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Abstract

Prudential authorities mandate that banks hold equity capital exceeding a share of their risk-weighted

assets. How should policymakers design this central tool of financial regulation? We develop a unifying

framework for nonlinear bank capital regulation that nests canonical models of financial intermedia-

tion. Using a perturbation approach, we characterize the positive and normative effects of reforming

risk weights through a small set of sufficient statistics, including credit-supply elasticities and welfare

externalities from financial intermediation. These statistics are informative about credit-market frictions

and the degree of competition. We estimate them in administrative data and apply the framework to

evaluate the Federal Reserve’s recent proposal to flatten the risk-weight schedule. Our analysis reveals

nonlinear effects on credit allocation, leading to a moderate decline in total credit supply but a rise in

bank equity, enhancing financial stability. Finally, we derive new sufficient-statistics formulas for the

(constrained) Pareto-optimal risk weights that correct credit-supply externalities while accommodating

market imperfections. Calibrated to empirical moments, the optimal schedule balances efficiency gains

in production against the risk externalities of credit supply arising from government guarantees. Numer-

ical simulations indicate that the Fed’s proposed weights are close to optimal, generating sizable welfare

gains for households at the expense of banks and entrepreneurs.
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1 Introduction

In the aftermath of the global financial crisis, bank regulation has placed renewed emphasis on financial

stability. At the center of these reforms lies the minimum capital requirement. This core instrument, codified

in the Basel Accords, mandates that a bank’s equity capital must exceed a share of its risk-weighted assets.

Because the requirement is risk-sensitive, greater risk-taking translates into higher capital requirements

through larger risk weights. Two components are therefore central: the capital adequacy ratio, which sets

the minimum equity share, and the nonlinear risk-weight schedule, which assigns a weight to each type of

exposure.

Regulatory authorities worldwide introduced model-based capital requirements with strong risk sen-

sitivity under Basel II. By contrast, the Federal Reserve’s 2023 “Basel Endgame” proposal marks a shift

toward a revised standardized approach with much flatter risk weights, intended to reduce complexity and

enhance comparability across banks. Hence, regulators disagree on the optimal degree of risk sensitivity in

bank capital requirements that balances efficient credit allocation and financial stability. Despite its first-

order importance, the positive and normative effects of nonlinear bank-capital regulation remain largely

unexplored.

Our paper fills this gap. First, we develop a unified framework for analyzing nonlinear capital require-

ments that nests a wide range of canonical models from the banking literature. We introduce the perturbation

approach, widely used in public economics, into the analysis of risk-sensitive bank regulation. This approach

allows us to characterize both the corrective effects and behavioral distortions of nonlinear reforms in terms

of a small set of empirically observable sufficient statistics. These statistics provide structural insights into

the nature of credit-market frictions and the degree of market power. Second, we estimate these sufficient

statistics using administrative data from the German credit registry. We then quantify the nonlinear responses

to reforms of the current risk-weight schedule, such as the Federal Reserve’s proposal, and derive the opti-

mal design of regulatory risk weights. We show that the Fed’s proposal is close to a constrained-efficient,

Pigouvian optimum that corrects the welfare-relevant credit-supply externalities.

Framework. The paper proceeds as follows. We first develop a unified model of financial intermediation

that nests a wide range of canonical environments differing in technology, information, and market structure.

The representative intermediary chooses its equity, credit portfolio, and additional environment-specific

variables such as loan pricing or monitoring intensity. The bank is subject to three sets of constraints: one

describing the endogenous formation of credit risk, one ensuring market or contractual feasibility, and, most

importantly, the risk-sensitive regulatory capital requirement. Non-financial agents include firms that invest

capital in their businesses and households that supply deposits, both subject to feasibility conditions. This
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environment encompasses, among others, the seminal models of Kim and Santomero (1988), Boyd and

De Nicolo (2005), Stiglitz and Weiss (1981), Holmstrom and Tirole (1997), and Gale and Hellwig (1985).

To study regulatory counterfactuals, we then adopt the perturbation, or variational, approach, widely

used in public finance (see Chetty (2009); Kleven (2021)), to the context of bank regulation. We are the first

to characterize both the positive and normative effects of nonlinear capital reforms in terms of observable

sufficient statistics. This method provides a transparent characterization of equilibrium responses to risk-

weight changes that jointly reflect the behavior of financial and non-financial agents.1

Positive analysis. The behavioral responses to risk weights can be summarized by four elasticities. (i)

The semi-elasticity of credit supply with respect to risk weights – the level effect. (ii) The semi-elasticity

of credit supply with respect to marginal risk weights – the slope effect. (iii) The elasticity of credit supply

with respect to default risk – the risk channel. (iv) The elasticity of credit risk with respect to bank lending

– the risk feedback from leverage. Together, these sufficient statistics determine the equilibrium effects of

arbitrary nonlinear reforms to the risk-weight schedule at the loan level.

Characterizing these elasticities across the benchmark models yields three general empirical predictions.

First, credit-supply responses to risk weights would reveal a binding capital constraint, indicating deviations

from the Modigliani and Miller (1958) capital-structure irrelevance principle. Second, credit-risk responses

are informative about the nature of loan-market frictions: a positive effect of leverage on default risk is

consistent with entrepreneurial moral hazard, whereas a negative relationship points to adverse selection.

Third, the perturbation approach brings a novel channel to light. If credit supply responds to marginal risk

weights, banks internalize how their lending decisions affect default risk and thereby the regulatory capital

constraint. This channel arises under market power but is absent in competitive credit markets.

Aggregating loan-level responses across the observed distribution of credit risk yields bank-level adjust-

ments in total credit and equity. The equity response combines two components: a mechanical effect, as

higher risk weights directly raise required capital, and a behavioral effect, as they increase the marginal cost

of lending and induce portfolio adjustments.

Normative analysis. We next turn to the normative evaluation of bank capital regulation. By an envelope

argument, bank welfare is locally unaffected by changes in credit supply or equity and thus responds only

mechanically to regulatory reforms. By contrast, firms and depositors experience welfare externalities –

typically, firms through changes in production scale and depositors through fiscal costs associated with

government guarantees. Marginal welfare externalities from credit supply and bank equity, therefore, serve
1In contrast to structural approaches in the banking literature (e.g., Corbae and D’Erasmo (2021); Begenau and Landvoigt

(2022)), the sufficient-statistics approach does not rely on parametric assumptions about preferences, technologies, or market
structure.
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as sufficient statistics for welfare analysis.

As a byproduct of this reform analysis, we derive sufficient-statistics formulas for optimal risk weights.

In the first-best benchmark, all regulatory instruments are chosen to correct welfare externalities in the

spirit of Pigou (1920). The Pareto-optimal risk-weight schedule addresses marginal externalities across the

credit-risk distribution. In the presence of loan-market frictions, however, the choice of risk weights is con-

strained because credit risk itself responds to lending. When the regulatory domain becomes endogenous,

the weights in the capital constraint turn linearly dependent, rendering the unconstrained correction infeasi-

ble (see Tinbergen (1952)). As a result, the constrained Pareto-optimal schedule is flatter than its first-best

counterpart.

Empirical implementation. A central empirical challenge is to disentangle supply from demand-side

responses in the loan market. We identify credit-supply elasticities using quasi-random variation in banks’

internal estimates of firm credit risk. For the same borrower, differences in estimated default probabilities

across banks generate variation in assigned risk weights, allowing us to isolate credit-supply responses to

perceived risk and regulatory capital requirements. As an alternative strategy, we exploit a regulatory reform

that introduced a nonlinear reduction in risk weights for small and medium-sized firms below a cutoff firm

size, using the reform as an instrument in a two-step IV framework.

To identify the elasticity of credit risk with respect to bank lending, we use a shift–share design based

on the 2011 German bank levy. The identifying variation arises from pre-reform firm–bank relationships

that generate heterogeneous exposure to the tax-induced downward shift in the credit-supply curve. This

quasi-experimental setting allows us to trace how exogenous changes in lending affect subsequent borrower

risk. For robustness, we re-estimate the sufficient statistics using data from the U.S. syndicated loan market.

The results show economically meaningful credit-supply responses to both risk and risk weights, reject-

ing the Modigliani and Miller (1958) capital-structure irrelevance hypothesis. We find limited responses to

marginal risk weights, consistent with a competitive loan market. Across the risk distribution, credit-risk

responses vary systematically: for the majority of loans (prime to medium-grade ratings), leverage increases

default probabilities, consistent with borrower moral hazard (see Allen and Gale (2000); Boyd and De Ni-

colo (2005)) or costly state verification (see Gale and Hellwig (1985)). At the top of the risk distribution

(speculative and non-rated loans), we observe a negative relationship between leverage and default risk,

consistent with adverse selection (see Stiglitz and Weiss (1981)).

Quantitative application: Basel Endgame. Using the estimated elasticities and the observed credit dis-

tribution, we evaluate the Federal Reserve’s proposal to abolish the highly risk-sensitive Internal Ratings-

Based Approach and replace it with a two-bracket risk-weight schedule. The proposal increases risk weights
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for low-risk loans to 65% and reduces them to 100% for high-risk loans. This reform generates strongly

nonlinear incentive effects: lending declines for low-risk loans and expands for high-risk loans, both in sub-

stantial magnitude (20–40%). Overall, total credit supply falls moderately by 3.57%. Because many low-risk

exposures experience a sharp increase in risk weights, bank equity rises by 4.33%. Roughly three-quarters of

this adjustment reflects behavioral (incentive) effects, while one-quarter reflects mechanical (inframarginal)

effects. In sum, the proposal makes banks safer: the probability of a bailout declines by 1.4 percentage

points, equivalent to an 8% increase in the capital adequacy ratio.

To quantify welfare implications, we estimate credit-supply spillovers on entrepreneurial income and

measure household externalities through deposit insurance, following standard approaches in the literature

(e.g., Corbae and D’Erasmo (2021); Dávila and Walther (2021); Oehmke and Opp (2022)). For comparison,

we also simulate the (constrained) Pareto-optimal risk-weight schedule and find striking similarities with the

flatter schedule proposed by the Fed. Both the Fed proposal and the optimal schedule produce comparable

welfare patterns. Bank welfare declines because banks must hold more costly equity, while entrepreneurs

experience, on average, reduced income due to lower credit supply. Welfare losses are concentrated among

low-risk firms, whereas high-risk firms benefit from reallocation. Households, by contrast, gain as expected

bailout costs decline. We therefore conclude that the Fed’s proposed risk-weight schedule is close to optimal.

