Market Power in Wholesale Funding: A Structural Perspective from the Triparty Repo Market∗

Amy Wang Huber†

September 2022

Abstract

I model and structurally estimate the equilibrium rates and volume on the Triparty repo market to study imperfect competition in wholesale funding. Even in this systemically important market, where seemingly homogeneous repos trade, I document persistent rate differences paid by dealers. I characterize the Triparty market as cash-lenders allocating their portfolios among differentiated dealers who set repo rates. I find that cash-lenders’ aversion to portfolio concentration and preference for stable lending grant dealers substantial market power: between 2011 and 2017, dealers borrowed at rates that were 21 bps lower than their marginal value of intermediating borrowed funds. Dealers’ market power makes the observed wholesale repo rate understate the financing rate available to market participants who rely on repo funding, and offers a novel explanation for funding spreads such as the Treasury cash-futures basis and the Treasury swap spread.

JEL Classifications: G11, G12, G21, G23, L13
Keywords: Triparty repo, market power, portfolio allocation, funding spreads, intermediary asset pricing

∗Previously circulated under the title “Lender Preference, Borrower Market Power, and the Effect of RRP”. I’m grateful for the invaluable guidance from my advisors Arvind Krishnamurthy, Darrell Duffie, Ben Hébert, and Ali Yurukoglu. I thank Juliane Begenau, Jonathan Berk, Greg Buchak, Itamar Drechsler, Wenzin Du, Sam Hanson, Stefan Huber, Sebastian Infante, Hanno Lustig, Matteo Maggiori, Antoine Martin, Claudia Robles-Garcia, Amit Seru, Chenzi Xu, Yao Zeng, and Jeff Zwiebel for helpful comments. I also thank seminar participants at Columbia University, Cornell University, Dartmouth College, Duke University, Harvard University, Indiana University Bloomington, the London School of Economics and Political Science, the Ohio State University, Princeton University, Rice University, Stanford University, the University of British Columbia, the University of Colorado Boulder, the University of Pennsylvania, the University of Texas at Austin, the University of Toronto, and Yale University. All remaining errors are my own.

†Rice University. Email: amy.huber@rice.edu.
1 Introduction

Funding spreads such as the Treasury cash-futures basis and the Treasury swap spread are large and persistent. Balance sheet cost has been advanced as the reason for these divergences between the financing rate implied in security prices and the wholesale funding rate that, in theory, prices these assets (e.g., Jermann (2019), Fleckenstein and Longstaff (2020)). In this paper, I argue that an important and complementary reason for these funding spreads is imperfect competition in wholesale funding markets. Specifically, I show that dealers’ market power in the Triparty repo market causes the observed wholesale repo rate to deviate considerably from the ultimate financing rate available to financial market participants. My results illustrate the impact of intermediary competition on asset prices and offer novel evidence in support of intermediary-based asset pricing.

The $2 trillion Triparty repo market is a key part of the money and bond market, underpinning the working of Treasury and agency mortgage bonds (see the studies by Copeland, Martin, and Walker (2014), Krishnamurthy, Nagel, and Orlov (2014)). Every day, experienced and sophisticated actors on both sides of the Triparty repo market borrow and lend cash using homogeneous repurchase agreements (repo). Nevertheless, when cash-lenders (e.g., BlackRock) lend to different dealers simultaneously (e.g., Goldman Sachs and Wells Fargo), the rates that cash-lenders accept show persistent cross-dealer differences, suggesting imperfect competition. To quantify the degree of competition, I develop and structurally estimate the first equilibrium model of the Triparty market. My estimates reveal that, although cash-lenders are professional money managers trading with many dealers, their desire to spread out the portfolio grants dealers substantial market power. Between 2011 and 2017, dealers borrowed at rates that were on average
21 bps lower than their estimated marginal value of intermediating their borrowed funds. Many financial market participants rely on dealer-intermediated repo funding to finance their holdings, suggesting that these markdowns represent a significant but hitherto unacknowledged reason why observed wholesale funding rates differ from the financing rates implied in security prices.

I start by documenting three new empirical facts about the Triparty repo market. First, cash-lenders (henceforth, lenders) simultaneously and consistently accept different repo rates for contracts that differ only in the identity of the dealers. Second, dealers’ identities drive repo rate dispersion in both the cross-section and time series; in contrast, different lenders that lend to the same dealer do so at rates that are statistically indistinguishable. Third, larger lenders connect to more dealers, not to “rate shop” but to spread out lending, giving smaller shares of their portfolios to each dealer.

These patterns provide new perspectives on how the Triparty market works. First, because Triparty lenders repeatedly lend to a large and fixed set of dealers, lending at persistently different rates is unlikely the result of search frictions but instead reflects that dealers are differentiated. I speculate that lenders have a strong preference for stable investment opportunities and, therefore, discriminate between dealers who vary in how consistently they use their scarce balance sheet to take on repo loans. Second, although repo contracts are bilaterally determined, the overwhelming importance of between-dealer variation in explaining repo rate dispersion hints at a market where dealers set dealer-specific repo rates for all lenders. As trades in the Triparty market are periodically published, dealer-specific pricing corroborates the notion that dealers have distinct and publicly observable attributes, which the lenders value. Finally, lenders seem to exhibit

1 Many Triparty lenders are required to make regulatory filings. Data from these filings are publicly available; I use these data for my analysis.
a size-dependent aversion to concentration, whereby larger lenders are more keen to not
concentrate their portfolio in any one dealer. Such aversion compels lenders to spread out
their portfolios, possibly at the expense of more profitable lending opportunities. Fears
of operational risks, in particular fire sale risks stemming from operational disruptions,
could trigger this aversion.

These empirical insights motivate me to model the Triparty market using a supply-
and-demand framework, where the “good” traded is the cash extended against repo col-
lateral. On the supply side, lenders allocate their portfolio of cash among differentiated
repo borrowers (dealers). The lender’s utility reflects an aversion to concentration and
a non-pecuniary preference for stability in lending opportunities. These two forces de-
termine the lender’s optimal lending quantity and his sensitivity to repo rate changes.
On the demand side, borrowers set borrower-specific repo rates for all lenders. At her
optimum, the borrower offers a rate that can be marked down from her marginal value
of intermediation. The ability to build in a markdown is the borrower’s market power,
and the size of her markdown is a function of the lender’s supply elasticity. At a given
quantity of repo funding, the less the lender reacts to repo rate changes, the more the
borrower can mark down the rate she pays. Thus, the model embeds two forces that
affect the lender’s behavior and contribute to the presence of imperfect competition: the
preference for stability determines how each borrower’s borrowing consistency is valued,
and the aversion to concentration controls how easily the lender substitutes away from
each distinct borrower.

The key to pinning down these forces is understanding how lenders on average re-
spond to rate changes, which I estimate by using offerings at Treasury auctions as an

\footnote{For ease of exposition, throughout, I refer to the lender as “he” and the borrower as “she.”}
instrumental variable.3 Over my sample period, a borrower needs to increase the repo rate she pays by 1 bp on average to raise $0.64b in additional funding (about 4%). This estimate is in line with the out-of-sample and recent funding flow to the Overnight Reverse Repo Facility (RRP) following an unexpected rate increase in June 2021.4 It also signals relative inelasticity in the Triparty market compared to other large, short-term wholesale funding markets such as the one for Treasury bills (e.g., Greenwood, Hanson, and Stein (2015), Bernanke, Reinhart, and Sack (2004), Duffee (1996)).5

Leveraging this IV-estimated semi-elasticity and other key moments in the data, I estimate my model parameters using indirect inference and maximum likelihood. My parameter estimates accord with the notion that lenders exhibit size-dependent aversion to concentrated portfolios, thus purposely spreading out their lending. This aversion leads to lenders’ relatively inelastic responses in volume to repo rate changes, and grants dealers market power in a market of homogeneous goods with observable prices from many counterparties. The magnitude of dealers’ market power also depends on lenders’ non-pecuniary preferences. Consistent with the conjecture that these preferences capture a taste for stable investment opportunities, the recovered preference values show a strong

3The U.S. Treasury Department conducts periodic auctions of Treasury securities. The quantity up for auction influences the amount of repo borrowings sought by dealers because dealers buy securities, which they finance with repo. At the same time, the amount offered — not purchased — at each auction is likely driven by the Treasury Department’s fiscal concerns and is plausibly exogenous to concurrent preference shocks. The instrument purposely excludes auctions of Treasury bills, which can be purchased by money market funds who are cash-lenders on Triparty.

4The RRP is a Federal Reserve (Fed) policy tool that allows Triparty lenders to invest cash with the Fed via repo. On June 17, 2021, the repo rate at the RRP increased unexpectedly from 0 to 5 bps. The volume of repo placed at the RRP increased from $520.9b on June 16, 2021, to $755.8b on June 17, 2021. The $225b overnight increase relative to the total size of Triparty Treasury repo, which was $1628b as of June 9, 2021, implies an elasticity of 2.9% per basis point increase. As the RRP is the lenders’ alternative to lending to repo borrowers (see Section 5.2 for more discussion), the lenders’ sensitivity to changes in the RRP rate is also the lenders’ sensitivity to changes in the borrowers’ repo rates.

5As an example, Greenwood, Hanson, and Stein (2015) estimate that a 1-percentage-point decrease in \(\frac{\Delta \text{Treasury}}{\text{GDP}} \) leads to a 38.6 bps decrease in the two-week Treasury yield. The average annual GDP between 2011 and 2017 was $18.7T. Together, these estimates imply that, over my sample period, a 1 bp change in yield is associated with a $4.8b change in volume. This response is much higher than in the Triparty market ($0.6b for 1 bp).
correlation with measures of dealers’ borrowing consistency. On average, I calculate that the repo rates paid by dealers during the sample period reflect a 20.7 bps markdown from their marginal value of intermediation. Compared to the 5.7 bps spread between the repo rate and the lenders’ outside option, dealers command 78% of the 26.4 bps total surplus.

Imperfect competition in the Triparty market is an intermediation friction that affects funding spreads. Dealer-intermediated funding is often the marginal funding that prices assets. Consequently, the financing rate implied in security prices reflects what the dealers charge their customers for intermediating funding. Unless the dealers charge exactly what they pay to obtain funding on the wholesale market, funding spreads emerge. Triparty dealers’ market power over cash-lenders allows the dealers to pay less than what they charge, thus contributing to funding spreads in securities typically financed by repo. Two such funding spreads are the spread between Treasury yields and benchmark rates (Treasury swap spread), and between the implied financing rate in Treasury futures and wholesale repo rates (Treasury cash-futures basis). The magnitude of these two funding spreads indeed exceeds the estimated measure of Triparty dealers’ market power, and is, in fact, approximately the sum of Triparty dealers’ markdowns and riskless arbitrage profits that reflect the opportunity cost of using balance sheet. Importantly, competition in wholesale funding markets can be altered by policy. Through counterfactual analyses, I show that the Federal Reserve’s Overnight Reverse Repo Facility effectively reduces dealers’ markdowns by offering the Triparty lenders a competitive outside option.

This paper adds to the intermediary asset pricing literature (see He and Krishna-

6See Du, Hébert, and Li (2022) and Jermann (2019) for examples of recent studies of the Treasury swap spreads; see Fleckenstein and Longstaff (2020) and Barth and Kahn (2021) for examples of recent studies of the Treasury cash-futures basis.

7Certain banking regulations impose surcharge based on the total size of the balance sheet. Because a bank’s equity is fixed in the short-run, funding intermediation, which increases total asset, bears opportunity costs (Duffie (2017)). Treasury securities are typically financed with dealer-intermediated repo funds. Funding spreads involving Treasury should therefore reflect the cost of using balance sheet space.
murthy (2017) for a survey) by studying the role of intermediary competition in asset prices. Relative to the focus on balance sheet cost in studies such as Jermann (2019) and Fleckenstein and Longstaff (2020), this paper surfaces intermediary competition as a complementary angle to interpreting funding spreads involving repo-financed securities. To the extent that the competitive landscape varies in different funding markets, my results provide a micro-foundation for the segmentation in secured versus unsecured funding spreads documented by Siriwardane, Sundarem, and Wallen (2021). More broadly, this paper emphasizes that financing rates used to price assets can differ from observed rates in wholesale funding markets, a point similarly made by van Binsbergen, Diamond, and Grotteria (2021) in regard to the options market.

This study also contributes to the recent stream of research on market power in wholesale funding: by using three innovative approaches, I provide the first quantification of such market power. First, I tailor a supply-and-demand framework, informed by the new facts that I document, to capture Triparty agents’ joint price and quantity decisions. This approach departs from the traditionally sole emphasis on pricing and search frictions in over-the-counter markets (e.g., Duffie, Gârleanu, and Pedersen (2005), Hendershott et al. (2020)). Moreover, in contrast to the discrete choice model increasingly employed in finance (e.g., Kojien and Yogo (2018), Benetton (2021), Di Maggio, Egan, and Franzoni (2022)), my lender’s model is bespoke to reflect portfolio allocation considerations that lead to the simultaneous selection of multiple choices at the optimum. The modeling style takes inspiration from Martin and Yurukoglu (2017), Crawford et al. (2018), and Kim, Allenby, and Rossi (2002) in the industrial organization literature. Third, this paper explores preferences instead of market structures as the source of market power. In the foreign exchange market, dealers’ market power owes to the quarter-end regulatory
implementation that limits the number of active dealers (Wallen (2020)), and in the European repo market, dealers’ market power arises from customers’ isolation in a core-periphery network (Eisenschmidt, Ma, and Zhang (2021)). In contrast, the Triparty market features many large and well-connected counterparties active on both sides of the market. The preferences that grant Triparty dealers market power — for example, the aversion to concentration motivated by operational rather than credit risks — could be applicable in other centrally-cleared derivatives markets, and beyond the financial system in areas such as supply chain management.

This paper examines market power in wholesale funding through an in-depth study of the Triparty repo market. In so doing, I advance the understanding of the Triparty repo market and related short-term money markets. The Triparty repo market has long drawn the attention of scholars. Examples include Krishnamurthy, Nagel, and Orlov (2014), Copeland, Martin, and Walker (2014), Martin, Skeie, and Thadden (2014), Hu, Pan, and Wang (2021), Weymuller (2013), Han, Nikolaou, and Tase (2022) and Anbil and Zeynep (2018). To this vibrant literature, I add new empirical facts, and use these facts to discipline a structural model that generates the first joint determination of rate and volume. The structural model highlights the economic forces that motivate agents, and sheds light on dealer intermediation by quantifying otherwise unobserved market power. Dealers’ intermediation of repo funding has profound implications for asset pricing, yet data on this remains elusive. Studies that try to examine and explain repo intermediation have therefore relied on theory or proprietary or indirect data (e.g., Infante (2019), Gorton and Metrick (2012), Gorton, Metrick, and Ross (2020)). Recently, Barth and Kahn

8Krishnamurthy, Nagel, and Orlov (2014), Copeland, Martin, and Walker (2014), and Martin, Skeie, and Thadden (2014) investigate the role of the Triparty market in the Financial Crisis of 2007-09. Hu, Pan, and Wang (2021) and Weymuller (2013) study how haircuts are determined, especially for repo involving risky collateral such as equities. Han, Nikolaou, and Tase (2022) and Anbil and Zeynep (2018) examine the role of relationships and regulations in Triparty activities.
used data on cleared bilateral repo, which contain some intermediation activities, but the vast majority of dealer intermediation is uncleared and remains uncaptured.9 The markdowns I estimate help bridge this data gap by providing a gauge of the intermediation spread using available Triparty data. Finally, because money market funds are important providers of capital (\textit{Anderson, Du, and Schlusche (2019)}), studying their interactions with dealers on the Triparty market complements our understanding of not just money market funds' behaviors but the dynamics of the short-term funding markets more broadly (e.g., \textit{Aldasoro, Ehlers, and Eren (2022), Li (2021), Macchiavelli and Zhou (2022), Chernenko and Sunderam (2014)}).

