75)
Notes: This table reports the parameter estimates in the lender’s problem. �0,�1 are param-
eters of ↵it = �0 + �1 · pyit, and are scaled by 1 ⇥ 10�3.  j , k are parameters of ⌫ijt ⇠
1 +Gamma(shape = k, scale =  j/k); the random variable defined by Gamma is scaled by 1⇥ 10�4.
�2 is the parameter of ✏jt ⇠ LogNormal(��2

2 ,�2); ✏jt is scaled by 5 ⇥ 10�5. � is the parameter of
�ijt ⇠ Bernoulli(Logistics(⇢ij + � log(yit))). Estimates of the pair-specific ⇢ij are omitted for brevity
but are available upon request. With the exception of �, parameters in this table are estimated using
indirect inference, where the 95% confidence intervals are block bootstrapped by time (month). �
is estimated using maximum likelihood, with the Hahn and Newey (2004) analytical bias correction
applied for potential incidental parameter problems. The model estimation period is January 2011
to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and
excluding months that fall on quarter-ends.
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Table 8: Dealers’ average non-pecuniary preference, elasticity, and

markdown

Dealer Preference Elasticity Markdown
( j) (%) (bps)

Bank of America 10.7 3.2 28.1
Barclays 14.0 3.4 26.1
BNP Paribas 7.3 3.1 30.6
Citi 12.6 5.2 19.0
Crédit Agricole 19.3 2.9 33.7
Credit Suisse 11.7 4.4 20.2
Deutsche Bank 15.6 3.2 25.4
Goldman Sachs 8.4 8.3 11.6
HSBC 7.1 5.1 19.1
JP Morgan 5.9 5.0 18.0
Mitsubishi 13.1 5.8 18.7
Natixis 33.9 2.5 43.5
Nomura 47.2 1.7 56.9
Nova Scotia 7.3 6.5 18.2
Royal Bank of Canada 6.9 7.4 13.3
Royal Bank of Scotland 12.1 4.5 18.0
Société Générale 14.6 3.8 26.5
Sumitomo 34.1 2.6 40.5
UBS 4.3 6.0 14.5
Wells Fargo 19.2 2.8 32.3
Notes: This table reports three time-series averages for each dealer in the sample. “Pref-
erence” is the estimated  j , which is the dealer-specific mean of lenders’ non-pecuniary
preference, !ijt. “Elasticity” is the percentage of repo volume a dealer would attract if it
raised its repo rate by 1 bp. “Markdown” is the difference between the estimated dealer’s
marginal value of intermediation and the repo rate it pays. The analysis in this table is
based on parameters estimated in the model estimation period of January 2011 to De-
cember 2017, excluding September 2013–September 2014, when the RRP was in testing,
and excluding months that fall on quarter-ends.

57



Table 9: 2011-2017 average measures of market power, balance sheet cost,

and funding spread

Measure of
market power

Measures of
balance sheet cost

Measures of
funding spread

Triparty dealer markdown 20.65

IOER-EFFR spread 12.79

USD-EUR 3M CIP basis 12.16

Treasury swap spread 32.65

Treasury cash-futures basis 47.63
Notes: This table reports the averages of annualized measures in basis points. “Triparty dealer mark-
down” is the median of the estimated markdowns. “IOER-EFFR spread” is the difference between
interest on excess reserve and the effective federal funds rate. “USD-EUR 3M CIP basis” is the dif-
ference in the 3-month interest earned on synthetic dollars at OIS (EONIA) versus interest paid on
direct dollars at IBOR (LIBOR). Synthetic dollars are obtained by exchanging dollars for euros at the
spot rate and converting back to dollars at the forward rate. “Treasury swap spread” is the difference
between the Treasury yield and OIS (indexed to federal funds rate), averaged across the 5-year, 10-
year, 20-year, and 30-year tenor. “Treasury cash-futures basis” is the difference between the funding
rate implied in 5-year Treasury futures and the repo rate. “Triparty dealer markdown” is estimated for
month-ends from January 2011 to December 2017, excluding September 2013–September 2014, when
the RRP was in testing, and excluding months that fall on quarter-ends. “Treasury cash-futures basis”
is the average of the mean basis in years 2011 through 2017, as in table 3 of Fleckenstein and Longstaff
(2020). “IOER-EFFR spread” and “USD-EUR 3M CIP basis” are calculated using daily series from
January 1, 2011, to December 31, 2017. “Treasury swap spread” is calculated using daily series from
September 28, 2011, to December 31, 2017, when OIS rates are available.
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Appendix