Robustness and extensions. To be added

Related literature. We contribute to several strands of literature. First, the banking literature has empha-

sized the importance of capital regulation since the 1970s (e.g., Santomero and Watson (1977); Koehn and

Santomero (1980)). The rise in bank failures during the 1980s shifted attention toward the need for risk-

sensitive regulation (see, e.g., Kim and Santomero (1988); Rochet (1992)).2 In this area, our work relates to

the theoretical analysis of optimal risk weights (e.g., Rochet (1992); Greenwood et al. (2017)).

Second, we connect to the recent literature in financial economics that applies the sufficient-statistics

approach to regulatory design, pioneered in public finance (e.g., Chetty (2009)). Similar to Dávila and

Walther (2021), Dávila and Goldstein (2023), and Van den Heuvel (2022), we characterize optimal financial

regulation in terms of a small set of empirically observable measures. Our paper is most closely related to

Dávila and Walther (2021), who analyze corrective taxation of investors under regulatory imperfections. We

instead focus on quantity regulation in credit markets and empirically estimate the sufficient statistics for

nonlinear risk weights.

A complementary strand of work analyzes capital regulation using quantitative structural models (e.g.,

Begenau and Landvoigt (2022); Corbae and D’Erasmo (2021); Elenev et al. (2021)). Whereas the sufficient-
2Santos (2001) provides an excellent overview of the early literature.
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statistics approach focuses on parsimonious empirical moments and permits flexible nonlinear policies, the

structural approach is informative about further channels of bank regulation, such as business-cycle effects.

Finally, we contribute to the empirical banking literature on risk-sensitive capital regulation. Meiselman

et al. (2023) show that profitability predicts bank risk better than regulatory ratios; Plosser and Santos

(2018), Behn et al. (2022), and Sizova (2023) document systematic underreporting in internal risk models;

and Acharya et al. (2014) emphasize that risk weights are not necessarily forward-looking. Building on this

work, we identify credit-supply and risk responses in credit-registry data and link them to core credit-market

frictions to estimate policy counterfactuals.

Outline of the paper. Section 2 develops a general model of banking and defines the elasticities and

welfare externalities that serve as sufficient statistics for capital regulation. Section 3 introduces the varia-

tional approach for analyzing nonlinear risk weights and derives both the positive and normative effects of

regulatory reforms, characterizing optimal bank regulation in terms of these sufficient statistics. Section 4

estimates the key statistics using German administrative data and U.S. syndicated loan data. Section 5 uses

these estimates to quantitatively evaluate nonlinear risk-weight reforms and the optimal design of regulatory

risk weights. Section 6 discusses model extensions, and Section 7 concludes.

2 Framework

We develop a unified model of financial intermediation that serves as a common structure for a range of

canonical banking models. The formulation is deliberately general so that specific assumptions on technol-

ogy, information, and market structure reproduce well-known benchmark environments such as Kim and

Santomero (1988), Boyd and De Nicolo (2005), Stiglitz and Weiss (1981), Holmstrom and Tirole (1997), or

Gale and Hellwig (1985).

In the following, we describe the model in detail. Throughout, we define elasticities and distributional

statistics that determine the positive effects of risk-sensitive bank capital regulation and marginal welfare

externalities, capturing normative effects. These can be measured in the data and are sufficient statistics for

regulatory policies. Their definition will not rely on a specific model structure or parametric assumptions.

2.1 Environment

There are three types of agents x ∈ {E,H,B}: a continuum of entrepreneurs θ ∈ [0, 1] ≡ Θ (borrowers),

households (depositors), and a representative bank (financial intermediary). The bank chooses credit supply

k ≡ {kθ}θ∈Θ, equity E , and has additional decision variables z ≡ {zθ}θ∈Θ, such as loan pricing or moni-

toring intensity. We denote the complete bank choice set by x ≡ ( k, E , z ). Depositors (households) make
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choices c, such as consumption. Each entrepreneur θ takes individual decisions dθ, for example, effort,

project scale, or risk-taking. We collect these in d ≡ {dθ}θ∈Θ. The vector p ≡ {pθ}θ∈Θ summarizes ex-

ante credit risk for each loan. It may depend on borrower characteristics, choices, and the equilibrium credit

supply through leverage or contractual channels. This relationship is captured by a general risk-formation

constraint

P(pθ, kθ, zθ; dθ, θ) = 0, ∀ θ ∈ Θ, (1)

that defines the mapping between credit supply, contractual variables, and ex-ante default risk. In practice,

pθ refers to the regulatory (reported) probability of default, which banks determine through their internal

models. The risk-formation constraint P thus describes how these reported PDs depend on banks’ choices

and borrower characteristics. While the baseline analysis treats pθ as reflecting true credit risk, the frame-

work readily nests settings with risk-weight manipulation, in which banks influence reported PDs through

misreporting or model adjustments.

The bank’s feasibility constraints summarize incentive compatibility, borrowing limits, or market-structure

restrictions:

C(x, p; d) ≤ 0. (2)

Capital regulation imposes a requirement linking bank equity and risk-weighted assets,

R(k, E , p) ≡
∫
Θ
ω(pθ)kθ dθ − E/Ω ≤ 0, (3)

where Ω > 0 is the capital-adequacy ratio and ω(pθ) ≥ 0 denotes the nonlinear risk weight on assets of

risk pθ. For now, we restrict the regulatory domain to a one-dimensional measure of ex-ante credit risk,

but the analysis readily extends to cases where risk weights are tagged to additional observables, such as

loss-given-default. For tractability, ω(pθ) is assumed to be twice continuously differentiable.3 The marginal

risk weights ω′(pθ) capture how capital requirements change with credit risk. Whereas the structural effects

of the capital ratio Ω have received recent attention in the literature (see Van den Heuvel (2022), Begenau

and Landvoigt (2022)), nonlinear risk weights ω(pθ) are studied rarely.

Entrepreneurs and depositors. Each entrepreneur θ chooses dθ to maximize expected utility,

VE
θ = max

dθ
UE
θ (dθ; kθ, zθ) s.t. CE

θ (dθ; kθ, zθ) ≤ 0, (4)

3Note the difference between credit rating and actual default probabilities. While we require differentiability in the latter, risk
weights may still be step-functions of credit ratings.
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where UE
θ (·) denotes expected utility from the project, typically increasing in expected returns. CE

θ (·) sum-

marizes technological or incentive limits, such as participation, collateral, or limited-liability constraints.

Given x, the entrepreneur’s optimal choices induce an equilibrium default probability pθ satisfying (1).

Analogously, depositors make choices to maximize their expected utility subject to a set of constraints

VH = max
c

UH(c;x) s.t. CH(c;x) ≤ 0. (5)

Bank. The representative bank chooses (x, p) to maximize expected utility

VB = max
x,p

UB(x, p) s.t. P(pθ, kθ, zθ; dθ, θ) = 0, ∀θ, C(x, p; c, d) ≤ 0, R(x, p) ≤ 0. (6)

UB(x, p) denotes the intermediary’s expected net return or utility from its credit portfolio. The constraints

represent, respectively, (i) the endogenous formation of credit risk P , (ii) market or contractual feasibility C,

and (iii) the prudential capital requirement R.

The role of the capital constraint depends on the cost of equity finance, captured by ∂UB(·)/∂E . If

equity were frictionless, the Modigliani and Miller (1958) proposition would imply that R(·) ≤ 0 is slack

and that changes in risk weights ω(pθ) or the capital ratio Ω would have no real effects on lending. In

practice, equity is costly, for instance, because of tax deductibility of debt interest or deposit insurance, so

the constraint binds in equilibrium.

The problem can be viewed in two layers. The inner problem determines operational choices, such

as pricing and monitoring, conditional on the portfolio {kθ} and equity E . The outer problem then governs

optimal portfolio and equity choices subject to regulation. The inner problem yields functions z(k, E , p) that

describe the bank’s optimal operating policy. The outer problem determines (k, E , p) to equate the marginal

benefit of credit expansion with its marginal regulatory cost. The corresponding first-order conditions are

reported and discussed in Appendix A.1.

The outer problem implies two optimality conditions that can be expressed in equity units. The first

defines the shadow value of bank equity associated with the binding capital requirement. The second equates

the marginal benefit of expanding credit to type θ with the marginal regulatory cost. At the optimum, the

bank increases lending up to the point where the utility gain from an additional unit of credit, including

the induced change in default risk through pricing or monitoring, equals the cost of raising extra equity in

proportion to the risk weight ω(pθ) and its slope ω′(pθ). Hence, both the level and the slope of the risk-

weight schedule influence credit supply and, through the (potential) endogenous response of risk pθ, feed

back into the portfolio composition.
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Equilibrium. An equilibrium consists of a collection (x, p, c, d) such that, for a given regulatory envi-

ronment (Ω,ω(·)), the following conditions are satisfied: (i) for each θ ∈ Θ, the entrepreneur’s decision

dθ solves (4), given the bank’s policy vector x, yielding pθ consistent with (1); (ii) the depositors’ deci-

sions c solve (5), given the bank’s policy vector x; (iii) given entrepreneurs’ and depositors’ best responses

d = {dθ}θ∈Θ, the bank chooses (x, p) to maximize (6); and (iv) all constraints are jointly satisfied and

mutually consistent. The equilibrium thus determines a joint allocation of credit, risk, and equity that sat-

isfies optimality for entrepreneurs and the bank, as well as all regulatory and market-structure restrictions.

Depending on the constraint specification, this allocation may correspond to a competitive credit market, a

monopolistic intermediary, or an optimal-contracting outcome.

Sufficient statistics. To characterize how the equilibrium allocation responds to small reforms of the cap-

ital requirement, it is useful to summarize the bank’s behavioral responses by a set of loan-level elasticities.