In the next section, I provide details on the Triparty market and the data used to study it. In Section 3, I present and discuss the salient empirical observations that motivate my modeling choices. Then, in Section 4, I outline my model of the two sides of the Triparty market. I estimate the lender’s model in Section 5, and discuss results and implications in Section 6. In Section 7, I conclude.

2 Triparty repo market and data

In this section, I highlight the distinct features of the Triparty market, outline the role the Triparty market plays in collateral financing, and describe my data.

2.1 The Triparty market and the RRP

Repurchase agreements are contracts between two counterparties to exchange cash against collateral. I refer to the party that provides the cash as the lender and the party that pledges collateral to get cash as the borrower. The posted collateral, often valued at a

9Eisenschmidt, Ma, and Zhang (2021) uses regulatory data in Europe, which does capture bilateral repo transactions. However, the European repo market is structured differently from that in the U.S., limiting the applicability of these findings to the U.S.
haircut, is returned to the borrower when the cash is repaid — with interest. I refer to the rate used to determine that interest as the repo rate. Because repo lending is secured, repo contracts can differ depending on the collateral used. The Triparty market offers a way to standardize over-the-counter repo collateralization.

The Triparty market derives its name from its institutional setup. On Triparty, every transaction involves a third agent, who is the clearing bank that handles the logistics of cash and collateral transfers. All Triparty borrowers and lenders maintain accounts with the same clearing bank. Once a borrower and a lender agree on the terms of a repo, the clearing bank makes collateral allocation behind-the-scenes and monitors the value of the collateral. Triparty repo contracts specify only the class of collateral, e.g., Treasury securities, but not the exact securities used, e.g., CUSIPs of specific five-year on-the-run Treasury securities. These features make Triparty repo contracts standardized within a collateral class, and make Triparty repo convenient for funding.

The Triparty market is a crucial step in the intermediation process that channels cash through the financial system to market participants looking to finance their holdings. Cash-rich individuals and corporations place cash in vehicles such as money market funds (MMFs). MMFs keep a stable fraction of their assets under management (AUM) in overnight cash for liquidity. This overnight cash is lent out via Triparty repo to broker-dealers. Dealers, in turn, intermediate their borrowed cash to clients in the broader financial market who rely on repo to finance their securities. Every day, over $2 trillion is injected into the secured funding market through the Triparty market.

The wholesale repo rates in the Triparty market affect the price of many assets. Repo

10The sole Triparty clearing bank in the U.S. is Bank of New York Mellon. J.P. Morgan used to also provide Triparty clearing service for about 15\% of the market. It discontinued its service in 2017.

11In contrast, repos done outside of the Triparty market allow the borrower and lender to maintain accounts at different custodial banks, and the borrower typically needs to stipulate the CUSIPs of all securities used as collateral.
allows financial market participants to purchase security with as little capital as the haircut on the collateral, and is thus widely used for financing safe, government-backed securities, whose haircut is modest and stable.\(^\text{12}\) In fact, over 90% of the collateral pledged in Triparty repo are Treasury and agency mortgage-backed securities (MBS). Consequently, the conditions on the Triparty market directly affect the price of these securities. Moreover, Triparty repo trades enter into the construction of the Secured Overnight Financing Rate (SOFR), which has replaced LIBOR as the new dollar interest rate benchmark, affecting a large swath of dollar-denominated contracts and derivatives.

The Federal Reserve (Fed) has long been a keen observer of the Triparty repo market. In September 2013, in anticipation of a change in the stance of monetary policy, the Fed set up an overnight, fixed-rate, full-allotment reverse repo facility (RRP) on the Triparty market.\(^\text{13}\) The RRP gives a wide array of Triparty cash lenders\(^\text{14}\) the ability to lend to the Fed in the form of overnight repo at a pre-announced interest rate. When the RRP was first set up in September 2013, access to the facility was capped at $500 million per eligible lender. This cap was subsequently raised six times, eventually reaching $30 billion per eligible lender by September 2014, at which point the cap no longer seemed binding for any lender. September 2014 was also when the Fed stated in the FOMC’s Policy Normalization Principles and Plans that “the Committee intends to use the RRP facility as a tool to help control the federal funds rate during the normalization of the stance of monetary policy”. This policy bolstered lenders’ confidence in the Fed’s commitment to the RRP. In effect, by September 2014, Triparty lenders had an attractive alternative to lending to repo borrowers, in the form of the RRP.

\(^{12}\)For example, over 95% of the Treasury repo in my sample has a haircut of 2%.
\(^{13}\)https://www.newyorkfed.org/markets/opolicy/operating_policy_130920.html
\(^{14}\)https://www.newyorkfed.org/markets/rrp_counterparties
2.2 Data

To study the Triparty market, I use monthly filings with the Securities and Exchange Commission (SEC) made by MMFs domiciled in the United States. MMFs are the largest class of cash lenders on the Triparty market, accounting for 40% to 60% of all repo transactions. Other Triparty lenders include security lenders, pension funds, insurance companies, and various municipalities with temporary excess cash (Copeland et al. (2012)).

MMFs are regulated and are required to file monthly N-MFP reports. These filings are snapshots of an MMF’s entire portfolio as of the last business day of each month.15 For each repo contract that the MMF has, information is available on the counterparty, the amount, the repo rate,16 the maturity date, and the collateral type and value.

I obtain all N-MFP reports between 2011 and 2017 from the SEC EDGAR database and collapse the filings by money market fund families.17 Each MMF family (e.g., Black-Rock) can have a number of different money market funds (e.g., government-security-only funds, tax-exempt funds). Importantly, money market fund families enter into repo contracts on behalf of all funds in the family and then distribute the investment across funds (Copeland, Martin, and Walker (2014)). Consequently, to analyze the equilibrium rate and volume determination, I consider all funds in the same fund family as one entity.18

Money market funds manage their liquidity by keeping a steady fraction of their AUM in overnight cash. As there are limited options to invest cash overnight, Triparty repo,19

15Although N-MFP filings are done monthly, these reports are likely representative of the MMF’s repo activities throughout the month. Anderson, Du, and Schlusche (2019) use proprietary data available from the Federal Reserve and show that repo activities are stable throughout the month, with the exception of window-dressing activities on the last day of the quarter.
16Before April 2016, repo rates were not separately reported. I parse the title of each contract to obtain rates where available. To address potential misreporting issues, I winsorize repo rates at 1% and 99%.
17My sample ends in 2017 because I am interested in the effect of imperfect competition in an abundant reserve regime. The Fed started shrinking its balance sheet in 2018.
18To illustrate, the standard deviation of rates obtained by funds within a fund family is 0 at the median and less than 1 basis point at the 73rd percentile.
which is typically overnight, forms an important part of MMFs’ overnight portfolio. I explicitly focus on Triparty repos that are overnight in duration.\footnote{The N-MFP reports the maturity date without reporting the start date. I therefore identify overnight contracts as those that mature on the first business day of the following month. This approach is universal in papers that use N-MFP filing data. See Aldasoro, Ehlers, and Eren (2022) for a discussion of potential shortcomings.}

Triparty repo activities are concentrated in a relatively small set of agents. As Appendix Figure A1 illustrates, over 85% of the activities in the N-MFP filing data are done by 18 MMFs and 20 dealers. My analysis thus focuses on these agents. My final data set is a MMF-dealer-month panel of repo transactions from January 2011 through December 2017 on 84 month-ends, for a total of 14,571 observations.

I supplement the data from N-MFP filings with the Federal Reserve’s releases on RRP activities, TreasuryDirect’s reporting of Treasury securities auctions, and credit default swap (CDS) pricing from Markit and Bloomberg.

3 Empirical patterns on Triparty

In this section, I present three facts of the Triparty market and discuss possible reasons for these empirical observations.

Fact 1: MMFs simultaneously and consistently accept different repo rates from different dealers.

Given repo contracts that differ only in the identity of the dealer, MMFs simultaneously lend to multiple dealers and do so at consistently different rates. To compare repo rates across dealers, I focus on a subsample of overnight repo contracts that are collateralized only by Treasury securities with a 2% haircut,\footnote{I restrict the sample to contracts with a collateral-to-principal ratio of 102\% ± 0.1\%.} which retains 75\% of all MMF-dealer-
month observations. Prior research has documented differences in repo rates between contracts backed by different collateral, even though the haircut on collateral theoretically adjusts for the quality of the underlying assets (Weymuller (2013)). I therefore compare repo rates only across repos that are backed by the same collateral. This choice is not restrictive because Triparty repo differentiates collateral not by CUSIP but by asset class. By focusing my analysis of repo rates on Treasury-backed overnight repo contracts that all have a 2% haircut, I retain a sizeable subsample whose repo rate is not affected by differences in duration, collateral, or haircut, leaving dealer identity the only other factor that differentiates repo.

In this subsample of homogeneous repos, MMFs are seen to simultaneously accept different repo rates from different dealers. As an example, Figure 1 plots the repo rate that BlackRock MMF received from lending to Goldman Sachs and Wells Fargo in 2016 and 2017. Although Goldman Sachs and Wells Fargo consistently borrowed at different rates, BlackRock nonetheless lent to both dealers month after month.

This observation is surprising because the difference in repo rates cannot be due to differences in the contractual terms of the repo. Moreover, although the creditworthiness of dealers can often be a source of price dispersion, especially in OTC markets, in 2016 and 2017, the average short-term (6M) CDS rate of Goldman Sachs was in fact 12 bps above that of Wells Fargo. This observation is all the more surprising when considering that the same three agents transacted every month. It is unlikely that BlackRock was unaware of the systematically different rates paid by Goldman Sachs versus Wells Fargo.

\footnote{I start with 14,571 MMF-dealer-month observations. Focusing on transactions that use Treasury securities as collateral decreases the sample to 11,486 observations. Further restricting the sample to a 2% haircut leaves me with 10,938 observations.}

\footnote{To remove the effect of general interest rate trends, I restate the transacted repo rate as the deviation to the volume-weighted median on that day. Doing so both conforms to the convention in the repo market and minimizes the impact of outliers. All published repo-based indices are calculated as the volume-weighted median. Examples include the Secured Overnight Financing Rate (SOFR), the Triparty repo index, and the DTCC GCF repo index.}
Informational friction cannot explain such a persistent difference.

More generally, MMFs in my sample on average lend to 10 dealers at a time, and the difference between the highest and the lowest rate simultaneously accepted by MMFs is on average 4 bps. This dispersion is, again, present in the context of repeated interaction. Indeed, the AR(1) persistence of whether a MMF-dealer pair trades is 85% ($R^2 = 0.72$). Between sophisticated financial institutions that repeatedly interact with each other, repos that differ only in the identity of the dealer trade at persistently different rates. These observations lead me to wonder, what is the pattern in the Triparty rate dispersion, and what is the pattern in MMFs’ lending?

Fact 2: Dealer identity drives repo rate dispersion.

The dispersion in apparently homogeneous repo contracts is driven by dealer identities. Using the overnight Treasury repo subsample, I show that dealer identities explain the preponderance of the repo rate variation in both the cross-section and time series.

In Figure 2, I examine the dispersion of repo rates in the cross-section by regressing repo rates in each month on MMF or dealer fixed effects.\(^{23}\) The plotted R^2 from these regressions show that dealer identities alone explain about 50% of the variation, while MMF identities explain much less. Even if MMF identities did not affect dispersion, I would expect MMF fixed effects to have some explanatory power as long as the sorting of dealer to MMF is not completely symmetric. I thus regress repo rates in each month on both dealer and MMF fixed effects. Once dealer identities are controlled for, adding MMF fixed effects does not improve the R^2 by much. I formally test whether the additional

\(^{23}\)Comparing the explanatory power of models with different fixed effects is the focus of the figure and tables in this subsection. To avoid fitting fixed effects over one or two data points, I exclude observations in which a borrower or a lender has fewer than three transactions in a month. Doing so reduces the sample for Figure 2 and Tables 1 and 2 to 10,453 observations.
MMF fixed effects are jointly 0, and I cannot reject the null at the 10% significance level in 72 of the 84 months.24

Not only is repo rate dispersion mostly driven by between-dealer variation, but within a dealer, variation cannot be explained by MMF or MMF-dealer pair characteristics. In Table 1, I test the following characteristics: the amount of Treasury-backed overnight repo lending between a MMF-dealer pair (\textit{Pair Treasury repo volume}), the share — or importance — of this pair’s lending volume to the MMF’s overall Treasury-backed overnight repo lending (\textit{Pair vol as percent of MMF}), the share of this pair’s lending volume to the dealer’s overall Treasury-backed overnight repo borrowing (\textit{Pair vol as percent of borrower}), the MMF’s total Treasury-backed overnight repo lending (\textit{MMF total Treasury repo vol}), and the number of dealers to whom the MMF lends (\textit{MMF number of counterparty}). None of these characteristics statistically significantly explains the rate dispersion, judging by either the individual coefficients’ statistical significance or the improvement in R^2 from including these regressors (difference between R^2 (proj model) and R^2 (full model)). Together, the results from Figure 2 and Table 1 indicate that while different dealers systematically pay different rates for repo funding, different MMFs lending to the same dealer do not receive statistically different rates.

Dealer identity is also the principal driver of repo rate variation in the time series. Given the OTC nature of repo transactions, prior studies such as Han, Nikolaou, and Tase (2022) focus on differences in MMF-dealer pairs to explain rate variations. In Table 2, I compare the goodness of fit between models that include only dealer fixed effects and models that include pair fixed effects. Moving from Model (1) to Model (2), including all the pair fixed effects improves the R^2 by about 0.07, yet this is achieved with 251 more regressors. Therefore, the Akaike information criteria (AIC) ranks these two models

24Multiple hypothesis testing is corrected using the method described in Holm (1979).
similarly, and the Bayesian information criteria (BIC) prefers the more parsimonious model with only dealer fixed effects. The same pattern holds when comparing Models (3) and (4), both of which include year fixed effects. In short, dealer identities are of first-order importance in explaining Triparty repo rate dispersion.

Fact 3: Larger MMFs connect to more dealers to spread out lending.

MMFs construct their overnight cash portfolios in a systematic and size-dependent way. As an example, Figure 3 compares the repo lendings done on October 31, 2016, by two MMFs. The larger MMF (BlackRock) lent to more dealers and lent smaller shares of the portfolio to each dealer. Table 3 shows that this relationship between portfolio size and both the extensive and intensive margins of the portfolio holds across MMFs.