A Functional form of ↵it

Results in Table 3 point to a strong empirical relationship between MMFs’ overnight

cash portfolio size and the distribution of portfolio shares. Importantly, this relationship

exhibits concavity in portfolio size, evident in the log transformation applied to portfolio

size (yit). I therefore parameterize the concentration aversion parameter, ↵it, which

controls the distribution of portfolio shares, as ↵it = �0 + �1
p
yit. Square rooting the

portfolio size captures the essence of concavity while ensuring that no values are negative,

as would be generated under a log transformation because there are values of yit that are

less than 1.

There may be other plausible transformations. One such candidate is log(1 + yit),

which is also concave and circumvents the negativity concern. However, as shown in

Appendix Table A1, such a transformation would compress the range of transformed

portfolio sizes, reducing the power of the estimation by flattening variation. An alterna-

tive transformation that produces a range comparable to the original log transformation

is 2.5
p
yit. This transformation is rather uncommon. Therefore, in the absence of conclu-

sive evidence that logs are the only appropriate transformation, I adopt square roots as

the preferred functional form.

Reassuringly, all three transformations that maintain the spirit of concavity generate

similar estimates of ↵it. In Appendix Table A1, I report the mean ↵it estimated using

log(1+ yit), 2.5
p
yit, and p

yit. Applying these mean ↵it to the average portfolio size yields

an estimate of the inverse semi-elasticity implied under different transformations, which

is comparable to the IV-estimate in Table 5. All three transformations imply an inverse

semi-elasticity that is similar to the IV point estimate of 1.57, and all are well within the

95% Anderson-Rubin confidence interval.
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B Model fit

The estimated model parameters generate simulated data that reasonably match both

targeted and untargeted moments in the original data, suggesting good model fit.

I use 44 moments in the indirect inference estimation. These moments can be grouped

into three categories. In Appendix Figure A3, I assess the fit in these three categories in

turn.

The two regression coefficients in Panel (a) of Appendix Figure A3 are among the most

important moments. �IV is the IV coefficient from Model (3) of Table 5, and it pins down

the levels of lender preferences (↵it and !ijt). �median is the coefficient on portfolio size

for the median portfolio share (Model (2) in Table 3), and it informs the size-dependency

of ↵it. Estimated model parameters simulate data that generate coefficients (Matched

moments) similar to the original point estimates (Data moments). In particular, the

Matched moments are within the 95% confidence interval of the Data moments.

Panel (b) of Appendix Figure A3 compares the R
2 of two regressions in the original

data to the parameter-simulated data. These two R
2s are most informative of two nui-

sance parameters: k (shape) of ⌫ijt and �
2 of ✏jt. The R

2s in the simulated data do not

show significant deviations from those in the original data.

Panels (c) and (d) of Appendix Figure A3 compare moments based on two types of

dealer-specific averages. Panel (c) contains each dealer’s average portfolio share, and

Panel (d) contains each dealer’s average probability of borrowing from lenders. If mo-

ments from the simulated data match those from the original data, then the points in

these two panels would fall along the 45-degree diagonal line, which they roughly do.