We assume that bank equity E and other choices zθ are separable. The separability assumption does

not restrict the underlying mechanism (pricing or monitoring may still be the channels through which risk

responds) but it rules out a direct dependence of loan-level credit risk on bank-level equity, once these

choices are optimally adjusted. Absent any across-asset risk spillovers, the equilibrium default probability

pθ can be written in reduced form as a function of credit supply, pθ = pθ(kθ; θ). Around the equilibrium

risk profile, loan-level elasticities are defined as

ζk,ωθ ≡ ∂ log kθ
∂ ω(pθ)

∣∣∣∣
p̄

, ζk,ω
′

θ ≡ ∂ log kθ
∂ ω′(pθ)

∣∣∣∣
p̄

, ζk,pθ ≡ ∂ log kθ
∂ log p̄θ

, εp,kθ ≡ d log pθ
d log kθ

. (7)

The first two elasticities measure how credit supply reacts to the level and slope of the risk-weight

schedule, evaluated at the equilibrium distribution of risks p̄. ζk,pθ captures how credit responds to a change in

borrower risk for fixed regulatory risk weights, while εp,kθ summarizes the endogenous feedback from credit

supply expansion to risk. This reduced-form relation embeds all indirect channels, such as adjustments in

pricing or monitoring. These elasticities measure the positive effects of regulatory reforms.

Beyond behavioral responses, the welfare effects of marginal policy reforms depend on how credit

supply and equity affect indirect utility across types. We define marginal welfare externalities as

χH ≡ − 1

µ

dVH

dE
ξHθ ≡ − 1

µ

dVH

dkθ
and ξEθ ≡ − 1

µ

dVE
θ

dkθ
, ∀θ. (8)

ξEθ and ξHθ measure the external effects of an additional unit of credit to type θ on entrepreneurial and house-

hold welfare, holding regulation constant. χH captures the marginal welfare effect of an incremental unit of

bank equity. The latter term reflects any pecuniary or non-pecuniary spillover associated with higher capital
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Model Pricing Level effect Slope effect Risk channel Risk feedback
Kim & Santomero [1988] partial equilibrium ζk,ωθ < 0 ζk,ω

′

θ = 0 ζk,pθ = ω′
θpθζ

k,ω
θ εp,kθ = 0bank portfolio choice

Boyd & De Nicolò [2005] monopolistic pricing ζk,ωθ < 0 ζk,ω
′

θ = pθε
p,k
θ ζk,ωθ < 0 ζk,pθ ≶ 0 εp,kθ > 0

entrepreneurial moral hazard competitive pricing ζk,ωθ < 0 ζk,ω
′

θ = (1− pθ)ζ
k,ω
θ < 0 ζk,pθ ≶ 0 εp,kθ > 0

Holmström & Tirole [1997] fixed capital ζk,ωθ = 0 ζk,ω
′

θ = 0 ζk,pθ = 0 εp,kθ = 0

double moral hazard competitive pricing ζk,ωθ < 0 ζk,ω
′

θ = 0 ζk,pθ ≶ 0 εp,kθ = 0

Stiglitz & Weiss [1981] monopolistic pricing ζk,ωθ < 0 ζk,ω
′

θ = pθε
p,k
θ ζk,ωθ > 0 ζk,pθ ≶ 0 εp,kθ < 0

adverse selection competitive pricing ζk,ωθ < 0 ζk,ω
′

θ = 0 ζk,pθ = ω′
θpθζ

k,ω
θ εp,kθ < 0

Gale & Hellwig [1985] monopolistic contracting ζk,ωθ < 0 ζk,ω
′

θ = pθε
p,k
θ ζk,ωθ < 0 ζk,pθ ≶ 0 εp,kθ > 0

costly state verification competitive rates ζk,ωθ < 0 ζk,ω
′

θ = 0 ζk,pθ ≶ 0 εp,kθ ≶ 0

Table 1: Summary of elasticities across canonical banking models.

buffers, for instance, lower bailout probabilities or transfers from households to banks. The shadow price of

bank equity µ normalizes all externalities. Together with the behavioral elasticities, these externalities are

sufficient statistics for normative evaluation of reforms to bank-capital regulation.

2.2 Connection to Canonical Banking Models

The general framework nests a range of canonical models that differ in the structure of the risk-formation

constraint P and the feasibility conditions C. Each specification emphasizes a particular transmission chan-

nel (e.g., portfolio choice, moral hazard, adverse selection, or costly verification) that governs how credit

supply, risk, and regulation interact. In addition to unifying these microfoundations, the comparison pro-

vides empirical underpinnings: the sufficient statistics defined in the general framework can be linked to

specific frictions and market structures identified in the canonical models.

Table 1 summarizes how these elasticities vary across benchmark environments. For further model de-

tails and structural characterizations, see Appendix A.2. Three broad insights emerge. First, when the capital

constraint binds, higher risk weights tighten the effective capital requirement and reduce credit supply. Thus,

credit-supply responses to risk weights provide direct evidence of deviations from the Modigliani and Miller

(1958) capital-structure irrelevance result. Second, credit supply responds to marginal risk weights only if

banks internalize their effect on aggregate credit risk. Since this channel is typically absent under perfect

competition, such responses serve as a diagnostic for market power or imperfect risk pricing. Third, the

sensitivity of credit risk to entrepreneurial leverage reveals the nature of loan-market frictions. Positive

correlations are consistent with moral hazard, negative ones with adverse selection, and a null relationship

implies that risk reflects exogenous loan characteristics rather than endogenous borrower behavior. We now

turn to the specific canonical models.
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Kim and Santomero (1988): portfolio risk choice. In the Kim–Santomero portfolio model, the bank

allocates its balance sheet across risky and safe assets subject to the capital requirement. Asset risk is a

characteristic, so P is degenerate and there is no feedback from lending to risk (εp,k = 0). Under costly

equity, risk weights act as a linear tax on risky assets. A higher level of weights compresses lending in

proportion to ω(pθ), delivering ζk,ω < 0. Since risk is exogenous, the slope of the schedule ω′(pθ) has no

effect, implying ζk,ω
′
= 0. The model isolates the pure portfolio channel of capital regulation, where capital

affects portfolio choice but not risk-taking.

Boyd and De Nicolo (2005): entrepreneurial moral hazard. A later line of work has endogenized

credit risk (see Allen and Gale (2000)). Extending this mechanism, Boyd and De Nicolo (2005) model

entrepreneurs who obtain funding on the credit market and choose risk under a risk-return trade-off (see

Corbae and D’Erasmo (2021) for a recent quantitative model). The risk-formation constraint P captures

the relationship between loan size and project risk: due to limited liability, greater entrepreneurial leverage

raises loans’ default probabilities (εp,k > 0). Imperfect competition in the credit market further amplifies

the effect of leverage through higher loan prices. Under both competitive and monopolistic loan pricing,

higher risk weights make lending more costly, thereby reducing credit supply (ζk,ω < 0). While banks

cannot directly control entrepreneurial risk-taking, they internalize the marginal effect of lending on credit

risk and, in turn, on the equity required by risk weights. Consequently, a steeper schedule also depresses

lending (ζk,ω
′
< 0), strengthening the transmission of capital regulation through the risk-taking channel.

Holmstrom and Tirole (1997): double moral hazard. In Holmstrom and Tirole (1997), firms require ex-

ternal finance because project returns are not fully pledgeable. Funding comes from two sources: informed

insiders (entrepreneurs and banks) who exert effort and monitor, and uninformed outside investors who lend

without monitoring but whose claims must remain incentive compatible. Both parties face incentive prob-

lems: entrepreneurs must exert effort, and banks must monitor prudent behavior. The feasibility constraints

C embed joint incentive-compatibility conditions that limit the amount of outside finance relative to total in-

side capital. The default probability pθ is treated as a primitive, reflecting that risk is determined by incentive

feasibility rather than by the scale of lending. Therefore, default risk is fixed (εp,k = 0).

Two polar cases illustrate how regulation transmits. When inside finance is scarce, the volume of in-

termediation is pinned down by available bank capital. Banks then earn a scarcity rent, and the regulatory

constraint is slack, implying ζk,ω = 0 and ζk,ω
′
= 0. When the supply of inside capital is elastic and loan

rates satisfy a zero-profit condition within C, higher risk weights increase the cost of intermediation and

raise loan interest rates. As a result, the amount of lending that satisfies incentive compatibility declines

(ζk,ω < 0). Since credit risk is exogenous, marginal risk weights have no local effect (ζk,ω
′
= 0).
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Stiglitz and Weiss (1981): adverse selection. Borrowers differ in project quality, which is private infor-

mation. Loan pricing, therefore, shapes the composition of applicants: higher rates screen out safer types

and attract riskier ones. In our mapping, the risk-formation constraint P captures this selection mechanism,

while the feasibility set C imposes participation and, where relevant, zero-profit conditions. When lending

expands because loan rates decline, the borrower pool improves, and average default risk falls, yielding a

negative risk feedback (εp,k < 0). While the original model emphasizes selection across firms, a similar

mechanism applies within firms if each finances multiple projects with unobserved risk. Lower funding

costs then induce safer marginal projects, reducing the firm’s average default probability.

The transmission of capital regulation depends on market structure. With monopolistic pricing, the bank

internalizes the effect of interest rates on borrower composition. Higher risk weights raise the cost of capital

and, through higher loan prices, reduce lending (ζk,ω < 0). At the same time, the bank recognizes that lower

rates improve the applicant pool and thereby reduce the equity required by risk weights. A steeper schedule

amplifies this channel, reinforcing the downward pressure on rates and expanding credit (ζk,ω
′
> 0). Under

competitive pricing, the loan rate is pinned by the zero-profit condition, so the slope has no local bite

(ζk,ω
′
= 0), while the level effect remains negative (ζk,ω < 0). Relative to entrepreneurial moral hazard, the

key difference is the sign of the feedback: adverse selection makes risk fall when credit expands.

Gale and Hellwig (1985): costly state verification. In Gale and Hellwig (1985), project returns are

privately observed, and lenders can verify returns only by paying an audit cost that depends on loan size and

project realizations. Loan contracts must therefore ensure the borrower’s incentive to repay in non-verified

states. The incentive-compatible contract takes the form of standard debt, where borrowers repay a fixed

amount when they can, and auditing occurs only upon default. In our mapping, the feasibility constraint C

captures the borrower’s and lender’s participation conditions, taking into account the expected verification

cost. The risk-formation constraint P describes how the probability of default pθ depends on loan size kθ

through the threshold state that triggers default.

Larger loans increase the expected number of audits and the total monitoring cost. Whether this also

raises default probability depends on the market structure. Under monopolistic contracting, the bank op-

erates at the borrower’s participation constraint. A higher loan allows greater surplus extraction through a

larger repayment obligation, thereby raising the bankruptcy threshold. This implies a positive risk feedback

(εp,kθ > 0). Under competitive rates, entrepreneurs borrow freely at posted loan rates that adjust to satisfy

the bank’s zero-profit condition. For a given rate, leverage and default risk are positively related. Yet the

equilibrium rate adjusts so that the marginal product of capital equals its average product, rendering the

feedback ambiguous (εp,kθ ≷ 0). Capital regulation affects lending by interacting with contractual costs.