In Model (1) of Table 3, the number of dealers to whom an MMF lends increases by about 3 as the size of MMF’s overnight cash portfolio doubles.\(^{25}\) This finding is perhaps intuitive. An MMF incurs some fixed costs, such as setting up master repurchase agreements, before it can lend to a dealer,\(^{26}\) and larger MMFs can afford to establish lending relationships with more dealers. But why do MMFs want to lend to more dealers?

MMFs are not establishing more lending relationships to better “rate shop”. If MMFs willingly incur fixed costs because lending to more dealers allows MMFs to find more attractive rates, then I would expect the portfolios of more connected MMFs to change more frequently and significantly.\(^{27}\) However, as Figure 4 shows, more-connected MMFs maintain portfolios that are just as stable, if not more stable, over time. I measure the

\(^{25}\)Overnight cash portfolios are measured as the sum of all overnight repo lending, inclusive of repo placed in RRP.

\(^{26}\)Master repurchase agreements (MRAs) typically set out the protocols for margin maintenance and default; thus, day-to-day, cash-lenders and cash-borrowers only need to decide on the repo rate and volume.

\(^{27}\)Fact 2 revealed that having more connections does not grant an MMF preferential pricing vis-à-vis any one dealer. Hence, if there is a price-related advantage to forming more connections, it is likely the ability to shift lending to whichever dealer offers the best rate on a given day.
similarity between MMFs’ overnight repo portfolios across time using cosine similarity:

$$\text{CosSim}(x, y) = \frac{x \cdot y}{\|x\| \|y\|},$$

where x and y denote a given MMF’s portfolio at time t and $t+n$, respectively. The closer the cosine similarity is to 1, the more stable the portfolio.

Panel (a) of Figure 4 shows that, irrespective of the number of dealers MMFs lend to at time t, MMFs maintain very similar portfolios at time $t+1$. In fact, for portfolios that start with 10 or more dealers, the mean cosine similarity is about 0.9, slightly higher than the 0.8 mean of portfolios that start with fewer than 10 dealers. Panel (b) of Figure 4 shows that the stability in portfolios is not a quirk of short-term stickiness, but that portfolios at time t and time $t+6$ also exhibit high degrees of similarity across MMFs.

Instead, by connecting to more dealers, MMFs are able to lend a smaller share of the portfolio to each dealer, achieving a distributed portfolio. Model (2) of Table 3 shows that as MMFs double in size, the median portfolio share lent to dealers decreases by 6.7% on average. Unlike the mean share of the portfolio, the median share of the portfolio need not change as the number of dealers in the portfolio changes. Rather, this declining median share signals MMFs’ desire to reduce exposure to any one dealer. Indeed, in Models (3) and (4), we see that the maximum share and the minimum share also decrease with portfolio size, and by similar magnitude, reflecting a deliberate effort to spread out the portfolio.

Discussion of empirical patterns

Faced with dealers that borrow at different repo rates (Fact 2), MMFs lend to multiple dealers simultaneously (Fact 1) and show a size-dependent tendency to spread out their portfolios (Fact 3). These facts about the Triparty market suggest at least two economic forces that work in tandem.
First, MMFs knowingly accepting different rates indicates that dealers’ identities differentiate repo lending in a way that rationalizes differences in pecuniary returns. How do lenders differentiate among dealers? Conversations with over a dozen industry participants point to the importance of consistency. MMFs have a strong preference for stable repo investments because low volatility in yield helps them market themselves as higher-yielding cash-alternatives. Dealers, however, may not be able to consistently borrow because repo is balance-sheet intensive and can come at a high opportunity cost. MMFs therefore likely favor dealers who devote a consistent amount of their balance sheet space to repo intermediation. I test this hypothesis in Section 6 and find that MMFs’ estimated non-pecuniary preferences for dealers indeed exhibit strong correlations with measures of borrowing consistency. The presence of this preference makes lenders perceive lending to different dealers as differentiated investment opportunities that warrant differential rates.

At the same time, MMFs lend to multiple dealers simultaneously, suggesting that MMFs have an aversion to concentration and purposely spread out their lending. At first blush, this sounds perplexing. Triparty repo carries little credit risk: these contracts are largely overnight and are backed by high-quality, bankruptcy-remote collateral valued with conservative haircuts (Hu, Pan, and Wang (2021)). Even during the depth of the Financial Crisis of 2007-09, there was no run or default on Triparty (Krishnamurthy, Nagel, and Orlov (2014)). Nevertheless, MMFs may want to limit their dollar exposure to any one dealer to minimize operational risks. Tail risks such as cyber attacks could prevent a dealer from returning its repo loan on time. If MMFs take possession of the posted collateral, regulations require that MMFs liquidate the collateral immediately.

28There are regulated counterparty caps on certain assets that MMFs own (e.g., commercial paper). However, such caps do not apply to repo. Repo is treated as a “look-through” asset, so it is as if MMFs are holding the underlying Treasury collateral, which bears no cap.

29Regulations limit the tenor of securities held by MMFs to 397 days. Securities posted as repo collateral exceed this tenor requirement.
Fire sales could materially compromise the value of the collateral if the total amount to be sold is large. Worries over fire sales are consistent with the pattern of portfolio diversification that intensifies with size: even small shares of a large portfolio could be difficult to quickly liquidate. Although no such operational risks have come to pass in recent memory, concerns about them could still be powerful forces.

One manifestation of MMFs’ aversion to concentration is that on quarter-ends, when some dealers window dress and cut back on repo borrowing, MMFs do not redistribute lending to non-window-dressing dealers. As Table 4 shows, on quarter-ends, the 10 dealers governed by regulations in the European Union (EU) and the United Kingdom (UK) cut back on repo borrowing,\(^{30}\) both in dollar terms (Models (1) and (2)) and in percentage measures (Models (3) and (4)). On average, an EU or UK dealer reduces its repo borrowing by about $5 billion on quarter-ends, even after controlling for the average repo borrowing in a given quarter (Model (2)). Yet the repo borrowing by dealers in Canada (CA), Japan (JP), and the US barely changes on quarter-ends. MMFs’ apparent reluctance to shift their lending to CA, JP, or US dealers is not because these dealers offer dramatically lower repo rates on quarter-ends (Model (5)). Rather, this behavior suggests that MMFs are averse to lending too much of the portfolio to any one dealer. This aversion, coupled with MMFs’ tendency to lend to the same dealers over time, means that MMFs may not nimbly respond to rate changes because shifting volumes may push MMFs against their concentration limits. This, in effect, gives dealers monopsony power over the MMFs that lend to them. Differently sized MMFs exhibit different levels of aversion. Therefore, dealers who borrow from different subsets of MMFs face supply curves of differing elasticity, providing a second reason for differential rates.

\(^{30}\)UK banks reported their balance sheet size as quarter-end snapshots through 2015. During calendar-year 2016, UK banks reported month-end snapshots. Starting in 2017, UK banks reported quarter averages. UK banks’ quarter-end window-dressing activities decreased starting in 2016.
Hence, both MMFs’ preference for stable investment and their aversion to concentration could contribute to the observed empirical patterns. To account for the effect of these forces in the equilibrium, I next build and estimate a structural model of the Triparty market. Such a model must account for the patterns in the data. A search model is unlikely to be useful, as the dispersion is observed in the context of repeated interactions between the same set of agents. A model that relies purely on linear utility from pecuniary returns is also likely insufficient, as the agent’s optimal choice in a linear utility is to concentrate everything in a single best choice, which is at odds with the observed pattern of lending to multiple dealers. The first-order importance of dealers’ identities in explaining rate dispersion, and the striking simultaneity in MMFs’ lending, therefore, lead me to develop a model that features lenders with possibly concave utilities responding to posted, borrower-specific pricing.

4 Model

I now develop a model for borrowing and lending overnight cash via repo in the Triparty market. My aim is to construct a model that captures the key economic forces that generate the distinct patterns in the data. The model should provide a reasonable representation of the market, so that it can be used to quantify the degree of competition.

The model has two types of agents interacting in the supply and demand of repo funding. On the supply side, lenders, e.g., MMFs, allocate their overnight cash with possible aversion to portfolio concentration and non-pecuniary preferences for borrowers. On the demand side, borrowers, i.e., dealers, act as monopsonies and set the repo rates used to attract funding.
4.1 The lender’s problem

Let i index lenders and j borrowers. Lender i has a portfolio of investments with one-day maturity. At each time t, he chooses the share of this overnight portfolio going to each of the J borrowers, x_{ijt}. The share of the portfolio not lent out, x_{izt}, goes to the lender’s outside option: safe investments that mature overnight and for which the lender harbors no concentration aversion.\(^\text{31}\)

\[
U(x_{it}; \omega, \alpha) = \max_{x_{it}} \sum_{j=1}^{J} \frac{\omega_{ijt} R_{jt}}{\alpha_{it}} \{\exp(\alpha_{it} x_{ijt}) - 1\} + R_{zt} x_{izt},
\]

s.t. $\sum_{j=1}^{J} x_{ijt} + x_{izt} = 1, x_{it1}, ..., x_{itJ} \geq 0$.

The lender’s utility is quasi-linear: linear in his portfolio allocation to the outside option, which earns a gross return of R_{zt}. His utility from lending to one of the J borrowers is possibly concave in the shares lent, with the degree of the curvature controlled by an aversion to concentration parameter $\alpha_{it} \leq 0$. The utility from lending to a borrower further depends on the gross return, R_{jt}, set by the borrower and taken as given by the lender, and the lender’s non-pecuniary preference for that borrower, $\omega_{ijt} \geq 0$.

From the lender’s first-order condition (FOC), the optimal share of the portfolio lent to borrower j is

\[
x_{ijt}^* = \frac{\log(R_{jt}) + \log(\omega_{ijt}) - \log(R_{zt})}{-\alpha_{it}}.
\]

The optimal share increases in the attractiveness of borrower j relative to the outside option (R_{zt}), where borrower j’s attractiveness is a function of the repo rate she pays.

\(^{31}\text{Examples of the lender’s outside option include the RRP and Treasury bills. See Section 5.2.}\)
(R_{jt}) and the non-pecuniary preference she garners (\omega_{ijt}). At a given R_{jt}, R_{zt}, and \omega_{ijt}, different lenders will allocate different shares based on their concentration aversion (\alpha_{it}).

The concentration aversion, \alpha_{it}, controls how quickly the lender’s utility diminishes when lending to a given borrower. It therefore determines how distributed lender i’s portfolio is and how i reacts to repo rate changes. Consider the extreme case of \alpha_{it} \rightarrow 0: lender i’s utility becomes linear, and he would concentrate all of his lending into one single best repo investment. As \alpha_{it} becomes more negative, the utility becomes more concave, compelling the lender to spread out his lending. Consequently, the lender lends concurrently to multiple borrowers, reflecting an aversion to concentration. Intuitively, if the lender is averse to lending too much to any one borrower, then when one of the borrowers raises her rate, the lender will not consolidate his lending to take advantage of this rate increase. The concentration aversion parameter, \alpha_{it}, is thus intimately tied to the lender’s semi-elasticity. This relation becomes apparent by differentiating the lender’s FOC (Equation 1) with respect to the log of the repo rate. The optimal response in share to a (percent) rate change is exactly \frac{\partial x^*_{ijt}}{\partial \log(R_{jt})} = -\frac{1}{\alpha_{it}}. That is, if a borrower doubles the repo rate she offers, the lender who is lending to her would increase his lending by \frac{1}{\alpha_{it}} of his portfolio.

As documented in Fact 3, there is an empirical relationship between a lender’s portfolio size and his aversion to concentration. I therefore parameterize \alpha_{it} as

\alpha_{it} = \beta_0 + \beta_1 \cdot \sqrt{y_{it}},

\(^{32}\)The FOC emphasizes the trade-off between returns from borrower j and the outside option, and assumes the between-borrower cross-elasticity to be 0. This modeling assumption is supported by the minimal substitution between borrowers observed on quarter-ends, when a subset of borrowers experience funding shocks. See Discussion of empirical patterns in Section 3.
where y_{it} is the size of the lender’s overnight cash portfolio.33,34 I take y_{it} as exogenous, as the overnight cash portfolio serves to meet an MMF’s liquidity needs and tends to be a stable fraction of the MMF’s overall AUM.

The attractiveness of lending to borrower j depends on the non-pecuniary preference ω_{ijt}. This preference affects both whether and how much i lends. The marginal utility of lending the first dollar to borrower j is $\frac{\partial U}{\partial x_{ijt}}|_{x=0} = \omega_{ijt}R_{jt}$. Given that the lender’s cash could otherwise earn a return of R_{zt}, lending to j occurs if and only if $\omega_{ijt}R_{jt} > R_{zt}$. Therefore, ω_{ijt} differentiates borrowers and determines to whom the lender lends. Moreover, because the utility from lending depends on an ω_{ijt}-scaled R_{jt}, differences in ω_{ijt} govern how much different borrowers can get from the same lender. I parameterize ω_{ijt} as

$$\omega_{ijt} = \chi_{ijt} \cdot (\nu_{ijt} + \epsilon_{jt});$$

$$\chi_{ijt} \sim Bernoulli(Logistic(\rho_{ij} + \delta \log(y_{it})));$$

$$\nu_{ijt} \sim 1 + Gamma(shape = k, scale = \psi_j/k);$$

$$\epsilon_{jt} \sim LogNormal(-\frac{\sigma^2}{2}, \sigma^2).$$

χ_{ijt} is a binary random variable that determines whether lender i has a nonzero preference for borrower j. Its mean depends on borrower-lender pair-specific parameters, ρ_{ij}. This parameterization is motivated by the high persistence in trading, and is necessitated by the fact that trading relationships on Triparty were established long before my sam-

33The results in Table 3 suggest that the relationship between portfolio construction and portfolio size is concave. The square root transformation of y_{it} captures this concavity while ensuring positivity. The estimation results are robust to alternative concave transformations; see Appendix Section A.

34Concentration aversion (α_{it}) is modeled to not depend on borrower attributes because this aversion is likely motivated by fears of operational disruption, and collateral pledged by borrowers is comparable and would not be differentiated in fire sales. Independence of α_{it} from borrower attributes is helpful though not necessary for identification.
ple began. \(\chi_{ijt} \) further depends on the size of the lender’s overnight cash portfolio, \(y_{lt} \), through \(\delta \). This provision allows lenders to lend to more borrowers as lenders grow in size.

If the lender has a nonzero preference for a borrower, then the intensity of the preference, \(\nu_{ijt} \), is drawn from a gamma distribution whose mean depends on public and borrower-specific \(\psi_j \).\(^{35}\) Thus, in reduced-form, \(\psi_j \) captures the systematic variations in \(\omega_{ijt} \), conditional on lending. Perceptions of a high non-pecuniary preference could prompt the lender to either lend at a lower rate or lend more at a given rate. I speculate that variations in \(\psi_j \) are driven by a preference for consistent borrowing. This interpretation is supported by the results in Table 7, which show a correlation between the \(\psi_j \) parameters I recover and measures of borrower consistency (see Section 6 for more discussion).