The targeted moments focus on the mean of the distribution. As a further check of

model fit, I assess the match to two untargeted moments that reflect other parts of the

data distribution. Specifically, I consider how well the estimated parameter can reproduce

the behaviors of the maximum and the minimum portfolio shares in relation to portfolio

size. These two moments come from Models (3) and (4) of Table 3, and their behaviors

are not tied to �median in Panel (a). As Panel (e) of Appendix Figure A3 illustrates,
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although these two moments were not targeted in the estimation, they can be matched

within the 95% confidence interval by the estimated parameters. Taken together, the

comparisons in Appendix Figure A3 show that the estimated model offers a reasonable

representation of the data.
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C Additional Figures and Tables

Figure A1: Percentage of overnight repo market represented by top 18 MMFs

and top 20 dealers in the sample

Notes: This figure plots, on the left, the share of overnight repo done by the top 18 money market fund
families relative to all overnight repo done by money market funds that filed N-MFP reports between
January 2011 and December 2017. Plotted on the right is the share of overnight repo done by the top
20 dealers relative to all dealers based on money market funds’ N-MFP reports from January 2011 to
December 2017.

Figure A2: Anderson-Rubin test of instrumental variable estimate

Notes: This figure plots the Anderson-Rubin rejection probability for the null hypothesis that the true
�IV is equal to a given value on the x-axis. �IV is estimated from log(Rjt) � log(Rzt) = �IV cvoljt +
BorrowerFE + Y earFE + eIV,jt in the model estimation period of January 2011 to December 2017,
excluding September 2013–September 2014, when the RRP was first introduced and was in testing, and
excluding months that fall on quarter-ends. The horizontal dashed lines are at y = 0.9 and y = 0.95.
The points where the solid red line crosses the dashed lines represent, respectively, the end points of the
Anderson-Rubin 90% confidence interval and 95% confidence interval for the null hypothesis.
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Figure A3: Data moments vs. matched moments from estimated parameters

(a) Regression coefficients (b) R2

(c) Average dealer share (d) Average probability of borrowing

(e) Untargeted moments

Notes: This figure plots comparisons between data moments and matched moments. Data moments
are calculated using the original sample data. Matched moments are the average of moments calculated
in 50 sets of data simulated from estimated model parameters. The moments in Panel (a) are �IV from
Model (3) of Table 5 and �median from Model (2) of Table 3. The moments in Panel (b) are the R2

from the two regressions used to inform �2 and k (shape). The moments in Panel (c) are each dealer’s
average portfolio share, and the moments in Panel (d) are each dealer’s average probability of borrowing
from lenders. The moments in Panel (e) are �max from Model (3) of Table 3 and �min from Model
(4) of Table 3. The model estimation period is January 2011 to December 2017, excluding September
2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends.
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Table A1: Alternative concave transformations of yit in ↵it

Transformation Range Mean estimate of ↵it

Implied inverse
semi-elasticity

log(yit) 7.28

log(1 + yit) 4.89 -0.0262 1.06
2.5
p
yit 6.93 -0.0296 1.20

p
yit 11.75 -0.0342 1.38

Notes: This table compares different transformations of lenders’ portfolio size (yit). “Range” is for the
transformed yit. “Mean estimate of ↵it” reports the mean ↵it calculated using estimated �0 and �1
based on different transformations of yit. “Implied inverse semi-elasticity” is the inverse semi-elasticity
calculated using the mean estimate of ↵it, the mean lender portfolio size, and the mean number of lenders
lending to dealers. The model estimation period is January 2011 to December 2017, excluding September
2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends.
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Internet Appendix (not for publication)

"Market Power in Wholesale Funding:

A Structural Perspective from the Triparty Repo Market"

IA-A Policy counterfactual

In this section, I first estimate a parameterized borrower’s problem. I then combine esti-

mates from the lender’s and the borrower’s problem to consider the effect of the Reverse

Repo Facility (RRP) through a counterfactual exercise. Specifically, I ask, what would

happen to the Triparty rate and dealer’s market power if the RRP were not established?