Under monopolistic contracting, higher risk weights raise the cost of intermediation and reduce bank lend-
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ing incentives (ζk,ωθ < 0). A steeper risk-weight schedule further penalizes risky loans, tightening credit

supply (ζk,ω
′

θ < 0). Under competitive lending, the loan rate satisfies a zero-profit condition, so the slope of

the schedule has no local effect (ζk,ω
′

θ = 0), while the level effect remains negative (ζk,ωθ < 0).

3 Analysis of Risk Weights

We now return to our general framework and study the loan- and bank-level effects of changing risk weights,

i.e., the incidence of risk weights. We introduce a perturbation, or variational, approach for studying such

reforms to bank capital regulation. This allows us to express the regulatory incidence on bank equity and

credit supply in terms of the defined elasticities and the observed credit distribution. Then, we turn to a nor-

mative analysis of risk-weight schedules. We show that the marginal credit-supply and equity externalities

characterize the welfare effects of risk-weight reforms and, finally, provide sufficient statistics formulas for

optimal nonlinear risk weights that address the corrective motives of bank capital regulation.

3.1 Perturbation Approach

We start by analyzing the effects of reforming the existing risk-weight schedule. Consider an arbitrary initial

risk-weight scheme ω and suppose the regulator implements a reform ω̂ that changes risk weights to ω+ ϵω̂,

where ϵ→ 0. Formally, ω̂ is the infinite-dimensional direction of the reform, and ϵ parametrizes the reform

size.4 Similarly, we can study directional reforms to the capital adequacy ratio from Ω to Ω + ϵΩ̂. The

Gateaux derivative of a functional F : C([0, 1]) → R in the direction ω̂ is defined as5

F̂(ω̂) ≡ d

dϵ
F(ω + ϵω̂)

∣∣∣∣
ϵ=0

.

Following a long tradition in the public finance literature (see Piketty (1997), Saez (2001), Golosov et al.

(2014)), this approach allows us to derive the positive and normative effects of reforms in terms of empir-

ically observable sufficient statistics. These statistics are evaluated around the current regulatory policies

and can be measured in the data.6 We do not need to rely on a specific model structure or parameterization,

unifying a large class of banking models as described in Section 2.2. Recent contributions to the financial

economics literature also follow a sufficient statistics approach to characterize, e.g., optimal bankruptcy

exemptions (see Dávila (2020)) and prudential regulations (see Dávila and Walther (2021, 2023)).
4Suppose throughout that ω̂ is in the Banach space of continuously differentiable functions with bounded first derivative.
5To save on notation, we drop in the following the dependence of Gateaux derivatives on ω̂.
6The usual caveat applies that the considered reforms are small.
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3.2 Loan-Level Incidence

We start by examining the effects of risk weights on each individual loan type θ ∈ Θ. One can characterize

the equilibrium changes in type-specific credit supply and credit risk as follows (see Appendix B.1):

k̂θ
kθ

=
ζk,ωθ

1− εk,pθ εp,kθ︸ ︷︷ ︸
ζ
k,ω
θ

ω̂(pθ) +
ζk,ω

′

θ

1− εk,pθ εp,kθ︸ ︷︷ ︸
ζ
k,ω′
θ

ω̂′(pθ) + Ψθ({ω̂(pθ), ω̂′(pθ)}θ∈Θ) and
p̂θ
pθ

= εp,kθ

k̂θ
kθ
. (9)

Recall that corporate loans and entrepreneurial risk can depend on both marginal and average risk weights.

Consequently, any rise in either average or marginal risk weights distorts lending incentives, typically re-

ducing credit supply and the level of credit risk. These partial-equilibrium responses are proportional to

ζk,ωθ and ζk,ω
′

θ , respectively. The term (1− εk,pθ εp,kθ )−1 captures a feedback correction that accounts for the

potential endogenous response of credit risk to changes in loan supply, and vice versa.7

Besides these direct effects of reforming an asset’s risk weight (own-price responses), credit supply may

also respond indirectly through asset substitution. For instance, optimal investment in one asset may depend

on investments in other assets due to cross-asset covariance in returns (e.g., Kim and Santomero (1988)). In

such cases, reforming the risk weight for a particular loan type or asset class affects not only that asset but

also the entire composition of the bank’s credit portfolio (cross-price effects). These portfolio adjustments,

in turn, feed back into the demand for the reformed asset class. The term Ψθ(·) captures this entire sequence

of circular adjustments within the portfolio (see B.3.2 for a structural example).

3.3 Bank-Level Incidence

Having derived the loan-level incidence, we can now investigate the aggregate implications at the bank

level. Proposition 1 characterizes the first-order responses of bank-level variables to an arbitrary reform of

the risk-weight schedule.

Proposition 1. The incidence of reforming an initial risk-weight scheme ω(pθ) in the direction ω̂(pθ) on

bank credit supply and equity is given by

L̂ =

∫
θ
k̂θdθ (10)

and

Ê = Ω

∫
θ
ω̂(pθ)kθdθ +Ω

∫
θ
[ω(pθ) + ω′(pθ)pθε

p,k
θ ]k̂θdθ, (11)

where (9) describes the changes to the bank credit portfolio.
7This feedback effect is conceptually similar to those found in the public finance literature, e.g., for the income taxation of

superstar managers (see Scheuer and Werning (2017)) and for scale-dependent investment return rates in the context of capital
taxation (see Schulz (2021)).
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Proof. Appendix B.2.

The equilibrium response of bank credit supply in (10) is straightforward. Any increase in marginal or

average risk weights of a given loan raises the bank’s effective funding cost and thereby distorts its lending

decisions. This distortionary effect reduces the aggregate credit supply L accordingly.

Recalling that the bank capital requirement is binding in equilibrium, bank equity E explicitly depends

on the entire risk-weight schedule. A rise in risk weights increases the level of risk-weighted assets for a

given credit supply. In other words, higher risk weights mechanically raise the amount of equity needed to

satisfy the capital requirement, which is the first term in equation (11). This mechanical, or inframarginal,

component adds to the behavioral adjustments arising from changes in loan size and risk (second term

in (11)).

As discussed above, credit supply and loan risk are jointly shaped by both average and marginal risk

weights, giving rise to two channels of behavioral adjustment: (i) changes in credit supply affect required

equity for a given set of risk weights, and (ii) changes in credit supply alter risk weights indirectly through

their effect on default probabilities. For ω ≥ 0 and ω′εp,k ≥ 0, a negative credit-supply response reduces

the value of risk-weighted assets and thus the amount of equity needed to meet the capital requirement. In

Section 5, we provide a quantification of these effects.

3.4 Elementary Reforms

In this section, we focus the exposition on regulatory reforms that raise all risk weights above a threshold

p∗ ≡ pθ∗ and have a mechanical effect of 1$ on required equity capital. We may express such reforms as

ω̂(p∗) =
1[p > p∗]

Ω
∫
p>p∗ kpdR (p)

. (12)

This class of reforms (see Saez (2001)) can be referred to as elementary reforms since any reform can be

represented as a combination of such reforms (see Golosov et al. (2014)). Studying elementary reforms is,

therefore, without loss of generality. Figure 1 illustrates the class of elementary reforms of risk weights.

We characterize the effects of elementary reforms in terms of empirically observable sufficient statis-

tics: i) the equilibrium semi-elasticities that capture the size of regulatory distortions, ζ
k,ω
p and ζ

k,ω′

p , and

ii) a distributional statistic, the hazard rate of the credit risk distribution, r(p)/[1 − R(p)], measuring the

granularity of credit risk. For transparency, we abstract from cross-price effects.

Corollary 1. The incidence of an elementary reform of risk weights ω̂(p∗) on bank credit supply and equity
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Figure 1: Elementary reforms of regulatory risk weights.

can be decomposed into:

L̂ (p∗) =

∫
p>p∗

kpζ
k,ω
p

ΩE
(
kp′ |p′ > p∗

) dR (p)

1−R (p∗)
+

kp∗ζ
k,ω′

p∗

ΩE
(
kp′ |p′ > p∗

) r (p∗)

1−R (p∗)
(13)

and

Ê (p∗) = 1 +

∫
p>p∗

kp[ω(p) + ω′(p)pεp,kp ]ζ
k,ω
p

E
(
kp′ |p′ > p∗

) dR (p)

1−R (p∗)
+
kp∗ [ω(p

∗) + ω′(p∗)p∗εp,kp∗ ]ζ
k,ω′

p∗

E
(
kp′ |p′ > p∗

) r (p∗)

1−R (p∗)
.

(14)

Proof. Appendix B.3.

Elementary reforms change the risk-weight schedule in two respects. First, they increase the risk weights

for loans with default risk above p > p∗. This mechanically raises the size of risk-weighted loans before

behavioral effects materialize (first term in (14), respectively). Note that we have constructed the elemen-

tary reform to have a mechanical effect of 1$. Moreover, the equilibrium lending and credit risk decline

proportionally to the elasticity ζ
k,ω
p . The first term in (13) and the second term in (14) express the overall

impact on a bank’s unweighted and risk-weighted loans.

Second, the reform raises the marginal risk weight for loans with an equilibrium default risk of p = p∗.

This distorts lending and risk choices proportionally to ζ
k,ω′

p∗ . To obtain the size of this distortion, we need

to weigh the behavioral responses by the hazard rate of the credit risk distribution, which compares the

relative magnitude of entrepreneurs at p = p∗ to those at p > p∗. The larger the mass of entrepreneurs at

the perturbed point of the credit risk distribution, the larger the distortions from changes to marginal risk

weights. The final terms in (13) and (14) collect the resulting responses of bank credit supply and equity.
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In Appendix B.3.2, we set up a fully structural model, where bailout transfers protect depositors and

create a fiscal externality as in Dávila and Walther (2021). Banks raise deposits, allocate credit across

heterogeneous entrepreneurs, and jointly determine their loan portfolio {kθ} and the solvency cutoff υ⋆ that

triggers a bailout. The model delivers closed-form credit-supply elasticities and shows how the endogenous

bailout cutoff links lending across assets, generating circularities from across-asset substitution. Under a

flat baseline risk-weight scheme, these circularities can be absorbed by redefining the credit-supply semi-

elasticities so that all incidence expressions continue to apply. Alternatively, one can construct a perturbation

that cancels out all cross-price effects, thus eliminating any circularity.8

3.5 Normative Analysis

Besides characterizing the positive effects of risk-weight reforms, we now specify a normative objective

for bank capital regulation. This allows us to study the incidence of risk weights on welfare and to derive

a formula for the optimal nonlinear risk-weight schedule as a byproduct of our perturbation approach. In

the context of income taxation, this procedure typically yields formulas for optimal marginal tax rates (see

Diamond (1998); Saez (2001)). In that literature, the planner’s objective is either tax revenue (Werning

(2007)) or an aggregation of household utilities (Saez and Stantcheva (2016)).