Finally, the model explicitly accounts for possible borrower-time-specific shocks to the lender’s preference, which are known to market participants but not to the econometrician. These “supply shocks”, \(\epsilon_{jt} \), if present, threaten the ordinary least squares (OLS) identification of the relationship between rate and volume, because these shocks affect the observed lending volume without having observable proxies that one can use to control for their effect.

4.2 The borrower’s problem

At each \(t \), borrower \(j \) maximizes her profit by choosing the gross repo rate \(R_{jt} \) that she pays to all lenders for repo funding:

\[
\max_{R_{jt}} [S_{jt}(Q_{jt}) - R_{jt}] \cdot Q_{jt}(R_{jt}),
\]

\(^{35}\)The choice of gamma ensures positive preferences and gives flexibility in fitting the data. If shape parameter \(k \) is large, the gamma distribution approximates Normal; if \(k \) is small, then the gamma distribution approximates Exponential.
where $Q_{jt}(R_{jt}) = \sum_i [E[x_{ijt}(R_{jt})] \cdot y_{jt}]$ is the total quantity of funds borrower j expects to obtain at rate R_{jt}, and $S_{jt}(Q_{jt})$ is the average value of intermediating funds at Q_{jt}.

Triparty borrowers demand repo funds because these funds can be intermediated to generate value. For example, the funds could be lent out (via repo again) to a borrower’s clients, such as hedge funds, that do not have access to the Triparty market but need to finance security holdings using repo. Alternatively, the repo funds could be used to finance a borrower’s own security holdings, such as those purchased during a Treasury security auction. The value that a borrower requires to intermediate her repo funding, S_{jt}, could depend on the total amount of funds that she obtains. Importantly, this intermediation value reflects the pure economic benefit accruing to the borrower and is thus net of any opportunity cost from taking up balance sheet space. Balance sheet costs also matter for asset prices (see Duffie and Krishnamurthy (2016) and Du, Hébert, and Huber (2020)). In fact, the full cost of repo funding a borrower’s clients face should be the sum of the modeled value of intermediation and the unmodeled balance sheet cost. Section 6 explores this relationship in depth.

Differentiating the borrower’s problem with respect to the repo rate, the FOC yields that borrower j’s optimal repo rate is

$$R^*_{jt} = \frac{S'_{jt} \cdot Q_{jt} + S_{jt}}{Q_{jt}} - \frac{Q_{jt}}{Q_{jt}}.$$

(3)

The optimal rate offered by the borrower could embed a markdown from her marginal value of intermediation. The magnitude of the markdown is therefore a measure of the borrower’s market power. This markdown is a direct function of the funding supply the borrower faces, $Q_{jt}(R_{jt})$. At a given quantity Q_{jt}, if the supply is highly responsive to
rate changes, then Q^t_{jt} would be large and the markdown would be small. Conversely, the borrower can build in a large markdown if the lenders’ response to her repo rate changes is small. To measure the borrower’s ability to set a markdown — or the extent of her market power — I therefore must find the lenders’ concentration aversion (α_{it}) and non-pecuniary preferences (ω_{ijt}, captured by ψ_j).

4.3 Model discussions

The lender’s and the borrower’s problems together describe the equilibrium of the Triparty market. In trying to capture the most salient features of the data, the model deliberately de-emphasizes certain considerations, which I discuss below.

Concentration aversion among borrowers. The model’s inclusion of the lender’s aversion to concentration is motivated by the fact that MMFs (lenders) maintain systematically distributed portfolios. This observation alone could also stem from dealers’ (borrowers’) having an aversion to concentration, possibly out of a desire for a diversified funding base. Yet even if present, concentration aversion among dealers is unlikely a dominant force. Aversion to concentration means that, on the margin, the utility of one more dollar invested with the same counterparty is not as high as previous dollars. If dealers harbored strong concentration aversion, then they would optimally attract marginal new lenders with better rates to achieve diversification. The empirical data show no statistically significant distinctions in rates received by MMFs lending to the same dealer (Fact 2 in Section 3). I therefore choose to emphasize lenders’ concentration aversion in the economic model.

The fact that this aversion is pronounced in MMFs but not dealers suggests that it is likely caused by considerations unique to MMF. I speculate that MMFs’ inability to hold
long-duration assets leads to worries over operational risks and fire sales, giving rise to this aversion; see also *Discussion of empirical patterns* in Section 3.

The role of private information. Information in this model is mostly public. The only private information that the lender has is the realization of the intensity of his non-pecuniary preference (ν_{ijt} in ω_{ijt}). These realizations affect equilibrium volume but not rates because the rate is set by the borrower using the mean level of the preference, ψ_j, which is public knowledge.\(^{36}\) The lender’s preferences in this model thus contrast with those in models of bank lending relationships, which tend to reflect an informational advantage (e.g., through better monitoring) that often leads to preferential rates (e.g., Darmouni (2020)).

The model here downplays the role of relationships and private information for two reasons. First, the amount of private information is likely limited because the advantage of superior information is muted when lending is standardized, secured against high-quality collateral, and renewed daily. Second, even if private relational information exists, it does not seem to be of first-order importance. The fact that each dealer borrows at a distinct price from all MMFs suggests that dealers’ public attributes determine pricing. I therefore intend for the lender’s non-pecuniary preferences in the model to reflect the borrower’s public attributes in reduced-form. An example of the borrower’s public attributes is her borrowing consistency; see *Discussion of empirical patterns* in Section 3. My modeling choice underscores that rent in the Triparty market does not come from information asymmetry.

\(^{36}\)The borrower will take into account borrower-time specific preference shocks, which are unobservable to the econometrician but known to both the borrower and the lender.
5 Estimation

In this section, I outline the estimation strategy that separately quantifies the two key parameters necessary to compute the borrower’s markdown: α_{it} and ω_{ijt} (captured by ψ_j). I discuss sources of variation, measurement of R_{zt}, the instrumental variable analysis, and the indirect inference and maximum likelihood estimation approach I use to estimate all model parameters.

5.1 Sources of variation

From the lender’s FOC (Equation 1), I know that both α_{it} and ω_{ijt} can affect how much lender i lends to borrower j (x_{ijt}) at a given repo rate (R_{jt}). It is possible to separate their effects because α_{it} captures differences across lenders and ω_{ijt} centers on means that vary across borrowers. Specifically, comparing lending to the same borrower by different lenders can provide information about the relative magnitude of α_{it}. Similarly, comparing lending received by two different borrowers from the same set of lenders can reveal the relative magnitude of ψ_j.

Cross-sectional comparisons alone are insufficient to pin down the level of these parameters. Instead, I also leverage the direct relationship between α_{it} and lenders’ semi-elasticity. As discussed in Section 4.1, lender i’s portfolio allocation response to borrower j’s repo rate change depends on the lender’s α_{it}. Hence, the supply schedule each borrower faces is a function of all the individual α_{it} associated with the lenders that lend to her. Estimating lenders’ supply semi-elasticity can garner information about the average level of α_{it}, which in turn provides information about the levels of ψ_j.

From estimated α_{it} and ψ_j, I can calculate borrowers’ markdowns. The borrower’s unobserved marginal value of intermediation is then the sum of the estimated markdown
and the observed borrower repo rates (Equation 3).

5.2 Measuring R_{zt}, the lender’s outside option

In the lender’s FOC (Equation 1), the lending decision directly depends on the difference between a borrower’s offered repo rate (R_{jt}) and the return on the lender’s outside option (R_{zt}). An outside option is a safe, overnight investment, for which the lender harbors no concentration aversion. Two plausible outside options are the Fed’s RRP and the Treasury bills. I measure R_{zt} as the higher of the RRP rate or the 1-day Treasury bill yield.

The RRP is a fixed-rate, full-allotment facility that allows lenders to lend to the Fed via repo (see also Section 2.1). The rate offered by the RRP provides a good measure of the lender’s outside option. MMFs can also invest in Treasury securities that have a maturity of less than one year. Similar to placing repo at the RRP, buying Treasury securities is investing with the U.S. government and is an outside option to lending to Triparty dealers. However, there is no reported overnight Treasury yield. I thus impute a 1-day Treasury yield by adjusting for the term structure using the 1-day and the 1-month overnight indexed swap (OIS).

I generate the time series of R_{zt} as the 1-day Treasury bill yield before September 2013, when the RRP was introduced, and the RRP rate thereafter; the RRP rate is always higher than the 1-day Treasury bill yield in my sample. In the data, the correlation between the 1-day Treasury bill yield and the median Triparty repo rate is 0.78 before the introduction of the RRP and 0.13 thereafter, supporting my choice of R_{zt}.

The introduction of the RRP in 2013 was followed by a year of testing, during which the RRP had a constraining counterparty cap (see Section 2.1). In the estimation, I
purposely leave out this testing period of September 2013 to September 2014, as the
counterparty cap makes the true marginal outside option difficult to ascertain. I also
exclude all quarter-end months because many regulations are enforced only on quarter-
ends. Numerous studies have focused on quarter-ends to study how regulations distrot
markets (Du, Tepper, and Verdelhan (2018), Wallen (2020)). My study aims to reveal
the extent of imperfect competition even outside of quarter-ends. The final estimation
sample therefore consists of 48 month-ends from 2011 through 2017.

5.3 Instrumental variable

Lenders’ supply semi-elasticity is an essential ingredient in my estimation strategy. How-
ever, I cannot measure the relationship between rate and volume using OLS due to
preference shocks that are unobserved by the econometrician (ε_{jt} in Equation 2). For
example, if negative preference shocks occur, a borrower will be seen to offer a high repo
rate but will attract only a modest amount of funds, biasing the true relationship to 0.

I therefore estimate the inverse supply semi-elasticity by using an instrumental vari-
iable that shocks the borrowers’ funding needs. The U.S. Treasury Department periodi-
cally auctions marketable debt securities of various maturities. Dealers bid, make mar-
kets, and take speculative positions around Treasury auctions (Fleming and Rosenberg
(2008)), and they typically finance their Treasury holding with repo. Consequently, the
amount of Treasury securities auctioned likely correlates with how much borrowers want
to borrow. Using Treasury auctions as an instrument for borrowers’ demand for funding,
I can find by how much borrowers need to raise their repo rates to attract additional
funding.

Specifically, I construct the instrument as the amount of non-bill Treasury securities
offered at auction such that they settle on the same days as MMFs’ reporting dates. On these settlement dates, titles transfer and dealers must finance their acquisitions. Repo volumes on settlement days are therefore mostly directly impacted by Treasury auctions. To avoid potential endogeneity between repo rates and how much dealers decide to purchase, I focus on the amount of Treasury securities offered for sale, which likely reflects the Treasury Department’s fiscal needs and is plausibly exogenous to borrower-specific preference shocks.37 Finally, I include only auctions of Treasury securities with maturities of 1 year or more. Non-bill securities cannot be purchased by MMFs. Auctions of these securities thus do not change the lenders’ trade-offs.38

Table 5 summarizes the instrument-induced inverse semi-elasticity. All regressions in the table are run at the borrower-time level, as borrowers set borrower-time-specific repo rates. Because identification relies on shocks that impact borrowers at each point in time, standard errors are clustered by time (month).

Models (1) and (2) of Table 5 report the first-stage impact of Treasury auction offers on repo volume, as in $\text{Vol}_{jt} = \beta_{1st} \text{TreasuryOffer}_t + \text{BorrowerFE} + \text{YearFE} + e_{1st,jt}$. Model (1) shows a strong correlation between the amount of Treasury securities offered in auctions and the amount of Triparty repo funding obtained by borrowers. As there may be macroeconomic shocks that affect both the Triparty repo market and the Treasury Department’s decision to issue debt, I add year fixed effects in Model (2). Thus, the preferred instrument of Model (2) relies on auction variations within the calendar year, which typically reflect tax revenue fluctuations.39 The magnitude of the volume response

\begin{footnotesize}
37Another potential endogeneity comes from macroeconomic shocks that could simultaneously affect Treasury’s auction offers and borrowers’ purchases. To allay this concern, year fixed-effects are included in the estimation.

38In unreported robustness checks, I confirm that the amount of non-bill securities offered in Treasury auctions is not significantly correlated with either the level or the volatility of MMF AUM flows.

39The year fixed effects are, specifically, separate indicator variables for 2011, 2012, 2015, 2016, and 2017, and one indicator variable for the first 6 non-quarter-end months in 2013 and the last 2 non-quarter-end months in 2014. The two calendar months included in 2014 are the two calendar months
\end{footnotesize}
reduces from 46.8 to 16.3 but is still significant at the 5% level. As I measure Treasury auction offers in trillions of dollars, the estimated coefficient implies that a $40 billion, or one-standard-deviation, increase in the amount offered in Treasury auctions is associated with an average increase of $0.65 billion in a borrower’s repo funding. Model (3) of Table 5 reports the repo rate response to instrumented volume change, as in $\log(R_{jt}) - \log(R_{zt}) = \beta IV \hat{Vol}_{jt} + BorrowerFE + YearFE + \epsilon_{IV,jt}$.

The estimated coefficient shows that to raise $1 billion more in repo funding, a borrower needs to increase her repo rate by 1.57 bps. In other words, a 1 bp increase in the repo rate is associated with a $0.64 billion increase in funding. For the average borrower, this is about 3.6% of her funding. This estimate is comparable to recent events in the Triparty market. When the Fed unexpectedly raised the RRP rate by 5 bps on June 17, 2021, the RRP saw an overnight inflow of $225 billion from a base of $1628 billion in Treasury-backed Triparty repo, implying a semi-elasticity of 2.9% per 1 bp change. At the same time, this estimate is higher than comparable estimates for the Treasury bills market in Greenwood, Hanson, and Stein (2015), Duffee (1996), and Bernanke, Reinhart, and Sack (2004), suggesting that the supply on Triparty is more inelastic.

The first-stage specification in Model (2) of Table 5 features a market-wide instrument missing from 2013, which completes the fiscal year. Robustness checks using separate fixed effects for 2013 and 2014 show similar results but are more noisily estimated.

I obtain borrower-time-specific repo rates (R_{jt}) by volume-weighting the observed borrower-lender pair repo rates for Treasury-backed repo with a 2% haircut.

The closest public release of the size of the Triparty market is as of June 9, 2021: https://www.newyorkfed.org/data-and-statistics/data-visualization/tri-party-repo. Greenwood, Hanson, and Stein (2015) use an IV approach on a 1983–2007 sample. They find that a one-percentage-point decrease in Treasury GDP leads to a 38.6 bps decrease in the two-week Treasury yield. The average annual GDP between 2011 and 2017 was $18.7T. Together, these figures imply that a $1b increase in the supply of Treasury bills increases the yield by 0.21 bps.

Using data for each January from 1983 to 1994, Duffee (1996) estimates that a 1% increase in 1-month Treasury bills outstanding increases the yield by 1.012 bps. The average Treasury bill outstanding over my sample period is $1.6 trillion, of which roughly 30% is due within a month. This implies that, again, a $1b increase in 1-month Treasury bills outstanding increases the yield by 0.21 bps.