IA-A.1 Calibrating borrower’s problem

The relationship between borrower’s optimal rate, her marginal value, and her markdown,

as shown in Equation 3, remains valid irrespective of the parameterization of borrower’s

intermediation value. I now specify the dependence of borrower intermediation value on

quantity as Sjt = Ŝjt � ⇣ · log(Qjt). This functional form reflects possible diminishing

marginal returns in the quantity of funding. The first-order condition of the borrower’s

problem now becomes

max
Rjt

(Sjt(Qjt) ·Qijt(Rjt)�Rjt ·Qijt(Rjt))

R
⇤
jt = Ŝjt � ⇣ � ⇣ log(Qjt)| {z }

marginal value of
intermediation at Q

�Qjt

Q0
jt

.

I estimate ⇣ using the 2016 Money Market Fund Reform. In 2016, the money market

fund industry underwent a major reform aimed at addressing practices that made the

MMF industry vulnerable during the financial crisis of 2007-2008. One of the biggest

changes is the mandate for prime funds to keep a floating instead of fixed NAV. This

caused an outflow of AUM from prime funds, which mostly invest in unsecured securities

such as commercial paper, to government funds, which mostly invest in Treasury securities

and could keep using a fixed NAV. As Internet Appendix Figure IA1 illustrates, the
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share of government funds increased to about 75% from 25%. This happened against a

backdrop of almost constant total AUM in MMFs. Government funds typically keep a

larger fraction of their AUM in overnight cash.58 Consequently, the amount of overnight

cash in the industry increased from about 10% of AUM in 2015 to almost 20% in 2017.

The MMF reform increased the amount of cash available for repo. As this increase is

plausibly exogenous to other variations in borrowers’ marginal value of intermediation,

if borrowers drop their repo rates around the MMF Reform, that decrease likely reflects

a deterioration in intermediation value due to increased funding quantity. I therefore

use the MMF reform as an instrument for additional funding that borrowers have to

absorb, and estimate the corresponding repo rate sensitivity. Specifically, I construct an

indicator of MMF reform that takes the value 1 on or post October 2016, when the MMF

reform was fully implemented, and take the value 0 before, and I estimate log(Rjt) �

log(Rzt) = b1
cvoljt+BorrowerFE+e1,jt, where cvoljt = b01t�201610+BorrowerFE+e0,jt.

I estimate using observations in the one year before and after October 2016. Results of

the estimation are summarized in Internet Appendix Table IA1. On average, a borrower

had to absorb $2.1b more because of MMF reform, and each additional billion of funding

lowered the repo rate she offered by about 0.6 bps.

This estimate of d logR
dQ can be used to inform ⇣, as ⇣ = �2QR · d logR

dQ . Based on the

average value of Q,R in the estimation period, I derive a ⇣ of 1.98⇥ 10�3.

IA-A.2 Triparty without RRP

The Fed instituted the Reverse Repo Facility in anticipation of increasing its policy

interest rate. The RRP is thought to have put a floor on repo rates, which allowed the

Fed to successfully raise the interest rate four times between 2015 and 2017, even as the

Fed’s usual tool – reserve supply adjustment – was made obsolete by the abundance of

reserves during this period. If the RRP were not available, what would have been the

Triparty repo rate? Equally important, did the RRP also affect dealer’s market power in
58Government funds can only invest in a limited number of securities. To improve their yield, gov-

ernment funds invest heavily into longer maturity government securities. To comply with regulations on
the fund’s average maturity, they keep a larger overnight cash portfolio. Industry participants refer to
this as the “barbell strategy”.
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the Triparty repo market?

To assess the effect of the RRP, I assume that, in the absence of the RRP, the Triparty

lenders would have as their outside option the realized historical 1-day Treasury bills yield.