The banking literature has not reached a consensus on the specification of a normative objective. Early

contributions relied on mean–variance credit portfolio analysis (e.g., Kim and Santomero (1988); Rochet

(1992); Gjerde and Semmen (1995)) or on value-at-risk approaches (e.g., Gordy (2003)), emphasizing

risk–return trade-offs and financial stability. More recent structural models, such as Corbae and D’Erasmo

(2021) and Begenau and Landvoigt (2022), derive welfare explicitly from the allocation of resources and

the behavior of intermediaries. Following Dávila and Walther (2021), we adopt a welfarist perspective and

evaluate the welfare effects of capital regulation by aggregating the utility changes of both financial and

non-financial agents. Formally, we define the social welfare function as

W =W
(
VB,VH , {VE

θ }θ∈Θ
)
,

where VB , VH , and VE
θ denote the indirect utilities of the bank, the representative household (depositor),

and entrepreneurs (borrowers) of type θ, respectively, as defined in Section 2. Let αX ≡ ∂W/∂VX > 0

denote the Pareto weight assigned to agentX ∈ {B,H,E}, normalized such that αB+αH+
∫
Θ α

E
θ dθ = 1.

8This result is related to the idea that bank capital regulation may not affect bank default risk if bank managers adjust their
risk-taking so that, for any required level of capital, the probability of default remains constant (see Dick-Nielsen et al. (2023) and
references therein).
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Incidence on welfare. As a first step, we characterize the first-order welfare effects induced by an arbitrary

risk-weight reform. The derivation follows from standard envelope arguments.

Lemma 1. For a perturbation of the initial schedule ω(pθ) in the direction ω̂(pθ), the first-order welfare

effect on a monopolistic bank is

V̂B = −µ

∫
Θ
ω̂(pθ) kθ dθ,

while under perfect competition (zero profits at all the loan level), loan rates adjust so that V̂B = 0. The

first-order welfare effects on households and entrepreneurs are

V̂H = −µχH Ê + µ

∫
Θ
ξHθ k̂θ dθ and V̂E

θ = −µ ξEθ k̂θ ,

where the marginal welfare externalities are defined in (8).

Proof. See Appendix B.4.

By the envelope theorem (see Milgrom and Segal (2002)), all bank choices are locally optimal under the

initial policy, so risk-weight reforms generate no first-order behavioral effect on the bank’s welfare. Under

monopolistic banking, the welfare impact of raising risk weights is purely mechanical and proportional to

the shadow cost of equity µ. Under perfect competition on the loan market, price adjustments fully offset

this mechanical effect, implying a zero welfare effect.

In contrast, the welfare effects on households and entrepreneurs are structurally independent of the de-

gree of competition. The coefficients χH , ξHθ , and ξEθ capture, in cost units of bank equity µ, the pecuniary

and non-pecuniary externalities arising from changes in bank equity and credit supply. Competitive loan-

market adjustments redistribute surplus between borrowers and lenders. These distributive pecuniary exter-

nalities (see Dávila and Korinek (2018)) are characterized in the Appendix. They operate as transmission

channels for welfare responses and are embedded in the definitions of marginal welfare externalities.

Optimal nonlinear risk-weight schedule. As a byproduct of our perturbation approach, we can derive

the optimal capital adequacy ratio and risk-weight schedule that maximizes aggregate social welfare:

max
{ω(pθ)}θ∈Θ,Ω

W({ω(pθ)}θ∈Θ, Ω). (15)

Formally, we choose the risk-weight scheme ω and capital adequacy ratio Ω such that no reform, e.g., ele-

mentary (12), improves the regulatory objective function: Ŵ = 0. Observe that our environment features

various potential sources of regulatory constraints: i) market failures and ii) imperfect competition. There-

fore, it will be useful to characterize optimal bank capital regulation under each competition scenario in
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two steps. First, we derive the unconstrained Pareto-optimal regulation when there are no market failures

(first-best allocation). Then, we consider the constrained efficient allocation where the regulatory authority

faces the same market imperfections as all the agents (second-best allocation). For transparency, we assume

in the main text that distributive pecuniary externalities from loan price responses are second order.

First-best allocation. Suppose a planner can freely choose the risk-weight schedule ω(·) and the capital-

adequacy ratio Ω. Moreover, abstract from market frictions that link credit supply and risk, so that εp,kθ = 0

for all θ. This delivers a standard benchmark.

Proposition 2. Let the regulator maximize aggregate social welfare. In the absence of market frictions

(εp,kθ = 0), the optimal capital-adequacy ratio is 1/Ω = −(αH/αB)χH and the optimal risk-weight scheme

satisfies

ω(p) = (αE
p /α

B)ξEp + (αH/αB)ξHp . (16)

Proof. Appendix B.5.

The optimal policy follows a Pigouvian logic: each instrument corrects the relevant marginal welfare

externality at each point of the credit-risk distribution (see Pigou (1920); Sandmo (1975); Dixit (1985);

Rothschild and Scheuer (2016); Dávila and Walther (2021)). While elasticities govern behavioral (loan- and

bank-level) responses, aligning private and social incentives requires only the marginal welfare externalities

of equity and credit. The larger the wedges—measured by χH and, respectively, {ξEp , ξHp }—the stronger

the corrective terms in the optimum. This finding holds under any degree of loan-market competition.

Because equity is costly, the optimal risk-weight schedule acts as a type-specific tax on the bank’s credit

supply. The Pareto-weighted sum of credit-supply externalities determines the optimal correction for each

loan type. Moreover, from the capital requirement (3), one unit of equity expands risk-weighted capacity by

Ω; equivalently, equity is effectively “subsidized” at rate 1/Ω. At the Pareto-optimal regulation, the bank

fully internalizes the marginal effect of an extra dollar of equity on household welfare. Finally, by setting

χH = 0, ξEp = 0, and ξHp = 0 for all p, one recovers the efficiency of the frictionless economy.

Second-best allocation. Whenever credit risk and leverage are linked by market failures, εp,kp > 0 for

some p, the planner’s instruments become interdependent even when both the risk-weight schedule and

the capital-adequacy ratio can be freely chosen. The planner faces the same informational or contractual

frictions as the agents in the economy and solves a constrained Pareto problem.

Proposition 3. Suppose the regulator maximizes aggregate social welfare and that market failures link

credit risk and leverage, i.e., εp,kp > 0 for some p. Then, the optimal capital-adequacy ratio is 1/Ω =
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−(αH/αB)χH . Defining γ(p′; p) ≡ exp[
∫ p′

p 1/(εp,kp′′ p
′′)dp′′], the optimal risk-weight schedule satisfies

ω(p) = b(p)−
∫ p

0
b′(p′) γ(p′; p) dp′, (17)

where b(p) ≡ (αE
p /α

B)ξEp + (αH/αB)ξHp denotes the welfare externalities from credit supply.

Proof. Appendix B.6.

As in the first best, the optimal risk-weight schedule (17) corrects the marginal credit-supply externalities

b(p); for εp,kp = 0 for all p, it collapses to (16). However, the presence of market failures makes the problem

more intricate. Connecting to the Tinbergen (1952) rule, the number of linearly independent instruments is

now smaller than the number of regulatory targets, even though |{{ω(pθ)}θ∈Θ, 1/Ω}| = |{{kθ}θ∈Θ, E}|.

The reason is that credit supply reacts to both average and marginal risk weights, rendering the instruments

linearly dependent. As shown in Appendix B.6, the optimal schedule must therefore satisfy a differential

equation balancing welfare gains and losses from adjusting average and marginal risk weights: ω(p) +

ω′(p)pεp,kp = b(p).9

This dependence introduces an endogenous adjustment in the domain of risk weights. Whenever the

planner seeks to impose a stronger correction for higher-risk loans (b′(p) > 0), the marginal risk weights

become positive. Such nonlinearities induce behavioral distortions through credit-risk responses, which the

planner must internalize. Conversely, when welfare weights and marginal externalities are uniform, market

failures cease to affect the optimal schedule. In that case, there is no rationale for introducing curvature in

ω(p), as shown in the following corollary.

Corollary 2. Suppose welfare weights and marginal welfare externalities are uniform: αE
p = αE , ξEp = ξE ,

and ξHp = ξH for all p. Then, the first-best and second-best capital regulations coincide.

Therefore, when heterogeneity in welfare externalities is present, market failures modify the optimal

risk weights. The adjustment term in (17) aggregates the nonlinear welfare effects of supplying credit to

entrepreneurs with risk p and below, weighted by the strength of the market failure, captured by γ(p′; p).

Consequently, the second-best schedule is flatter than in the first best: market failures reduce the slope of

optimal risk weights across the risk distribution.

Finally, Appendix B.7 extends the analysis to a third-best setting in which the capital-adequacy ratio

is imperfectly chosen, linking the results to Dávila and Walther (2021). In this case, the optimal risk-

weight schedule jointly corrects credit-supply externalities and the equity wedge arising from suboptimal

bank capitalization, both of which interact through the regulatory constraint. Put differently, risk weights
9To pin down the constant of the general solution, we assume that the lower bound of credit risk converges to zero, i.e., p → 0.
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exhibit a leakage effect onto imperfectly chosen bank equity. As in Dávila and Walther (2021), the relevant

leakage elasticities (here: the credit-supply elasticities) determine the effectiveness of addressing the equity

wedge. The sufficient-statistics formula in Proposition 4 thus encompasses both credit-market failures and

regulatory imperfections within a unified corrective framework.

4 Empirical Implementation

4.1 Data

To discipline the model and estimate the sufficient statistics, we draw on several administrative datasets

provided by the Deutsche Bundesbank. Our primary source is the German credit registry (Millionenkred-

itevidenz), which reports quarterly exposures for all bank–borrower relationships in Germany with total

credit exceeding C1.5 million (C1 million from 2015 onward). The sample covers 2000Q1–2022Q4 at a

quarterly frequency.