Bernanke, Reinhart, and Sack (2004) uses Japanese purchase of Treasury securities to estimate that a $1b reduction in Treasury securities outstanding decreases the yield on 3-month Treasury by 0.18 bps and on 2-year Treasury by 0.55 bps.
that applies to all Triparty borrowers, TreasuryOffer_t. The IV estimate in Model (3) is therefore the average rate response to the average induced volume. Borrowers may have heterogeneous volume responses to Treasury auction offers. If I knew the borrower-specific participation rate in Treasury auctions, I could refine my instrument to capture individual shocks that are the product of Treasury auction offers and individual auction participation. Unfortunately, these data are not publicly available. In Models (4) and (5), I run a version of this heterogeneous-response IV by using a borrower’s average repo share as a proxy for her auction participation. Specifically, I calculate each borrower’s share of the overall Triparty repo volume at each point in time and take the time series average to arrive at a time-invariant borrower share. The assumption behind using the product of Treasury auction offerings and borrower repo share as an instrument is two-fold. First, borrowers that are more active in repo are also more likely to participate in Treasury auctions. Second, because this share is time-invariant, it is not correlated with errors in the IV regression. The estimated inverse semi-elasticity from Model (5) is very similar in magnitude to the estimate in Model (3).

The precision of the IV estimation depends on the strength of the instrument. The cluster-robust effective F-statistic of the instrument in Model (2) of Table 5 is 5.8, below the rule-of-the-thumb threshold of 10. To better understand the implications of using a possibly weak instrument on the IV inference, I compute the Anderson-Rubin confidence interval. This confidence interval has the correct coverage regardless of the strength of the instrument and is efficient in just-identified models with a single instrument (Andrews, Stock, and Sun (2019)), as is the case here. The 95% Anderson-Rubin confidence interval for the IV coefficient estimate in Model (3) is (0.5, 8.6). See Appendix Figure A2 for more details. This interval is bounded away from the imprecise and near-zero OLS estimate.
in Model (6), suggesting that the instrument is useful. At the same time, this interval is very wide in the other direction. In other words, I am reasonably confident that the instrumented semi-elasticity is not zero; however, I am much less certain that the true value is not larger. A larger estimate would mean that borrowers need to raise their rates even more in order to induce additional volume, implying an even more inelastic supply.

5.4 Estimation approach

I estimate the parameters of the lender’s model using a mixture of indirect inference (Gourieroux, Monfort, and Renault (1993)) and maximum likelihood.

Applying indirect inference, I choose parameters such that the data simulated by these parameters would generate moments matching those generated from the original data. I include three groups of moments that summarize the distinct data patterns discussed so far. First, because the size-dependent concentration aversion parameter, \(\alpha_{it} \), controls the lender’s response to rate changes, my moments include the IV coefficient on \(\widehat{Vol}_{jt} \) from Model (3) of Table 5. This coefficient is a direct function of \(\alpha_{it} - \beta_{IV} = \frac{1}{T} \frac{1}{J} \sum_{t \in T} \sum_{j \in J} \left(\sum_{i \in x_{ijt} > 0} \frac{\nu_{ijt}}{\alpha_{it}} \right)^{-1} \) — and can inform the average level of \(\alpha_{it} \). The parameter \(\beta_1 \) in \(\alpha_{it} \) governs the dependence of \(\alpha_{it} \) on the lender’s portfolio size. I therefore include as a moment the coefficient from regressing the lender’s median portfolio share on portfolio size (Model (2) of Table 3). Next, because \(\psi_j \) in \(\omega_{ijt} \) reflects borrower-specific influences on portfolio allocation, I include as moments each borrower’s conditional average lender share and unconditional average probability to borrow.\(^{45}\) Finally, as \(\sigma^2 \) and \(k \) (shape) determine the variance of \(\epsilon_{jt} \) and \(\nu_{ijt} \), respectively, they determine how much

\(^{45}\)Unconditional probabilities are necessary to inform \(\psi \) because for some observations the borrower’s repo rate \((R_{jt}) \) is less than the return on the outside option \((R_{zt}) \). To rationalize these observations, not only would \(\chi_{ijt} \) need to take on a value of 1 (as opposed to 0) but \(\psi_j \) would also need to be sufficiently large.
variation in the observed data can be explained by the included model parameters. I use the R^2 from regressing portfolio shares on lender portfolio size and borrower fixed effects,46 and on lender portfolio size and borrower-time fixed effects47 to learn about these two parameters.

The χ_{ijt} in ω_{ijt} controls whether a borrower can attract any lending. I recover the parameters of χ_{ijt} by maximizing the proportion of correctly predicted lending occurrences between each pair at each time. Given the logistic transformation of the underlying parameters, the estimation of pair-specific ρ_{ij} poses a potential incidental parameter problem. I apply the analytical bias correction suggested by Hahn and Newey (2004) to address this concern. The difference between the bias-corrected estimates and the simple maximum likelihood estimates are small because the sample period is moderately large ($T = 48$ for most pairs).

The parameters of my model are over-identified. I weigh the moments using the inverse of the variance-covariance matrix for moment conditions calculated in bootstrapped samples. The bootstraps are done in blocks of time (month) clusters, in accordance with the IV regression.

6 Results and Discussions

In this section, I present estimation results and discuss the derived dealers’ (borrowers’) markdowns. I consider in particular the relationship between these markdowns and various funding spreads, and the role of policy in shaping intermediary competition.

\begin{align*}
\text{46}^{x_{ijt}} &= b_{1,\sigma} \log(y_{it}) + BorrowerFE + e_{\sigma,ijt}, \text{ where } \log(y_{it}) \text{ absorbs the effect from } \alpha_{it} \text{ and } BorrowerFE \text{ absorbs the effect from } \psi_j \\
\text{47}^{x_{ijt}} &= b_{1,k} \log(y_{it}) + BorrowerMonthFE + e_{k,ijt}, \text{ where } \log(y_{it}) \text{ absorbs the effect from } \alpha_{it} \text{ and } BorrowerMonthFE \text{ absorbs the effect from } \psi_j \text{ and } \epsilon_{jt}
\end{align*}
6.1 Parameter estimates

Table 6 summarizes all parameter estimates, along with their time-clustered block-bootstrapped confidence intervals.48 Data simulated from these parameter estimates generate both targeted and untargeted moments that closely match those found in the original data, suggesting that the estimated model provides a reasonable representation of actuality. Appendix Section B discusses the model fit in detail.

I use the estimated β_0 and β_1 to calculate α_{it}, which has a median of -0.033, a mean of -0.034, and an interquartile range of (-0.025, -0.043). Because the possible support of α_{it} is $[-\infty, 0)$, the fact that α_{it} is bounded away from 0 shows that lenders do exhibit an aversion to portfolio concentration. Based on calculated α_{it}, dealers on average need to raise repo rates by 24 bps to increase their funding by 100%. The negative β_1 indicates that the aversion to concentration increases with size. This result coheres with the notion that fire sale risks induce the lender to spread out his portfolio, and larger lenders are more sensitive because — should operational disruptions force the lender to take possession of the posted collateral — even a small share of a large portfolio could be costly to liquidate.

The estimated ψ_j (capturing ω_{ijt}) has a median of 12 bps, a mean of 13 bps, and an interquartile range of (7.3 bps, 14.6 bps). One way to interpret these estimates is to recall that ψ_j reflects the lender’s marginal utility from lending the first dollar. All else being equal, the dealer at the 25th percentile would, therefore, have to offer 7 bps more than the dealer at the 75th percentile to attract the same first dollar of lending.49

Yet ψ_j is not merely ranking dealers based on rates because dealers seldom stop after getting that first dollar. For example, although Goldman Sachs pays among the lowest

48Estimates of the pair-specific ρ_{ij} are omitted from Table 6 for brevity but are available upon request.

49In the model, ω_{ijt} (which has conditional mean of ψ_{ij}) enters the lender’s utility as a multiplier for gross repo rates. Here, I suggest an additive increase heuristically because gross repo rates are close to 1 and the first-order condition is based on the logs of R_{jt} and ω_{ijt}.

36
rates, its estimated estimated ψ_j is far from being the highest. This is because Goldman Sachs cannot borrow much at the low rate it offers. In contrast, dealers such as Wells Fargo are estimated to have higher ψ_j than Goldman Sachs because they can borrow a lot more by paying a slightly higher rate. In short, ψ_j conveys how preferred a dealer is perceived to be by lenders, and this preference can be reflected in a combination of rates and volume.

One possible explanation for lenders exhibiting dealer-specific preferences is that dealers vary in how consistently they take on repo loans. I test this hypothesis by proxying a dealer’s borrowing consistency with its average coefficient of variation in volume vis-à-vis lenders:

$$\text{CoeffVar}_j = \text{mean}_j\left(\frac{\text{SD}_{ij}(\text{vol}_{ij})}{\text{mean}_{ij}(\text{vol}_{ij})}\right).$$

The lower the coefficient of variation, the more consistent a dealer is in using its balance sheet to take on repo loans. Figure 5 shows that the estimated ψ_j is strongly and negatively correlated with the dealer’s average coefficient of variation. In Table 7, I explore the correlation between estimated ψ_j and the average and median of the dealer’s coefficient of variation (Models (1) and (2)), and between estimated ψ_j and the dealer’s creditworthiness as measured in CDS rates (Models (3)–(5)). The conventional CDS contract varies by jurisdiction. Even after controlling for jurisdictions, that is, comparing estimated ψ_j with CDS rates among dealers within the same jurisdiction, CDS rates still do not appear to be a significant predictor of ψ_j (Models (4) and (5)). In contrast, measures of dealer consistency are strongly correlated with estimated ψ_j.

The most common CDS terms are no restructuring (XR) in the U.S., modified restructuring (MM) in the EU, and full-restructuring (CR) in Japan.

50 The most common CDS terms are no restructuring (XR) in the U.S., modified restructuring (MM) in the EU, and full-restructuring (CR) in Japan.
6.2 The dealer’s markdown

Having estimated α_{it} and ω_{ijt} in the lender’s problem, I can now calculate the dealer’s markdown in Equation 3. In the cross-section, the time-series average of each dealer’s markdown has an interquartile range of (18 bps, 31 bps; see Table 8). Because the S_{jt} in the model, representing the dealer’s value of repo intermediation, is net of balance sheet costs, these markdowns are the economic rents dealers extract. Considering that the mean dealer repo volume is about $18b per day, these estimates imply a midspread of mean annual profits that ranges from $32m to $55m.

The cross-sectional variation in markdowns arises from the interaction between α_{it} and ω_{ijt}. Preferences for investment stability differentiates lending to different dealers, making each dealer a local monopsony over its funding needs. How much rent a dealer can then extract depends on how easily lenders can substitute away and is thus linked to lenders’ concentration aversion. As shown in Table 8, dealers differ in their demand consistency for repo loans and thus draw varying degrees of non-pecuniary preferences from the lenders (ψ_j, capturing ω_{ijt}). Dealers further differ in the set of lenders with whom they trade and therefore face supply curves of varying elasticity ($f(\alpha_{it})$). Goldman Sachs, for example, commands a mean non-pecuniary preference (ψ_j) that ranks at the 30th percentile, a respectable value partially reflecting the fact that lenders are willing to lend to Goldman Sachs at low rates. Yet because Goldman faces a group of lenders that have low aversion to concentration, its repo funding supply is highly elastic. The combination of these two forces results in Goldman Sachs having one of the lowest markdowns.

Remarkably, the low rate that Goldman Sachs pays is not the aftermath of wedging in a large markdown; rather, it is indicative of the high opportunity cost of repo intermediation. Regulations, especially those imposed in the wake of the Financial Crisis of
2007-09, require banks to maintain a minimum capital ratio against all assets. Because a bank’s equity is fixed in the short run, repo intermediation activities, which increase the bank’s total asset size, compete with other potential trades for balance sheet space (Duffie (2017)). Goldman Sachs likely has more lucrative trades that it can do with its limited balance sheet space, making its post-balance-sheet-cost value of repo intermediation rather modest. This situation rationally leads Goldman to price its repo aggressively and to borrow sparingly and opportunistically. Although Goldman pays among the least for repo funding, it does not earn much rent because of its limited trading volume. This point is reminiscent of the model of Berk and Green (2004), in which mutual fund managers’ skills are reflected not in excess returns alone but in the fund-size-adjusted alpha.

6.3 Markdowns and funding spreads

Taking the median dealer markdown at each point in time to be representative, I next construct the time series of dealer markdowns through the estimation period. Figure 6 shows that the average of the median markdown over my estimation period is 20.7 bps. Compared to the 5.7 bps average spread between the median Triparty repo rate and lenders’ outside option, I find that dealers extract 78% of the \(20.7 + 5.7 = 26.4\) bps total surplus in the Triparty market.\[^{51}\]

The presence of markdowns means that dealers pay less for obtaining funding than what they charge their customers for intermediating funding. The higher, markdown-incorporated rate of dealer-intermediated repo funds is likely the marginal rate that prices securities. Imperfect competition in the Triparty market thus contributes to large and persistent funding spreads involving repo-financed securities such as Treasurys. Take the

\[^{51}\text{This split of surplus should not be interpreted to mean that if the Fed raises its policy rate by 1 bps, the passthrough would be } 100\% - 78\% = 22\%. \text{ Changes in the policy rate could also change the dealer’s marginal value of intermediation and consequently the dealer’s optimal rate setting and markdown.} \]
Treasury cash-futures basis as an example. The Treasury futures contract is priced by the cost of buying an equivalent physical Treasury security and holding that security till the futures’ maturity. The financing rate implied in Treasury futures is therefore the repo rate on the funds used to purchase and hold the physical Treasury. There would be no funding spread if dealers intermediated repo funds at cost. Instead, the implied financing rate in Treasury futures consistently exceeds the wholesale repo rate. What explains the wedge between these two rates? Studies of this and other Treasury funding spreads have advanced regulation-induced balance-sheet costs as the cause (e.g., Fleckenstein and Longstaff (2020) and Jermann (2019)). Market power in the wholesale funding market offers a complementary explanation.

Indeed, funding spreads reflect the presence of frictions in dealer intermediation. One friction is the opportunity cost of using balance sheet space, which has been substantial since the financial crisis of 2007-09. This friction exists in all dealer-intermediated funds. For securities typically financed using repo funds, there is also the friction of monopsony rent, which the dealers extract from cash lenders. In Table 9, I study the composition of funding spreads by looking at two examples: the Treasury cash-futures basis, as discussed above, and the Treasury swap spread, which is the difference between the yield of Treasury securities and a maturity-matched unsecured wholesale funding rate, e.g., LIBOR or OIS. Specifically, I compare the magnitude of these two funding spreads with the estimated markdowns in the Triparty market and measures of balance sheet cost.