I illustrate the result of this counterfactual analyses in Internet Appendix IA2. As Panel

(a) shows, the counterfactual outside option is lower than the RRP between 2014 and

2017, by about 12 bps on average. Given this change, repo borrowers would lower the

rates they offer. Panel (b) illustrates the median counterfactual repo rate. On average

from October 2014 to November 2017, the counterfactual median Triparty repo rate is

down 8 basis points from historical, putting the median Triparty rate at 3 bps below

the lower bound of the Federal Reserve’s policy target. Crucially, RRP also affected the

competitive environment of the Triparty market. In the absence of the RRP, the median

dealer’s markdown would have been 4 bps larger; see Panel (c). As Panel (d) points

out, this increase in dealer’s markdown would come at a time when the total volume to

repo borrowers increases by on average $48b per month, allowing the dealers to extract

significantly more economic rent.

These counterfactual estimates show that not only did the RRP buoy up the Tri-

party repo rate by as much as 60% of a typical 25-bps rate hike, but that the RRP also

tightened the intermediation wedge that dealer’s market power inserts in repo interme-

diation. In short, the RRP is an effective monetary policy tool that materially improves

the conformance of market rates to the Fed policy rates.
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IA-B Figures and Tables

Figure IA1: Share of MMF AUM in Government Funds and in Repo

Notes: This figure plots in solid red and against the y-axis on the left, the proportion of MMF AUM
in government funds. This figure plots in dashed blue and against the y-axis on the right, the share
of total AUM that is overnight cash, measured as lending via overnight repo to dealers and to the
RRP.
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Figure IA2: Counterfactual scenario of no RRP and lenders access historical

Treasury yield

(a) Counterfactual Rzt (b) Counterfactual rate

(c) Counterfactual markdown (d) Counterfactual volume

Notes: This figure plots the counterfactual median Triparty repo rate, the total Triparty repo volume,
and the counterfactual median Triparty dealer’s markdown. The scenario is that the RRP were not
available in 2014 through 2017 and lenders considered the historical 1-day Treasury yield as the
outside option to lending to borrowers. Panel (a) shows the actual Rzt in red, which is the 1-day
Treasury yield before 2014 and the RRP rate after 2014; and it shows the alternative Rzt in pink,
which is the 1-day Treasury yield throughout. Panel (b) shows the counterfactual median Triparty
repo rate in blue, against the realized (historical) median Triparty repo rate in black, and the lower
bound of the Fed’s policy target in red. Panel (c) shows the counterfactual median dealer’s markdown
in blue, against the realized median dealer’s markdown in black. Panel (d) shows the counterfactual
total repo lending to Triparty dealers in blue, the historical total repo lending to Triparty dealers in
black, and the historical total lending to dealers and the RRP in red. The shaded area correspond
to September 2013 through September 2014 when the RRP was in testing. The model estimation
period is January 2011 to December 2017, excluding September 2013 through September 2014 and
months that fall on quarter ends. This figure is best viewed in color.
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Table IA1: Borrower sensitivity to value of funds

1st stage: voljt IV: Rjt-Rzt OLS: Rjt-Rzt

Indicator: post 2016 Oct 2.130⇤⇤⇤
(0.637)

Vol_jt (fit) -0.610⇤⇤⇤
(0.226)

Vol_jt -0.005
(0.031)

Borrower FE Yes Yes Yes
Effective F-stat 11.187
Num. obs. 293 293 293
Standard errors in parentheses.

Notes: This table reports the instrumental variable estimate of borrower’s sensi-
tivity to value of funds. In the first-stage regression, borrower’s total overnight
repo volume is regressed on the indicator for post-2016 October. In the IV re-
gression, the difference between borrower’s repo rate and the outside optione is
regressed on borrower’s overnight repo volume, as instrumented using first-stage.
The OLS regression regresses borrower’s repo rates on volume, without using an
instrument. Borrower’s repo rate is defined as the volume-weighted average of repo
rates between a borrower and all lenders in overnight repo collateralized by Trea-
sury securities with 2% haircut. The outside option is defined as the RRP rate.
The estimation period is from October 2015 to October 2017, the one year before
and after October 2016, excluding months that fall on quarter ends. Standard
errors are robust to heteroskedasticity. *, **, and *** denote significance levels at
10%, 5%, and 1% confidence levels.
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