The registry contains unique identifiers at both the bank and borrower levels, which we use to merge

loan-level exposures with borrower balance-sheet data from the JANIS database. At the credit-relationship

level, we observe detailed loan characteristics, including loan volume, collateralization, maturity, and, start-

ing in 2008, loan-specific risk weights and internal probabilities of default (PDs).

The PD variable, reported by banks, provides a direct measure of the internal estimate of ex-ante credit

risk, pθ. Combining these sources enables us to construct a representative joint distribution of credit supply

and credit risk in the German economy.

Table 2 reports summary statistics for all main variables used in the regressions below, including vari-

ables at the credit-relationship level (Panel A), the bank level (Panel B), and the firm level (Panel C). Figure 2

displays the kernel density estimate of credit-risk estimates p in the German economy.

This distribution serves as a sufficient statistic in our framework, enabling the aggregation of loan-level

responses into bank-level effects.

Appendix C presents a complementary estimation of the sufficient statistics using U.S. data from the

syndicated loan market. While the U.S. sample is less representative, covering only large banks and firms

and lacking direct information on regulatory risk, it demonstrates the applicability of our approach across

datasets and regulatory environments. The exercise also provides additional, albeit more limited, policy

insights into the Federal Reserve’s reform proposal.
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Panel A: Loan-Level Characteristics.

Variable Mean 1%-Q 25%-Q 50%-Q 75%-Q 99%-Q

Log Credit 14.767 7.601 13.732 14.942 16.301 19.695
p (PD estimate) 0.016 0.000 0.001 0.004 0.012 0.200
log p -5.519 -9.210 -6.725 -5.547 -4.382 -1.609
ω (Risk weight) 0.516 0.006 0.152 0.404 0.908 1.592

Panel B: Bank Characteristics.

Variable Mean 1%-Q 25%-Q 50%-Q 75%-Q 99%-Q

Log Total Assets 16.567 10.959 15.000 16.810 18.462 21.033
Deposits-to-Assets 0.228 0.000 0.084 0.193 0.311 0.788
Equity-to-Assets 0.074 0.009 0.033 0.045 0.082 0.547
NPL-to-Loans 0.004 0.000 0.000 0.000 0.003 0.050

Panel C: Firm Characteristics.

Variable Mean 1%-Q 25%-Q 50%-Q 75%-Q 99%-Q

Log Total Assets 10.004 5.858 8.912 9.917 11.010 14.522
Log Sales 9.824 4.654 8.752 9.973 11.027 14.188
Net Income 2872.87 -23408.00 33.00 464.00 2011.00 79411.00
Cash-to-Assets 0.074 0.000 0.004 0.026 0.088 0.624
Leverage 0.578 0.026 0.385 0.596 0.787 1.000

Table 2: Summary statistics (German credit registry).

Figure 2: Kernel density estimate of regulatory credit risk (German credit registry).
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4.2 Current Bank Capital Regulation

Risk-based capital regulation is the cornerstone of modern banking supervision. Since the first Basel Accord

(1988), banks have been required to maintain minimum equity buffers relative to risk-weighted assets, as

specified in Equation (3). Under Basel III, the minimum capital adequacy ratio Ω is set at 8%, absent

additional requirements linked to systemic importance or the credit cycle of the jurisdiction. Risk weights

used to compute risk-weighted assets depend on various borrower and loan characteristics, most importantly

the asset class and the estimated probability of default.10

When the probability of default is proxied by external credit ratings, the framework is referred to as the

standardized approach (SA). Table 3 reports the corresponding mapping between corporate credit ratings

and regulatory risk weights.

Credit Rating AAA–AA– A+–A– BBB+–BB– Below BB– Unrated
Risk Weight 20% 50% 100% 150% 100%

Table 3: Risk weights under the standardized approach (SA).

The second Basel Accord (Basel II, 2007) introduced an alternative methodology, the Internal Ratings-

Based Approach (IRBA), which allows banks to use their own models to estimate default probabilities. Each

estimated pθ is then mapped into a regulatory risk weight through a continuous function prescribed by the

Basel framework. Conditional on supervisory approval, banks thus effectively determine their own risk

weights.11 The mapping function under Basel III is given by:

ω(pθ) = 12.5 · LGD

[
GN

(
G−1

N (pθ) +G−1
N (0.999)

√
a(pθ)√

1− a(pθ)

)
− pθ

]
· 1 + (M − 2.5)b(pθ)

1− 1.5b(pθ)
,

where LGD is the loss given default, G−1
N (·) the inverse cumulative standard normal distribution function,

and M the loan maturity in years. The Basel III correlation and maturity adjustments are defined as:

a(pθ) = 0.12·1− exp(−50pθ)

1− exp(−50)
+0.24·

(
1− 1− exp(−50pθ)

1− exp(−50)

)
, b(pθ) = (0.11852− 0.05478 · log(pθ))2 .

Figure 3 plots the risk-weight schedule implied by the Basel III IRBA formula. The schedule is rela-

tively favorable for low-risk exposures, with risk weights below 20%, and less favorable for high-risk loans,

with weights exceeding 150%. Its concave shape highlights the asymmetric impact of risk-weight reforms

across the credit-risk distribution. Because the IRBA substantially reduces capital requirements for low-risk

borrowers, and since internal models allow banks to influence their estimated default probabilities, many
10Additional determinants include collateralization, exposure size, currency denomination, and other loan-specific features.
11Banks must obtain an IRBA license from the supervisory authority. Supervisors validate the internal credit risk model at initial

approval and during ongoing review.
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Figure 3: Risk weights under the internal ratings-based approach (IRBA).

Note: The figure illustrates the mapping between estimated default probabilities for corporate loans and regulatory risk weights under the IRBA.
We set the loss given default to 45% and the loan maturity to five years, consistent with our empirical baseline.

large banks have adopted this framework (see Plosser and Santos (2018) and Behn et al. (2022)). We use

the IRBA schedule as the empirical baseline for our simulations, as it best reflects the prevailing regulatory

constraints faced by large German banks.

Importantly, this nonlinear schedule serves as the policy benchmark. Our central objective is to evaluate,

in positive terms, the effects that reforms to this schedule have on credit markets and, in normative terms, to

characterize the optimal risk-weight design. The current Basel formula was derived from credit-risk mod-

eling techniques centered on single-factor value-at-risk calculations.12 As a result, it does not account for

market characteristics such as the empirical distribution of credit risk, the estimated credit-supply elastici-

ties, or the externalities created by bank lending, which are central to both positive and normative analysis.

Our paper provides the first rigorous attempt to derive a risk-weight schedule that maximizes the regulator’s

welfare objective.

4.3 Estimation

4.3.1 Credit-Risk Elasticity

To estimate εp,kp , we identify the response of firm default probabilities to an exogenous shift in credit supply.

This poses three major challenges.

First, observed credit quantities reflect equilibrium outcomes in the corporate loan market. Our goal is to

isolate the credit-supply component determined by banks, as outlined in Section 2. We follow the approach
12See the explanatory note of the BCBS for details: https://www.bis.org/bcbs/irbriskweight.pdf.
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of Khwaja and Mian (2008), estimating a bank–firm–quarter panel with firm-by-quarter fixed effects. These

fixed effects absorb all borrower-specific variation, such as credit demand, profitability, alternative financ-

ing, and other firm-level determinants of lending. Identification therefore relies on firms that borrow from

multiple banks in the same quarter. The administrative nature of our dataset, which covers all bank–firm

relationships in Germany, provides a rich set of such multiple-bank observations.

Second, firm default probabilities are not directly observable. A large body of literature and a major

segment of the financial industry are devoted to measuring this quantity as accurately as possible. In our

data, we observe each bank’s internal estimate of the probability of default, pθ, which is used for regulatory

capital calculation. These estimates combine hard and soft information, are back-tested by supervisors, and

determine the capital charge. Banks thus have strong incentives to provide unbiased and accurate measures

of credit risk.13 Since all firms in our sample borrow from at least two banks, we observe multiple default-

probability estimates per borrower, further improving measurement precision.

Third, even after isolating the credit-supply component, endogeneity concerns remain because bank

lending decisions may still respond to unobserved firm or sector conditions. For credible identification,

we require an exogenous shock to the firm-specific component of credit supply that is unrelated to borrower

characteristics or systematic bank behavior. Crises or stress-test interventions are unsuitable for this purpose,

as they typically target specific risk groups, sectors, or asset classes. We instead exploit the introduction of

the German bank levy in 2011 (see Buch et al. (2016)). The levy was designed to internalize systemic risk

in the banking sector and imposed a progressive charge based on bank size and involvement in derivatives,

identified by German authorities as the two main systemic-risk factors. The policy’s precise configuration

was announced only shortly before its implementation, and the first contributions were assessed on 2010

balance sheets, making anticipatory adjustments highly unlikely. The levy effectively penalized balance-

sheet size, shifting banks’ credit-supply schedules inward across all borrowers. Because it depended solely

on size, banks had no incentive to reallocate credit selectively across risk categories, industries, or borrower

types, supporting our identification assumption.

The estimation of the credit-risk elasticity with respect to leverage proceeds in two stages. In the first

stage, we implement a shift–share instrumental variable design based on pre-existing bank–firm relation-

ships, which are highly persistent in Germany (see Huber (2021)). We combine this design with the Khwaja

and Mian (2008) methodology to estimate the effect of the introduction of the bank levy on bank–firm-

specific credit supply. In the second stage, we aggregate the predicted credit-supply shocks to the firm level

and relate them to changes in the average default-risk estimates across the firm’s lending banks:
13These models are calibrated at the portfolio level rather than the firm level. As a result, two banks can assign different, yet

unbiased, default-probability estimates to the same borrower. This feature is central to our identification strategy.
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Homogeneous Risk Category 1 Risk Category 2 Risk Category 3 Risk Category 4
(1) (2) (3) (4) (5)

̂log(crediti,t−1) 0.019∗∗∗ 0.019∗∗∗ 0.011∗∗∗ 0.023∗∗∗ −0.024∗∗∗

(0.002) (0.004) (0.002) (0.002) (0.004)

Firm FE Y Y Y Y Y
Time FE Y Y Y Y Y
Obs. 280,171 7,334 30,392 213,491 26,528
R2 0.693 0.733 0.536 0.632 0.635

Table 4: Estimated credit-risk elasticities (German credit registry).

log(crediti,b,t) = γ(BankLevyb,t−1 × LevyIntroductiont) + pi,b,t−1 + βXb,t−1 + µi,t + µb + vi,t

and

pi,t = ζp,kp
̂log(crediti,t−1) + βXi,t−1 + µi + µt + ui,t.