There is no standard measure of balance sheet cost, but it could be reflected in profits from risk-less arbitrage opportunities. I explore two such arbitrages.\footnote{For these two arbitrages to provide a proxy of balance sheet cost, the key assumption is that their profits do not also reflect dealer market power. Neither of these two arbitrages relies on repo funding. At a minimum, profits from these two arbitrages exclude the kind of dealer market power studied in this paper.} First is
the IOER-EFFR arbitrage. The bank holding companies (BHCs) to which the dealers in my sample belong have access to the federal funds market and maintain accounts at the Federal Reserve. The interest on excessive reserve (IOER), paid by the Fed, can be earned risk-free if the BHC borrows extra reserve in the Fed funds market at the effective federal funds rate (EFFR). Therefore, any activity that a BHC does should earn at least the IOER-EFFR spread. This spread is on average 13 bps between 2011 and 2017.\footref{53}

Another measure of balance-sheet cost is the deviation from the covered interest-rate parity (CIP) (Du, Tepper, and Verdelhan (2018), Du, Hébert, and Huber (2020)). CIP deviations happen across many currency pairs and tenors. Following Du, Hébert, and Li (2022), I use the 3-month EUR-USD basis to approximate balance sheet costs and I use OIS to measure the risk-free interest that could be earned. Different from Du, Hébert, and Li (2022), I use LIBOR to measure the cost of borrowing unsecured funds to conduct this arbitrage, which reflects funding value adjustments, as emphasized in Andersen, Duffie, and Song (2019).\footref{54} Hence, if a dealer has excess balance sheet space, the dealer could raise 1 USD at its unsecured funding rate, LIBOR, and convert that 1 USD to 1 EUR at the spot exchange rate. The dealer would earn the risk-free OIS indexed to EONIA. At the end of 3 months, the dealer could convert the proceeds back to USD at the forward rate and pocket the profit after paying back the borrowed funds. On average, such a trade would have generated a profit of 12 bps between 2011 and 2017.

The magnitude of Treasury funding spreads suggests that the intermediation friction in repo funding comprises both balance sheet cost and dealers’ market power. Between

\footref{53}Although dealers cannot conduct IOER-EFFR arbitrage themselves because they are not depository institutions, the internal setup of BHCs allows the reserve desk and the trading desks to seamlessly communicate and dynamically adjust balance sheet positions.

\footref{54}Andersen, Duffie, and Song (2019) show that unsecured borrowing incurs debt overhang costs, which can be approximated with LIBOR-OIS or similar credit spreads. The relevant CIP deviation that gives balance-sheet costs can thus be equivalently calculated as the LIBOR-OIS CIP deviation or OIS-OIS CIP deviation adjusted for the LIBOR-OIS spread.
2011 and 2017, the balance sheet cost was approximately 12 bps, and the Triparty markdown was about 21 bps. Together, these figures suggest that the financing cost implied in repo-financed Treasury should exceed the wholesale repo rate by about 30 bps. This prediction is borne out in the Treasury-swap spread, where, averaging across the 5-year, 10-year, 20-year, and 30-year tenor, the yield of Treasury securities exceeded that of maturity-matched OIS by 35 bps between 2011 and 2017.55,56 This prediction is also borne out in the Treasury cash-futures basis. Fleckenstein and Longstaff (2020) show that the financing rate implied in Treasury futures exceeded repo rates by about 50 bps between 2011 and 2017.57

In addition to the two discussed here, there are many other types of funding spreads, such as the basis between option-implied funding rates and wholesale funding rates (van Binsbergen, Diamond, and Grotteria (2021)). Many of these funding spreads involve securities that rely on dealer-intermediated funding, yet these spreads show limited correlations with each other (Siriwardane, Sundarem, and Wallen (2021)). Imperfect competition provides a natural micro-foundation for the observed low correlation: differences in the competitive landscape in different funding markets may well lead to divergences in funding spreads.

55This spread is, by convention, relative to OIS, or the unsecured federal funds rate. Over my sample period, the federal funds rate is on average 6.5 bps above Triparty repo rate index (median), indicating an even larger spread between the Treasury yield and the repo rate.

56The yield on Treasury bonds was in fact lower than OIS before the Financial Crisis of 2007-09. This does not necessarily mean that dealer market power is a recent phenomenon. As Du, Hébert, and Li (2022) argue, the switch in the sign of the spread reflects a regime shift in dealers’ Treasury inventory.

57Barth and Kahn (2021) provide an alternative measure of the Treasury cash-futures basis by using replicating portfolios of Treasury bills. The average for 5-year futures across the 1st, 2nd, and 3rd roll from 2010 to 2020 is about 21 bps. One possible reason for the discrepancy is the spread between Treasury bills and repo rates. Depending on the maturity of the Treasury bill, the spread with the overnight Triparty repo rate is between -4 bps for 1-month Treasury bills and 17 bps for 12-month Treasury bills.
6.4 The effect of the RRP on markdowns

The Fed instituted the Overnight Reverse Repo Facility in anticipation of increasing its policy interest rate. The RRP is thought to have helped the Fed successfully raise the interest rate four times between 2015 and 2017, during a period when the Fed’s usual tool — reserve supply adjustment — was made obsolete by the abundance of reserves. Did this monetary policy tool also affect dealers’ market power? I explore this question through counterfactual analyses detailed in Internet Appendix Section IA-A. Specifically, I ask, what would have happened to the Triparty repo rate and dealers’ market power if the RRP were not established?

To conduct the policy counterfactual, I first parameterize and estimate the borrower’s problem introduced in Section 4.2. The parameterization features a marginal value of intermediation that decreases in quantity. I estimate the parameters by using the 2016 Money Market Fund Reform as an exogenous shock to the lenders’ supply of funds. The estimated parameters reflect a demand sensitivity that sees the borrower reducing her repo rate by about 0.6 bps for every additional billion dollars of funding absorbed.

Next, I consider the effect of the RRP on dealers’ market power. The RRP gives Triparty lenders an alternative to lending to dealers. Compared to the lender’s other possible outside option, the RRP is very attractive: the RRP rate was on average 12 bps higher than the 1-day Treasury yield between 2014 and 2017. Imagine that the RRP were not established and the alternative to lending to Triparty dealers earned the historical 1-day Treasury yield (Panel (a) of Internet Appendix Figure IA2). The counterfactual median Triparty repo rate would then be 8 bps lower than historical (Panel (b)). Importantly, the counterfactual median markdown would be 4 bps larger (Panel (c)), and this increase would happen at a time of increased volume lent to borrowers (Panel (d)).
leading to even more economic rent extracted by the dealers. In other words, although the RRP is a policy tool intended to raise the level of Triparty repo rates, it also constrained dealers’ market power and consequently narrowed funding spreads. The result of this counterfactual highlights one tangible way in which policy makers can effectively alter the competitive environment of the Triparty market.

7 Conclusion

I document new facts about the Triparty repo market that shed light on the nature of competition. These facts motivate me to describe the equilibrium of this vital wholesale funding market as cash-lenders allocating their portfolios among differentiated dealers (cash-borrowers) who set repo rates. My estimated model reveals that Triparty dealers enjoy substantial market power. This market power causes the observed wholesale repo rate to diverge from the unobserved, dealer-intermediated financing rates market participants face. Imperfect competition thus contributes to large funding spreads in repo-financed securities, such as the Treasury cash-futures basis and the Treasury swap spread.

More broadly, this study is a first step in a quantitative investigation of intermediary competition and its impact on asset prices. For months since May 2022, the rate offered by the Federal Reserve at the Overnight Reverse Repo Facility (RRP) in fact exceeded the median repo rate on the Triparty market. Such a phenomenon is difficult to rationalize in a perfectly competitive market, where the RRP ought to set the floor for repo rates in the Triparty market. The market power of financial intermediaries, which I explore in this paper, offers a plausible explanation. In general, if intermediaries are central to asset prices, and intermediaries, by definition, interface with many agents, then study-
ing the competitive landscape intermediaries face is indispensable to a more complete understanding of the financial market.

Bibliography

Tables and Figures

Figure 1: Select repo rates of BlackRock MMF’s lending

Notes: This figure plots the repo rates accepted by BlackRock MMF for lending to Goldman Sachs and Wells Fargo via overnight repo collateralized by Treasury securities with a 2% haircut. The repo rates are reported as gross rates less the daily median repo rate and are stated in basis points. Two outliers are omitted: the repo rate by Goldman Sachs was 20 bps below the median in September 2016, and 12 bps below the median in December 2017.

Figure 2: Decomposition of cross-sectional variation in rate dispersion

Notes: This figure plots the 3-month rolling average of the \(R^2 \) from monthly cross-sectional regressions of repo rates on MMF and dealer fixed effects. Repo rates are measured as gross repo rates less the daily median repo rate, and are for overnight repo collateralized by Treasury securities with a 2% haircut. The solid red line is the \(R^2 \) from regressing repo rates on dealer fixed effects; the dotted purple line is the \(R^2 \) from regressing repo rates on MMF fixed effects; and the dashed blue line is the \(R^2 \) from regressing repo rates on both dealer and MMF fixed effects. The sample period is January 2011 through December 2017.
Figure 3: Select MMF repo portfolios on October 31, 2016

Notes: This figure plots the repo lending to dealers by BlackRock and Legg Mason on October 31, 2016. The size of the pie corresponds to BlackRock and Legg Mason’s overnight repo lending volume, as labeled. The size of each slice represents the share of the portfolio lent to different dealers.

Figure 4: Stability in MMF overnight portfolios

Notes: This figure plots the average cosine similarity between MMFs’ overnight portfolios at time t and $t + n$ against the number of dealers in the portfolio at time t. Cosine similarity between portfolio x and y is defined as $\text{CosSim}(x, y) = \frac{x \cdot y}{\|x\| \cdot \|y\|}$. Panel (a) compares portfolios at time t and at time $t + 1$, Panel (b) compares portfolios at time t and at time $t + 6$. The sample period is January 2011 through December 2017.
Figure 5: Correlation between estimated dealer preference and coefficient of variation in volume

Notes: This figure plots estimated ψ_j against the dealer’s average coefficient of variation. The blue line represents the fitted value from regressing ψ_j on the dealer’s average coefficient of variation, and the shaded regions represent the 95% heteroskedasticity-robust confidence bands. The dealer’s average coefficient of variation is the by-dealer average of the dealer-lender coefficient of variation in repo volume throughout the model estimation period. The model estimation period is January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was first introduced and was in testing, and excluding months that fall on quarter-ends.

Figure 6: Triparty dealer markdown

Notes: This figure plots the time series variation in the median dealer markdown over the model estimation period (solid red line). The dotted black line indicates the average of this value over the whole sample. The shaded area corresponds to September 2013–September 2014, when the RRP was in testing. The model estimation period is January 2011 to December 2017, excluding September 2013–September 2014 and months that fall on quarter-ends.
Table 1: Within dealer characteristics and rate dispersion

<table>
<thead>
<tr>
<th>Deviation of Treasury repo rate from median</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair Treasury repo volume</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.041)</td>
</tr>
<tr>
<td>Pair vol as percent of MMF</td>
<td>0.049</td>
<td>-0.661</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.366)</td>
<td>(0.419)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair vol as percent of dealer</td>
<td>0.289</td>
<td>0.508</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.245)</td>
<td>(0.355)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMF total Treasury repo vol</td>
<td></td>
<td></td>
<td>-0.007</td>
<td>-0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.007)</td>
<td>(0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMF number of counterparty</td>
<td></td>
<td></td>
<td>-0.013</td>
<td>-0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.011)</td>
<td>(0.018)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dealer + Month FE | Yes | Yes | Yes | Yes | Yes | Yes |
Num. obs. | 10453 | 10453 | 10453 | 10453 | 10453 | 10453 |
R² (full model) | 0.227 | 0.227 | 0.227 | 0.227 | 0.227 | 0.228 |
R² (proj model) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 |

Standard errors in parentheses.

Notes: In this table, repo rates are regressed on MMF characteristics and MMF-dealer pair characteristics, as well as dealer fixed effects and month (time) fixed effects. Repo rates are for lending between MMF-dealer pairs via overnight repo collateralized by Treasury securities with a 2% haircut, and they are measured as the deviation from the daily median. “Pair Treasury repo volume” is the amount of overnight repo lending collateralized by Treasury securities with a 2% haircut on the day of the observation between an MMF-dealer pair. “Pair vol as percent of MMF” is the pair’s volume as a percentage of the MMF’s total lending via overnight repo collateralized by Treasury securities with a 2% haircut. “Pair vol as percent of dealer” is the same ratio against the total borrowing of the dealer. “MMF total Treasury repo vol” is the MMF’s total amount of lending via overnight repo collateralized by Treasury securities with a 2% haircut, on the day of the observation. “MMF number of counterparty” is the number of dealers to which the MMF lends via overnight repo collateralized by Treasury securities with a 2% haircut on the day of observation. The sample period is January 2011 through December 2017. Standard errors are clustered by dealer. *, **, and *** denote significance at the 10%, 5%, and 1% confidence levels, respectively.
Table 2: Model fit with dealer vs. relationship FE

<table>
<thead>
<tr>
<th>Deviation of Treasury repo rate from median</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dealer FE</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MMF-Dealer Pair FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>10453</td>
<td>10453</td>
<td>10453</td>
<td>10453</td>
</tr>
<tr>
<td>Num of FE</td>
<td>20</td>
<td>271</td>
<td>26</td>
<td>277</td>
</tr>
<tr>
<td>R^2</td>
<td>0.18</td>
<td>0.24</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>AIC (in 1000s)</td>
<td>41.53</td>
<td>41.22</td>
<td>41.38</td>
<td>41.07</td>
</tr>
<tr>
<td>BIC (in 1000s)</td>
<td>41.68</td>
<td>43.19</td>
<td>41.58</td>
<td>43.08</td>
</tr>
</tbody>
</table>

Notes: This table reports the goodness of fit for regressions of repo rates on dealer fixed effects or MMF-dealer pair fixed effects. Repo rates are for lending between MMF-dealer pairs via overnight repo collateralized by Treasury securities with a 2% haircut, and they are measured as the deviation from the daily median. Goodness-of-fit measures are R^2, the Akaike information criterion (AIC), and the Bayesian information criterion (BIC). The sample period is January 2011 through December 2017.