Here, log(crediti,b,t) denotes the logarithm of credit extended by bank b to firm i at quarter t. The

firm–time fixed effect µi,t absorbs borrower-specific variation, while µb captures time-invariant bank char-

acteristics. BankLevyb,t−1 measures the levy charged to bank b in year t, based on its balance-sheet com-

position in year t−1, and LevyIntroductiont is a dummy variable equal to one for quarters from 2011Q4

onward. pi,b,t is bank b’s estimate of firm i’s probability of default, and pi,t is the average of these estimates

across all banks lending to firm i in quarter t.

In the first stage, the vector Xb,t−1 includes lagged bank-level controls: the logarithm of total assets, the

equity-to-assets ratio, the deposits-to-assets ratio, and the ratio of non-performing loans to total loans. In the

second stage, Xi,t−1 collects lagged firm-level controls: the logarithm of total assets, sales, and net income,

as well as the cash-to-assets ratio and leverage. The coefficient ζp,kp measures the semi-elasticity of credit

risk with respect to credit supply. The first-stage results confirm that the instrument is strongly correlated

with bank credit supply, and the first-stage F-statistic (F > 30) rules out weak-instrument concerns.

The first column of Table 4 reports the estimates under the assumption of a homogeneous credit-risk

elasticity across firms. We obtain a semi-elasticity of default risk with respect to credit supply of 0.019.

This implies that a 10% increase in credit supply raises the probability of default by approximately 0.2 per-

centage points. Given the low baseline levels of firms’ default probabilities (see Table 2), the effect is both

statistically and economically significant. The estimate is consistent with prior evidence highlighting lever-

age as a key predictor of firm default (see Traczynski (2017), Campbell et al. (2008), and Cathcart et al.

(2020)).
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A positive elasticity of credit risk with respect to credit supply is incompatible with the predictions of

the adverse-selection framework of Stiglitz and Weiss (1981). In this setting, an increase in credit supply

lowers equilibrium interest rates and expands the borrower pool to include safer projects. As a result, the

average default risk in borrowers’ portfolios declines, contrary to our empirical finding. By contrast, a

positive elasticity aligns with the moral-hazard framework of Boyd and De Nicolo (2005). In that model,

greater credit supply increases leverage, reduces borrowers’ “skin in the game,” and thereby amplifies risk

taking under limited liability. The costly-state-verification model of Gale and Hellwig (1985) offers a similar

implication. Under monopolistic contracting, the bank operates at the borrower’s participation constraint:

a larger loan allows greater surplus extraction through a higher repayment obligation, which raises the

bankruptcy threshold and increases default risk. Hence, both the moral-hazard and costly-state-verification

frameworks can rationalize the positive credit-risk elasticity we estimate.

Heterogeneity. Columns (2) to (5) of Table 4 report heterogeneous credit-risk elasticities across firm-risk

categories. We define four risk groups corresponding to the rating buckets used in the standardized approach

(see Table 3): (1) AAA to AA−, (2) A+ to A−, (3) BBB+ to BB−, and (4) below BB−. We map these

categories into probabilities of default using the S&P Global Fixed Income Tables (S&P Global (2024)).

For risk categories 1–3, the estimated elasticities are comparable in sign, magnitude, and statistical sig-

nificance. By contrast, for risk category 4 we find a negative and statistically significant elasticity, suggesting

that these firms are credit-constrained and improve their financial position in response to an outward shift in

credit supply. Within the context of our benchmark models, this negative elasticity for high-risk borrowers

aligns with the predictions of the adverse-selection framework of Stiglitz and Weiss (1981). This interpre-

tation is natural, as adverse-selection frictions are likely to be most severe among the riskiest firms, where

high risk premia exacerbate selection effects.

4.3.2 Credit-Supply Elasticities

The elasticities εk,pp and ζk,ωp measure the response of bank credit supply to changes in firm default risk

and regulatory risk weights, respectively. Cleanly identifying these parameters poses several empirical

challenges.

As before, isolating bank decisions from equilibrium credit-market outcomes is crucial. We address this

issue using the Khwaja and Mian (2008) approach, which the administrative nature of our dataset makes

feasible. A more fundamental challenge is that default probabilities p are themselves endogenous to lending

outcomes k, as documented above. In equilibrium, p and k are jointly determined, making it difficult to sep-

arately identify the effect of p on k while also estimating the effect of k on p, as in the previous subsection.

To overcome this simultaneity problem, we exploit the fact that, under the Khwaja and Mian (2008) frame-
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work, each firm in our sample borrows from at least two banks that independently report internal estimates

of the probability of default. Banks have strong incentives, both for internal risk management and super-

visory compliance, to provide unbiased and accurate estimates. Hence, small discrepancies in pi,b across

banks for the same borrower reflect model uncertainty rather than true differences in credit risk (see Fraisse

et al. (2020)). These differences arise because banks must estimate a single credit-risk model for their entire

loan portfolio and cannot fine-tune predictions to individual firms. Crucially, banks do not observe other

banks’ p estimates and thus adjust their credit supply solely based on their own internal risk assessment,

which we observe.

We therefore exploit cross-bank variation in pi,b,t for the same firm i to identify the elasticity of credit

supply with respect to perceived borrower risk, εk,pp . Conversely, shift–share variation in k, unrelated to

firm-specific p, identifies the reverse elasticity εp,kp estimated in the previous subsection. This dual-source

identification strategy allows us to disentangle supply-side responses from jointly determined equilibrium

outcomes in the credit market.

We now turn to the identification of the elasticity of credit supply with respect to risk weights. As

discussed in Section 4.2, regulatory risk weights are a deterministic function of default-risk estimates p. If

this mapping were linear, it would be infeasible to estimate a linear specification that includes both p and

the corresponding risk weight ω(p) as explanatory variables, since the two would be perfectly collinear. At

the same time, joint estimation is essential given the tight economic link between the two variables, which

necessitates partialing out individual effects.

However, the mapping from p to ω(p) is highly nonlinear under the Basel framework. Consequently,

within-firm, across-bank variation in p translates into heterogeneous variation in ω(p), depending on the

level of p. This nonlinearity generates identifying variation in risk weights: a given change in p leads

to different changes in ω(p) across the risk distribution, implying different regulatory equity costs. The

shape of the mapping function, calibrated in the Basel Accord, is fixed and exogenous to individual bank–

firm relationships. Since the underlying variation in p stems from model uncertainty across banks and is

unrelated to firm or bank fundamentals, the identification of the credit-supply elasticity with respect to risk

weights exploits exogenous, nonlinear differences in regulatory equity requirements.

Formally, we estimate:

log(creditb,i,t) = εk,pp log(pi,b,t−1) + ζk,ωp ωi,b,t−1 +Xb,t−1 + µb + µi,t + ui,t, (18)

where log(creditb,i,t) denotes the logarithm of the credit amount extended by bank b to firm i at time t.

The vector Xb,t−1 includes lagged bank-level controls: the logarithm of total assets, the equity-to-assets

ratio, the deposits-to-assets ratio, and the ratio of non-performing loans to total loans. µb and µi,t denote

27



Homogeneous Risk Category 1 Risk Category 2 Risk Category 3 Risk Category 4
(1) (2) (3) (4) (5)

log(pi,b,t−1) −0.063∗∗∗ −0.006 0.045 −0.049∗∗ −0.129∗∗∗

(0.017) (0.091) (0.050) (0.018) (0.027)

ωi,b,t−1 −0.759∗∗∗ −1.289∗∗∗ −1.430∗∗∗ −0.732∗∗∗ −0.271∗∗∗

(0.124) (0.370) (0.280) (0.121) (0.052)

Bank FE Y Y Y Y Y
Borrower x Time FE Y Y Y Y Y
Obs. 1,616,772 82,962 213,888 909,427 62,196
R2 0.677 0.605 0.646 0.692 0.719

Table 5: Estimated credit-supply elasticities (German credit registry).

bank and firm–time fixed effects, respectively, the latter absorbing firm-specific demand shocks as in the

specifications above.

The first column of Table 5 reports the estimates for the homogeneous credit-supply response. We find

a semi-elasticity of credit supply with respect to the average risk weight of −0.76. That is, a 10 percentage

point increase in the risk weight reduces credit supply by about 7.6%. Comparing this estimate to the range

of −0.23 to −0.45 obtained from French administrative data by Fraisse et al. (2020) suggests that German

banks exhibit somewhat greater sensitivity to regulatory capital costs.14 The negative and economically

sizable coefficient provides clear evidence for a marginal-cost channel of capital in banks’ credit-supply

decisions, as predicted by most of our benchmark models. By contrast, the alternative hypothesis of scarce

bank capital, as in Holmstrom and Tirole (1997), appears inconsistent with our estimate.

The credit-supply elasticity with respect to default risk is estimated at −0.063. That is, a 1% increase

in the borrower’s probability of default reduces credit supply by only 0.06%. This small magnitude has two

explanations. First, most default probabilities in the sample are low, implying that a 1% change is econom-

ically negligible and should elicit only a minor supply response. Second, the elasticity is identified jointly

with risk weights that are functionally linked to default risk; hence, the estimate holds the regulatory capital

cost constant. If banks can charge higher interest rates to resolve their risk-return trade-off, the quantity

decision might be only marginally affected. Overall, the modest relationship between borrower default risk

and credit supply aligns with prior evidence: Pool et al. (2015) document weak aggregate sensitivity of

credit to risk, and Jiménez et al. (2017) show that, conditional on capital requirements, borrower default risk

has little explanatory power for loan-level credit supply.

Qualitatively interpreting this empirical finding in light of our benchmark models provides only limited
14Another relevant comparison comes from studies that estimate credit-supply responses to changes in the capital-adequacy

ratio Ω. A 10 percentage point increase in the risk weight, at an average capitalization level of 10%, corresponds to a 1 percentage
point change in Ω. Both Bridges et al. (2014) and Jiménez et al. (2017) would predict a reduction in corporate credit of roughly 4%
for such a change in capital requirements.
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scope for differentiation among them. Most frameworks yield ambiguous predictions regarding the sign of

the risk channel. Only two cases imply an unambiguously negative relationship between credit supply and

borrower risk: the model of Kim and Santomero (1988) and the competitive-pricing environment of Stiglitz

and Weiss (1981). Consistent with the data, these models predict that when the slope of the risk-weight

function is strictly positive, higher borrower risk leads to lower credit supply.