Table 3: MMF size and portfolio composition

<table>
<thead>
<tr>
<th>Number of dealers</th>
<th>Median portfolio share</th>
<th>Max portfolio share</th>
<th>Min portfolio share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>Constant</td>
<td>1.403 (1.021)</td>
<td>0.266*** (0.037)</td>
<td>0.399*** (0.033)</td>
</tr>
<tr>
<td>Log(MMF size)</td>
<td>3.022*** (0.290)</td>
<td>-0.067*** (0.013)</td>
<td>-0.074*** (0.012)</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>1467</td>
<td>1467</td>
<td>1467</td>
</tr>
<tr>
<td>R^2</td>
<td>0.556</td>
<td>0.524</td>
<td>0.369</td>
</tr>
</tbody>
</table>

Notes: This table reports regressions of the extensive and intensive margins of MMFs’ portfolio on MMFs’ overnight portfolio size and a constant. The dependent variable in Model (1) is the number of dealers to which a MMF lends. The dependent variables in Models (2) through (4) are, respectively, the median, the maximum, and the minimum share of an MMF’s portfolio lent to dealers. The sample period is January 2011 through December 2017. Standard errors are clustered by MMF. *, **, and *** denote significance at the 10%, 5%, and 1% confidence levels, respectively.
Table 4: Dealer repo activities on quarter-ends

<table>
<thead>
<tr>
<th></th>
<th>Dealer repo volume (vol_{jt})</th>
<th>Log(dealer repo volume)</th>
<th>Dear rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>QE</td>
<td>0.843</td>
<td>0.716</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>(0.733)</td>
<td>(0.872)</td>
<td>(0.087)</td>
</tr>
<tr>
<td>QE * Dealer EU</td>
<td>-7.754***</td>
<td>-7.716***</td>
<td>-0.500***</td>
</tr>
<tr>
<td></td>
<td>(1.205)</td>
<td>(1.227)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>QE * Dealer JP</td>
<td>-0.814</td>
<td>-0.761</td>
<td>-0.137</td>
</tr>
<tr>
<td></td>
<td>(2.711)</td>
<td>(2.540)</td>
<td>(0.227)</td>
</tr>
<tr>
<td>QE * Dealer UK</td>
<td>-4.394***</td>
<td>-4.331***</td>
<td>-0.326**</td>
</tr>
<tr>
<td></td>
<td>(1.659)</td>
<td>(1.477)</td>
<td>(0.150)</td>
</tr>
<tr>
<td>QE * Dealer US</td>
<td>-1.658</td>
<td>-1.548</td>
<td>-0.157</td>
</tr>
<tr>
<td></td>
<td>(1.396)</td>
<td>(1.424)</td>
<td>(0.112)</td>
</tr>
<tr>
<td>Avg change: EU, UK</td>
<td>-5.231</td>
<td>-5.308</td>
<td></td>
</tr>
<tr>
<td>Avg change: CA, JP, US</td>
<td>0.019</td>
<td>-0.054</td>
<td></td>
</tr>
<tr>
<td>Dealer HQ FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quarter FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>1415</td>
<td>1415</td>
<td>1415</td>
</tr>
<tr>
<td>R^2</td>
<td>0.098</td>
<td>0.251</td>
<td>0.078</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

Notes: This table reports regressions of the dealer’s overnight repo volume and rate on indicators of quarter-ends and the dealer’s headquarters jurisdiction. The dependent variable is the dealer’s repo volume in Models (1) and (2), the log of the dealer’s repo volume in Models (3) and (4), and the dealer’s repo rate in Model (5). Headquarters jurisdictions are Canada (CA), the European Union (EU), Japan (JP), the United Kingdom (UK), and the United States (US). “Avg change: EU, UK” is calculated as $(QE \times DealerEU + QE \times DealerUK + QE \times 2)/2$. “Avg change: CA, JP, US” is calculated as $(QE \times DealerJP + QE \times DealerUS + QE \times 3)/3$. The dealer’s repo rate is defined as the volume-weighted average of repo rates between a dealer and all lenders in overnight repo collateralized by Treasury securities with a 2% haircut. It is reported as the gross rate less the daily median, in basis points. The sample period is January 2011 through December 2017. Standard errors are robust to heteroskedasticity. *, **, and *** denote significance at the 10%, 5%, and 1% confidence levels, respectively.
Table 5: **Inverse semi-elasticity using Treasury auction IV**

<table>
<thead>
<tr>
<th></th>
<th>1st stage: vol_{jt}</th>
<th>IV: $R_{jt} - R_{zt}$</th>
<th>Alt. 1st</th>
<th>Alt. IV</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
<td>Model 4</td>
<td>Model 5</td>
</tr>
<tr>
<td>Non-bill Treasury offer amount</td>
<td>46.79*** (14.66)</td>
<td>16.29** (6.76)</td>
<td>241.64** (97.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treasury offer * borrower share</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vol_{jt} (fit)</td>
<td>1.57** (0.67)</td>
<td>1.57** (0.61)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vol_{jt}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dealer FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cluster-robust F-stat</td>
<td>5.81</td>
<td>6.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson-Rubin 95% CI</td>
<td>(0.5, 8.6)</td>
<td>(0.6, 7.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. obs.</td>
<td>821</td>
<td>821</td>
<td>821</td>
<td>821</td>
<td>821</td>
</tr>
</tbody>
</table>

Notes: This table reports the instrumental variable estimations of the inverse semi-elasticity borrowers face. Models (1) and (2) are first-stage regressions of the borrower’s overnight repo volume on the amount of non-bill Treasury securities offered at auctions and settled on the same day as MMF N-MFP reporting dates. Model (3) regresses the difference between the borrower’s repo rate and the outside option, on the borrower’s overnight repo volume, as instrumented using Model (2). Models (4) and (5) are similar to Models (2) and (3) but use as the instrument the product of Treasury auction offers (as defined above) and each borrower’s average share of the total Triparty overnight repo volume. Model (6) regresses the borrower’s repo rate on volume without using an instrument. The borrower’s repo rate is defined as the volume-weighted average of repo rates between a borrower and all lenders in overnight repo collateralized by Treasury securities with a 2% haircut. The outside option is defined as the imputed 1-day Treasury bill yield before September 2013 and the rate on the RRP thereafter. The estimation period is January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter ends. Standard errors are clustered by month (frequency of observation). *, **, and *** denote significance at the 10%, 5%, and 1% confidence levels, respectively.
Table 6: Estimates of model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration aversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{it}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td>2.28</td>
<td>(1.92, 4.12)</td>
</tr>
<tr>
<td>β_1</td>
<td>-7.92</td>
<td>(-8.71, -7)</td>
</tr>
<tr>
<td>Non-pecuniary preference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω_{ijt}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_{ijt}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barclays</td>
<td>13.99</td>
<td>(10.57, 16.07)</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>7.30</td>
<td>(2.21, 7.93)</td>
</tr>
<tr>
<td>Bank of America</td>
<td>10.75</td>
<td>(6.93, 11.12)</td>
</tr>
<tr>
<td>Citi</td>
<td>12.59</td>
<td>(9.91, 14.36)</td>
</tr>
<tr>
<td>Crédit Agricole</td>
<td>19.31</td>
<td>(15.6, 19.92)</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>11.67</td>
<td>(9.69, 13.84)</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>15.56</td>
<td>(11.93, 16.93)</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>8.40</td>
<td>(6.31, 9.24)</td>
</tr>
<tr>
<td>HSBC</td>
<td>7.13</td>
<td>(3.93, 7.15)</td>
</tr>
<tr>
<td>JP Morgan</td>
<td>5.90</td>
<td>(3.71, 6.22)</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>13.14</td>
<td>(10.84, 14.84)</td>
</tr>
<tr>
<td>Natixis</td>
<td>33.87</td>
<td>(29.55, 37.79)</td>
</tr>
<tr>
<td>Royal Bank of Scotland</td>
<td>12.06</td>
<td>(8.18, 12.85)</td>
</tr>
<tr>
<td>Nomura</td>
<td>47.25</td>
<td>(40.96, 51.63)</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>7.28</td>
<td>(4.77, 8.3)</td>
</tr>
<tr>
<td>Royal Bank of Canada</td>
<td>6.93</td>
<td>(4.94, 7.91)</td>
</tr>
<tr>
<td>Société Générale</td>
<td>14.63</td>
<td>(11.71, 15.38)</td>
</tr>
<tr>
<td>Sumitomo</td>
<td>34.09</td>
<td>(26.84, 40.9)</td>
</tr>
<tr>
<td>UBS</td>
<td>4.30</td>
<td>(1.67, 6.84)</td>
</tr>
<tr>
<td>Wells Fargo</td>
<td>19.20</td>
<td>(16.11, 20.63)</td>
</tr>
<tr>
<td>k (shape)</td>
<td>137.43</td>
<td>(134.98, 137.45)</td>
</tr>
<tr>
<td>ϵ_{jt}</td>
<td>6.05</td>
<td>(4.88, 12.29)</td>
</tr>
<tr>
<td>σ^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ_{ijt}</td>
<td>0.63</td>
<td>(0.5, 0.75)</td>
</tr>
</tbody>
</table>

Notes: This table reports the parameter estimates in the lender’s problem. β_0, β_1 are parameters of $\alpha_{it} = \beta_0 + \beta_1 \cdot \sqrt{\theta_{it}}$, and are scaled by 1×10^{-3}. ψ_j, k are parameters of $\nu_{ijt} \sim 1 + \text{Gamma}(\text{shape} = k, \text{scale} = \psi_j/k)$; the random variable defined by Gamma is scaled by 1×10^{-4}. σ^2 is the parameter of $\epsilon_{jt} \sim \text{LogNormal}(\frac{\sigma^2}{2}, \sigma^2)$; ϵ_{jt} is scaled by 5×10^{-5}. δ is the parameter of $\chi_{ijt} \sim \text{Bernoulli}(\text{Logistics}(\rho_j + \delta \log(\theta_{it})))$. Estimates of the pair-specific ρ_{ij} are omitted for brevity but are available upon request. With the exception of δ, parameters in this table are estimated using indirect inference, where the 95% confidence intervals are block bootstrapped by time (month). δ is estimated using maximum likelihood, with the Hahn and Newey (2004) analytical bias correction applied for potential incidental parameter problems. The model estimation period is January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends.
Table 7: Estimated ψ_j versus borrowing consistency and CDS

<table>
<thead>
<tr>
<th>Estimated ψ_j</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>49.187***</td>
<td>43.697***</td>
<td>11.308*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.401)</td>
<td>(6.118)</td>
<td>(5.619)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average coef of variation</td>
<td>-61.868***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.689)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median coef of variation</td>
<td></td>
<td>-54.068***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.996)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average CDS: last 3 days of month</td>
<td>0.097</td>
<td>0.274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td>(0.191)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average CDS</td>
<td>0.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dealer HQ FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>R^2</td>
<td>0.618</td>
<td>0.579</td>
<td>0.022</td>
<td>0.558</td>
<td>0.552</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

Notes: This table reports the regression of the estimated preference parameter, ψ_j (capturing ω_{ij}), on measures of dealers’ borrowing consistency and creditworthiness. “Average coef of variation” is the average of a dealer’s coefficients of variation in volume vis-à-vis all lenders: $\text{CoeffVar}_j = \text{mean}_j \left(\frac{SD_{ij}(\text{vol}_{ij})}{\text{mean}_{ij}(\text{vol}_{ij})} \right)$. “Median coef of variation” is the median of a dealer’s coefficients of variation. “Average CDS on last 3 days of month” is the average dealer credit default swap rate on the last 3 business days of each month during the model estimation period. “Average CDS” is the average of a dealer’s CDS rate over the model estimation period. CDS rates are for 6M debt for all dealers except for Mitsubishi and the Royal Bank of Scotland, which only have 5Y CDS. CDS rates are for contracts in local currency (except for the Canadian banks, whose CDS are in U.S. dollars), and follow the most common CDS convention, which is no restructuring (XR) in the U.S. and Canada, modified restructuring (MM) in the EU, and full-restructuring (CR) in Japan. The model estimation period is January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends. Standard errors are robust to heteroskedasticity. *, **, and *** denote significance at the 10%, 5%, and 1% confidence levels, respectively.
Table 8: Dealers’ average non-pecuniary preference, elasticity, and markdown

<table>
<thead>
<tr>
<th>Dealer</th>
<th>Preference (ψ_j)</th>
<th>Elasticity (%)</th>
<th>Markdown (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of America</td>
<td>10.7</td>
<td>3.2</td>
<td>28.1</td>
</tr>
<tr>
<td>Barclays</td>
<td>14.0</td>
<td>3.4</td>
<td>26.1</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>7.3</td>
<td>3.1</td>
<td>30.6</td>
</tr>
<tr>
<td>Citi</td>
<td>12.6</td>
<td>5.2</td>
<td>19.0</td>
</tr>
<tr>
<td>Crédit Agricole</td>
<td>19.3</td>
<td>2.9</td>
<td>33.7</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>11.7</td>
<td>4.4</td>
<td>20.2</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>15.6</td>
<td>3.2</td>
<td>25.4</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>8.4</td>
<td>8.3</td>
<td>11.6</td>
</tr>
<tr>
<td>HSBC</td>
<td>7.1</td>
<td>5.1</td>
<td>19.1</td>
</tr>
<tr>
<td>JP Morgan</td>
<td>5.9</td>
<td>5.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>13.1</td>
<td>5.8</td>
<td>18.7</td>
</tr>
<tr>
<td>Natixis</td>
<td>33.9</td>
<td>2.5</td>
<td>43.5</td>
</tr>
<tr>
<td>Nomura</td>
<td>47.2</td>
<td>1.7</td>
<td>56.9</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>7.3</td>
<td>6.5</td>
<td>18.2</td>
</tr>
<tr>
<td>Royal Bank of Canada</td>
<td>6.9</td>
<td>7.4</td>
<td>13.3</td>
</tr>
<tr>
<td>Royal Bank of Scotland</td>
<td>12.1</td>
<td>4.5</td>
<td>18.0</td>
</tr>
<tr>
<td>Société Générale</td>
<td>14.6</td>
<td>3.8</td>
<td>26.5</td>
</tr>
<tr>
<td>Sumitomo</td>
<td>34.1</td>
<td>2.6</td>
<td>40.5</td>
</tr>
<tr>
<td>UBS</td>
<td>4.3</td>
<td>6.0</td>
<td>14.5</td>
</tr>
<tr>
<td>Wells Fargo</td>
<td>19.2</td>
<td>2.8</td>
<td>32.3</td>
</tr>
</tbody>
</table>

Notes: This table reports three time-series averages for each dealer in the sample. “Preference” is the estimated ψ_j, which is the dealer-specific mean of lenders’ non-pecuniary preference, ω_{ijt}. “Elasticity” is the percentage of repo volume a dealer would attract if it raised its repo rate by 1 bp. “Markdown” is the difference between the estimated dealer’s marginal value of intermediation and the repo rate it pays. The analysis in this table is based on parameters estimated in the model estimation period of January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends.
Table 9: **2011-2017 average measures of market power, balance sheet cost, and funding spread**

<table>
<thead>
<tr>
<th>Measure of market power</th>
<th>Measures of balance sheet cost</th>
<th>Measures of funding spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triparty dealer markdown</td>
<td>20.65</td>
<td></td>
</tr>
<tr>
<td>IOER-EFFR spread</td>
<td>12.79</td>
<td></td>
</tr>
<tr>
<td>USD-EUR 3M CIP basis</td>
<td>12.16</td>
<td></td>
</tr>
<tr>
<td>Treasury swap spread</td>
<td>32.65</td>
<td></td>
</tr>
<tr>
<td>Treasury cash-futures basis</td>
<td>47.63</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports the averages of annualized measures in basis points. “Triparty dealer markdown” is the median of the estimated markdowns. “IOER-EFFR spread” is the difference between interest on excess reserve and the effective federal funds rate. “USD-EUR 3M CIP basis” is the difference in the 3-month interest earned on synthetic dollars at OIS (EONIA) versus interest paid on direct dollars at IBOR (LIBOR). Synthetic dollars are obtained by exchanging dollars for euros at the spot rate and converting back to dollars at the forward rate. “Treasury swap spread” is the difference between the Treasury yield and OIS (indexed to federal funds rate), averaged across the 5-year, 10-year, 20-year, and 30-year tenor. “Treasury cash-futures basis” is the difference between the funding rate implied in 5-year Treasury futures and the repo rate. “Triparty dealer markdown” is estimated for month-ends from January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends. “Treasury cash-futures basis” is the average of the mean basis in years 2011 through 2017, as in table 3 of Fleckenstein and Longstaff (2020). “IOER-EFFR spread” and “USD-EUR 3M CIP basis” are calculated using daily series from January 1, 2011, to December 31, 2017. “Treasury swap spread” is calculated using daily series from September 28, 2011, to December 31, 2017, when OIS rates are available.
Appendix

A Functional form of α_{it}

Results in Table 3 point to a strong empirical relationship between MMFs’ overnight cash portfolio size and the distribution of portfolio shares. Importantly, this relationship exhibits concavity in portfolio size, evident in the log transformation applied to portfolio size (y_{it}). I therefore parameterize the concentration aversion parameter, α_{it}, which controls the distribution of portfolio shares, as $\alpha_{it} = \beta_0 + \beta_1 \sqrt{y_{it}}$. Square rooting the portfolio size captures the essence of concavity while ensuring that no values are negative, as would be generated under a log transformation because there are values of y_{it} that are less than 1.

There may be other plausible transformations. One such candidate is log($1 + y_{it}$), which is also concave and circumvents the negativity concern. However, as shown in Appendix Table A1, such a transformation would compress the range of transformed portfolio sizes, reducing the power of the estimation by flattening variation. An alternative transformation that produces a range comparable to the original log transformation is $2^{\sqrt{y_{it}}}$. This transformation is rather uncommon. Therefore, in the absence of conclusive evidence that logs are the only appropriate transformation, I adopt square roots as the preferred functional form.

Reassuringly, all three transformations that maintain the spirit of concavity generate similar estimates of α_{it}. In Appendix Table A1, I report the mean α_{it} estimated using log($1 + y_{it}$), $2^{\sqrt{y_{it}}}$, and $\sqrt{y_{it}}$. Applying these mean α_{it} to the average portfolio size yields an estimate of the inverse semi-elasticity implied under different transformations, which is comparable to the IV-estimate in Table 5. All three transformations imply an inverse semi-elasticity that is similar to the IV point estimate of 1.57, and all are well within the 95% Anderson-Rubin confidence interval.
B Model fit

The estimated model parameters generate simulated data that reasonably match both targeted and untargeted moments in the original data, suggesting good model fit.

I use 44 moments in the indirect inference estimation. These moments can be grouped into three categories. In Appendix Figure A3, I assess the fit in these three categories in turn.

The two regression coefficients in Panel (a) of Appendix Figure A3 are among the most important moments. β_{IV} is the IV coefficient from Model (3) of Table 5, and it pins down the levels of lender preferences (α_{it} and ω_{ijt}). β_{median} is the coefficient on portfolio size for the median portfolio share (Model (2) in Table 3), and it informs the size-dependency of α_{it}. Estimated model parameters simulate data that generate coefficients (Matched moments) similar to the original point estimates (Data moments). In particular, the Matched moments are within the 95% confidence interval of the Data moments.

Panel (b) of Appendix Figure A3 compares the R^2 of two regressions in the original data to the parameter-simulated data. These two R^2s are most informative of two nuisance parameters: k (shape) of ν_{ijt} and σ^2 of ϵ_{jt}. The R^2s in the simulated data do not show significant deviations from those in the original data.

Panels (c) and (d) of Appendix Figure A3 compare moments based on two types of dealer-specific averages. Panel (c) contains each dealer’s average portfolio share, and Panel (d) contains each dealer’s average probability of borrowing from lenders. If moments from the simulated data match those from the original data, then the points in these two panels would fall along the 45-degree diagonal line, which they roughly do.

The targeted moments focus on the mean of the distribution. As a further check of model fit, I assess the match to two untargeted moments that reflect other parts of the data distribution. Specifically, I consider how well the estimated parameter can reproduce the behaviors of the maximum and the minimum portfolio shares in relation to portfolio size. These two moments come from Models (3) and (4) of Table 3, and their behaviors are not tied to β_{median} in Panel (a). As Panel (e) of Appendix Figure A3 illustrates,
although these two moments were not targeted in the estimation, they can be matched within the 95% confidence interval by the estimated parameters. Taken together, the comparisons in Appendix Figure A3 show that the estimated model offers a reasonable representation of the data.
C Additional Figures and Tables

Figure A1: Percentage of overnight repo market represented by top 18 MMFs and top 20 dealers in the sample

Notes: This figure plots, on the left, the share of overnight repo done by the top 18 money market fund families relative to all overnight repo done by money market funds that filed N-MFP reports between January 2011 and December 2017. Plotted on the right is the share of overnight repo done by the top 20 dealers relative to all dealers based on money market funds’ N-MFP reports from January 2011 to December 2017.

Figure A2: Anderson-Rubin test of instrumental variable estimate

Notes: This figure plots the Anderson-Rubin rejection probability for the null hypothesis that the true IV is equal to a given value on the x-axis. β_{IV} is estimated from $\log(R_{jt}) - \log(R_{zt}) = \beta_{\text{IV vol}} + \text{BorrowerFE} + \text{YearFE} + \epsilon_{\text{IV},jt}$ in the model estimation period of January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was first introduced and was in testing, and excluding months that fall on quarter-ends. The horizontal dashed lines are at $y = 0.9$ and $y = 0.95$. The points where the solid red line crosses the dashed lines represent, respectively, the end points of the Anderson-Rubin 90% confidence interval and 95% confidence interval for the null hypothesis.
Figure A3: Data moments vs. matched moments from estimated parameters

(a) Regression coefficients

(b) R^2

(c) Average dealer share

(d) Average probability of borrowing

(e) Untargeted moments

Notes: This figure plots comparisons between data moments and matched moments. Data moments are calculated using the original sample data. Matched moments are the average of moments calculated in 50 sets of data simulated from estimated model parameters. The moments in Panel (a) are β_{IV} from Model (3) of Table 5 and β_{median} from Model (2) of Table 3. The moments in Panel (b) are the R^2 from the two regressions used to inform σ^2 and k (shape). The moments in Panel (c) are each dealer’s average portfolio share, and the moments in Panel (d) are each dealer’s average probability of borrowing from lenders. The moments in Panel (e) are β_{max} from Model (3) of Table 3 and β_{min} from Model (4) of Table 3. The model estimation period is January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends.
<table>
<thead>
<tr>
<th>Transformation</th>
<th>Range</th>
<th>Mean estimate of α_{it}</th>
<th>Implied inverse semi-elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(y_{it})$</td>
<td>7.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log(1 + y_{it})$</td>
<td>4.89</td>
<td>-0.0262</td>
<td>1.06</td>
</tr>
<tr>
<td>$2\sqrt{y_{it}}$</td>
<td>6.93</td>
<td>-0.0296</td>
<td>1.20</td>
</tr>
<tr>
<td>$\sqrt{y_{it}}$</td>
<td>11.75</td>
<td>-0.0342</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Notes: This table compares different transformations of lenders’ portfolio size (y_{it}). “Range” is for the transformed y_{it}. “Mean estimate of α_{it}” reports the mean α_{it} calculated using estimated β_0 and β_1 based on different transformations of y_{it}. “Implied inverse semi-elasticity” is the inverse semi-elasticity calculated using the mean estimate of α_{it}, the mean lender portfolio size, and the mean number of lenders lending to dealers. The model estimation period is January 2011 to December 2017, excluding September 2013–September 2014, when the RRP was in testing, and excluding months that fall on quarter-ends.
"Market Power in Wholesale Funding: A Structural Perspective from the Triparty Repo Market"

IA-A Policy counterfactual

In this section, I first estimate a parameterized borrower’s problem. I then combine estimates from the lender’s and the borrower’s problem to consider the effect of the Reverse Repo Facility (RRP) through a counterfactual exercise. Specifically, I ask, what would happen to the Triparty rate and dealer’s market power if the RRP were not established?

IA-A.1 Calibrating borrower’s problem

The relationship between borrower’s optimal rate, her marginal value, and her markdown, as shown in Equation 3, remains valid irrespective of the parameterization of borrower’s intermediation value. I now specify the dependence of borrower intermediation value on quantity as $S_{jt} = \hat{S}_{jt} - \zeta \cdot \log(Q_{jt})$. This functional form reflects possible diminishing marginal returns in the quantity of funding. The first-order condition of the borrower’s problem now becomes

$$R_{jt}^* = \hat{S}_{jt} - \zeta - \zeta \log(Q_{jt}) - \frac{Q_{jt}}{Q_{jt}}.$$

I estimate ζ using the 2016 Money Market Fund Reform. In 2016, the money market fund industry underwent a major reform aimed at addressing practices that made the MMF industry vulnerable during the financial crisis of 2007-2008. One of the biggest changes is the mandate for prime funds to keep a floating instead of fixed NAV. This caused an outflow of AUM from prime funds, which mostly invest in unsecured securities such as commercial paper, to government funds, which mostly invest in Treasury securities and could keep using a fixed NAV. As Internet Appendix Figure IA1 illustrates, the
share of government funds increased to about 75% from 25%. This happened against a
backdrop of almost constant total AUM in MMFs. Government funds typically keep a
larger fraction of their AUM in overnight cash.\(^5\) Consequently, the amount of overnight
cash in the industry increased from about 10% of AUM in 2015 to almost 20% in 2017.

The MMF reform increased the amount of cash available for repo. As this increase is
plausibly exogenous to other variations in borrowers’ marginal value of intermediation,
if borrowers drop their repo rates around the MMF Reform, that decrease likely reflects
a deterioration in intermediation value due to increased funding quantity. I therefore
use the MMF reform as an instrument for additional funding that borrowers have to
absorb, and estimate the corresponding repo rate sensitivity. Specifically, I construct an
indicator of MMF reform that takes the value 1 on or post October 2016, when the MMF
reform was fully implemented, and take the value 0 before, and I estimate \(\log(R_{jt}) - \log(R_{zt}) = b_1 \text{vol} + \text{BorrowerFE} + \epsilon_{1,jt}\), where \(\text{vol} = b_0 1_{t \geq 201610} + \text{BorrowerFE} + \epsilon_{0,jt}\).

I estimate using observations in the one year before and after October 2016. Results of
the estimation are summarized in Internet Appendix Table IA1. On average, a borrower
had to absorb $2.1b more because of MMF reform, and each additional billion of funding
lowered the repo rate she offered by about 0.6 bps.

This estimate of \(\frac{d \log R}{dQ}\) can be used to inform \(\zeta\), as \(\zeta = -2QR \cdot \frac{d \log R}{dQ}\). Based on the
average value of \(Q, R\) in the estimation period, I derive a \(\zeta\) of \(1.98 \times 10^{-3}\).

IA-A.2 Triparty without RRP

The Fed instituted the Reverse Repo Facility in anticipation of increasing its policy
interest rate. The RRP is thought to have put a floor on repo rates, which allowed the
Fed to successfully raise the interest rate four times between 2015 and 2017, even as the
Fed’s usual tool – reserve supply adjustment – was made obsolete by the abundance of
reserves during this period. If the RRP were not available, what would have been the
Triparty repo rate? Equally important, did the RRP also affect dealer’s market power in

\(^5\)Government funds can only invest in a limited number of securities. To improve their yield, gov-
ernment funds invest heavily into longer maturity government securities. To comply with regulations on
the fund’s average maturity, they keep a larger overnight cash portfolio. Industry participants refer to
this as the “barbell strategy”.

IA.2
the Triparty repo market?

To assess the effect of the RRP, I assume that, in the absence of the RRP, the Triparty lenders would have as their outside option the realized historical 1-day Treasury bills yield. I illustrate the result of this counterfactual analyses in Internet Appendix IA2. As Panel (a) shows, the counterfactual outside option is lower than the RRP between 2014 and 2017, by about 12 bps on average. Given this change, repo borrowers would lower the rates they offer. Panel (b) illustrates the median counterfactual repo rate. On average from October 2014 to November 2017, the counterfactual median Triparty repo rate is down 8 basis points from historical, putting the median Triparty rate at 3 bps below the lower bound of the Federal Reserve’s policy target. Crucially, RRP also affected the competitive environment of the Triparty market. In the absence of the RRP, the median dealer’s markdown would have been 4 bps larger; see Panel (c). As Panel (d) points out, this increase in dealer’s markdown would come at a time when the total volume to repo borrowers increases by on average $48b per month, allowing the dealers to extract significantly more economic rent.

These counterfactual estimates show that not only did the RRP buoy up the Triparty repo rate by as much as 60% of a typical 25-bps rate hike, but that the RRP also tightened the intermediation wedge that dealer’s market power inserts in repo intermediation. In short, the RRP is an effective monetary policy tool that materially improves the conformance of market rates to the Fed policy rates.
Figure IA1: Share of MMF AUM in Government Funds and in Repo

Notes: This figure plots in solid red and against the y-axis on the left, the proportion of MMF AUM in government funds. This figure plots in dashed blue and against the y-axis on the right, the share of total AUM that is overnight cash, measured as lending via overnight repo to dealers and to the RRP.
Figure IA2: Counterfactual scenario of no RRP and lenders access historical Treasury yield

Notes: This figure plots the counterfactual median Triparty repo rate, the total Triparty repo volume, and the counterfactual median Triparty dealer’s markdown. The scenario is that the RRP were not available in 2014 through 2017 and lenders considered the historical 1-day Treasury yield as the outside option to lending to borrowers. Panel (a) shows the actual R_{zt} in red, which is the 1-day Treasury yield before 2014 and the RRP rate after 2014; and it shows the alternative R_{zt} in pink, which is the 1-day Treasury yield throughout. Panel (b) shows the counterfactual median Triparty repo rate in blue, against the realized (historical) median Triparty repo rate in black, and the lower bound of the Fed’s policy target in red. Panel (c) shows the counterfactual median dealer’s markdown in blue, against the realized median dealer’s markdown in black. Panel (d) shows the counterfactual total repo lending to Triparty dealers in blue, the historical total repo lending to Triparty dealers in black, and the historical total lending to dealers and the RRP in red. The shaded area correspond to September 2013 through September 2014 when the RRP was in testing. The model estimation period is January 2011 to December 2017, excluding September 2013 through September 2014 and months that fall on quarter ends. This figure is best viewed in color.
Table IA1: **Borrower sensitivity to value of funds**

<table>
<thead>
<tr>
<th>Indicator: post 2016 Oct</th>
<th>1st stage: vol(_jt)</th>
<th>IV: (R_{jt} - R_{zt})</th>
<th>OLS: (R_{jt} - R_{zt})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol(_jt) (fit)</td>
<td>2.130***</td>
<td>-0.610***</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.637)</td>
<td>(0.226)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Vol(_jt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Effective F-stat</td>
<td>11.187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. obs.</td>
<td>293</td>
<td>293</td>
<td>293</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

Notes: This table reports the instrumental variable estimate of borrower’s sensitivity to value of funds. In the first-stage regression, borrower’s total overnight repo volume is regressed on the indicator for post-2016 October. In the IV regression, the difference between borrower’s repo rate and the outside option is regressed on borrower’s overnight repo volume, as instrumented using first-stage. The OLS regression regresses borrower’s repo rates on volume, without using an instrument. Borrower’s repo rate is defined as the volume-weighted average of repo rates between a borrower and all lenders in overnight repo collateralized by Treasury securities with 2% haircut. The outside option is defined as the RRP rate. The estimation period is from October 2015 to October 2017, the one year before and after October 2016, excluding months that fall on quarter ends. Standard errors are robust to heteroskedasticity. *, **, and *** denote significance levels at 10%, 5%, and 1% confidence levels.