As an additional test, we augment Specification (18) by including the marginal risk weight ω′
i,b,t−1 to

capture potential nonlinear responses to the slope of the risk-weight schedule. The estimated coefficient on

ω′
i,b,t−1 is statistically indistinguishable from zero and leaves the estimated elasticities with respect to default

risk and risk weights virtually unchanged. This finding suggests that banks operate in a largely competitive

environment, where marginal risk-weight adjustments do not materially affect lending margins.

Heterogeneity. Columns (2) to (5) of Table 5 report heterogeneous credit-supply elasticities by borrower

risk category, defined as in the previous section. The sensitivity of credit supply to borrower default risk is

particularly pronounced among riskier firms. This pattern is consistent with a scale effect: a 1% increase

in default risk is economically less relevant for low-risk borrowers (categories 1 and 2) than for high-risk

ones (categories 3 and 4). The sensitivity to risk weights also displays pronounced heterogeneity. While

the elasticity lies between −1.3 and −1.4 for low-risk borrowers, it declines to −0.7 for risk category 3

and −0.27 for the riskiest firms. When interpreting these estimates, it is important to note that we directly

control for the level of firm risk using each bank’s own estimate pi,b,t. Hence, the variation in risk weights

partly reflects the nonlinearity of the mapping function ω(p). Given the strong concavity of this function,

banks are expected to respond more strongly to risk-weight changes at the lower end of the risk distribution,

where ω(p) is steep, than at higher p levels, where the schedule flattens out.15

Alternative estimation. As an alternative strategy to identify the credit-supply elasticity with respect to

risk weights, we exploit the implementation of the SME Supporting Factor as a reform-based instrument.

The SME Supporting Factor modifies the calculation of risk weights for firms with annual turnover below

C50 million. After banks estimate p and map it into a regulatory risk weight using the Basel function, the

resulting weight is multiplied by either 0.7619 or 0.85, with smaller loans receiving stronger relief. The

reform followed a long, well-announced timeline with an implementation initially scheduled for 2021Q3.

However, when the European economy was hit by the COVID-19 shock, the EU introduced a “quick fix”

advancing the effective date to 2020Q3. This abrupt policy change was entirely unanticipated, leaving firms
15To illustrate, suppose Bank A estimates pi,A,t = 0.01 and Bank B pi,B,t = 0.02 for the same borrower. Because we control

for pi,b,t in the regression, these level differences do not affect the estimate of ζk,ωp . However, given the steepness of ω(p) at low p,
a small change in p (e.g., an increase of 0.001) raises the capital cost of the loan more strongly at p = 0.01 than at p = 0.02.
Consequently, banks are more sensitive to risk-weight changes induced by variation in p—the second moment—at the lower end
of the risk distribution.
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insufficient time to adjust reported turnover relative to the C50 million threshold. Because the supporting

factor scales risk weights independently of p, it introduces exogenous variation in ω unrelated to borrower

risk. We exploit this quasi-experimental shock to identify the elasticity of credit supply with respect to risk

weights.

To estimate the elasticity, we implement a two-stage instrumental-variable design. We first restrict the

sample to firms with annual turnover between C25 million and C75 million, creating a set of comparable

borrowers around the C50 million threshold.16

In the first stage, we predict the post-reform risk weight applied to each borrower (from 2020Q3 on-

ward) using the pre-reform risk weight in 2020Q2, interacted with an indicator variable equal to one if the

firm’s turnover falls below C50 million. This specification captures the mechanical adjustment introduced

by the SME Supporting Factor, which reduced risk weights only for firms below the threshold. The instru-

ment, therefore, exploits policy-driven variation in regulatory risk weights that is independent of borrower

fundamentals and banks’ internal models.

In the second stage, we re-estimate Specification (18) using the instrumented risk weights within this

restricted subsample.17 The first-stage results confirm a strong correlation between the instrument and actual

risk weights, with an F -statistic exceeding 30, ruling out weak-instrument concerns.

We obtain a highly statistically significant elasticity with respect to risk weights of −0.389. Quantita-

tively, this estimate is slightly smaller in magnitude than that from the baseline specification but remains

economically meaningful and consistent with previous findings in the literature. Overall, both the reform-

based identification using the SME Supporting Factor and the broader estimation strategy yield qualitatively

similar conclusions: higher regulatory risk weights significantly reduce bank credit supply.

4.4 Entrepreneurial Profit Responses

We estimate the entrepreneurial externality from credit supply, ξEp , by measuring the sensitivity of firm

profits to changes in credit supply. Empirically, we employ the same identification strategy as above for the

elasticity of default risk with respect to credit supply. The first stage again uses the bank levy as a shift–share

instrument for credit supply. The second stage is estimated as

∆Πi,t = γE ∆ log(ĉrediti,t) + ∆Xi,t + µi + µt + ui,t,

where Πi,t denotes firm i’s net income, ∆Xi,t is a vector of firm-level control variables, µi and µt are firm

and time fixed effects, and ui,t is an error term.

16The results are not sensitive to the choice of bandwidth around the C50 million cutoff.
17Because the sample narrows substantially, we cannot estimate heterogeneity across firm-risk categories in this setting.
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Homogeneous Risk Category 1 Risk Category 2 Risk Category 3 Risk Category 4
(1) (2) (3) (4) (5)

∆ ̂log(crediti,t−1) 55.494∗∗∗ −13.088 21.638 63.723∗∗∗ −1.107
(19.618) (169.987) (71.759) (23.495) (77.822)

Firm FE Y Y Y Y Y
Time FE Y Y Y Y Y
Obs. 287,096 6,775 28,358 197,447 24,676
R2 0.021 0.068 0.071 0.030 0.123

Table 6: Estimated effect of credit supply on firm net income (German credit registry).

As reported in Table 6, Column (1), we obtain a statistically and economically significant estimate of

γE = 55.5, indicating that a 10% increase in credit supply raises firm net income by roughly C5,500.

Given an average credit volume of C2.5 million, this corresponds to an increase of about two euro cents

in net income for each additional euro of credit extended. This estimate is both economically meaningful

and consistent with the notion that easier credit conditions relax financing constraints and enhance firm

profitability.

This relationship is not particularly stable across the risk-category distribution, as shown in Columns (2)

to (5) of Table 6. However, the estimate for risk category 3, representing roughly two-thirds of the firms in

our sample, is very close in magnitude to the aggregate effect and remains highly statistically significant. A

positive relationship between credit supply and firm profitability is consistent with the empirical literature

on the real effects of credit supply (disruptions) (see Chava and Purnanandam (2011); Ongena et al. (2015);

Degryse et al. (2019)). Mechanisms linking credit availability to profits include effects on employment

(Chodorow-Reich, 2014), investment (Amiti and Weinstein, 2018), and export activity (Paravisini et al.,

2015).

5 Quantitative Application: Basel Endgame

In this section, we apply our sufficient-statistics framework to evaluate, both positively and normatively,

the recent “Basel Endgame” reform proposal by the U.S. bank regulatory agencies: the Federal Reserve, the

Federal Deposit Insurance Corporation, and the Office of the Comptroller of the Currency. A central element

of the proposal is a revision of the regulatory risk-weight schedule. The reform abolishes the Internal

Ratings-Based Approach (IRBA) and replaces it with standardized risk weights. Specifically, exposures

rated AAA–BBB are assigned a weight of 65%, while all other corporate exposures receive a weight of

100% (see Board of Governors of the Federal Reserve System (2023)).

The left panel of Figure 4 displays the baseline risk-weight schedule and the counterfactual risk weights
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Figure 4: Left panel: risk-weight reform proposal. Right panel: loan-level responses.

under the Fed proposal. The reform increases risk weights for loans with low default probability and reduces

them for high-risk exposures, resulting in a two-bracket risk-weight schedule that partially preserves the

nonlinearity of the IRBA. Even though the main text focuses on the Fed proposal, our framework can

flexibly accommodate any regulatory reform. For illustration, Appendix D.5 quantitatively evaluates the

class of elementary risk-weight reforms.

5.1 Calibration

We map credit ratings into default probabilities using the S&P Global Fixed Income Tables (see S&P Global

(2024) for the latest installment). To avoid discontinuous responses, we smooth the discrete jumps in the

proposed risk-weight schedule, ω̂. This step also reflects current implementation practices, as a significant

share of loans is extended to unrated firms, leading to an imperfect mapping between credit ratings and

default risk. Under the Fed proposal, these unrated exposures are assigned a risk weight of 100%.

To capture cross-sectional heterogeneity in default probabilities and loan sizes, we estimate flexible

skewed generalized t (SGT) distributions for both variables. We then map percentiles of the default-risk

distribution to corresponding percentiles of the loan-size distribution to reproduce the empirically observed

inverse relationship between credit risk and average loan size (see Figure 7). Behavioral responses are

quantified using a smoothed version of the credit-supply and risk elasticities estimated for each risk group

in the preceding section.

For the normative evaluation, we draw on our estimates of profit responses to changes in credit supply.

We use the estimated semi-elasticity and divide it by the average level of credit supply to obtain a uniform

measure of the marginal welfare externality on entrepreneurs, dVE
p /dkp.

Evaluating welfare externalities on households requires structural assumptions about the underlying
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mechanism. Following the literature on bank regulation (Corbae and D’Erasmo (2021); Dávila and Walther

(2021); Oehmke and Opp (2022), among others), we focus on financial externalities arising from government

guarantees.18 As detailed in Appendix B.3.2, financial intermediation is costly for households, as they

finance deposit insurance or, equivalently, bailouts that guarantee deposit repayment in adverse states of the

economy. Denote υ ∈ [υ, υ] ∼ F (υ) as a macroeconomic shock to the bank value. Depending on the

shock realization, taxpayers cover the residual between deposit promises D and the state-contingent value

of the bank ΠB(·, υ). Letting κT = 25% denote the deadweight cost of deposit insurance, the total fiscal

externality is

−(1 + κT )T , where T ≡ max{0,D −ΠB(·, υ)}.

The state-contingent going concern value of the bank consists of total loan repayments (loan rate r =

4.68%; see Corbae and D’Erasmo (2021)), recovered loans in default (recovery rate ϕ = 0.6030; see Corbae

and D’Erasmo (2021)), and the post-liquidation value of the loan portfolio (depreciation rate ι = 0.1965;

see Corbae and D’Erasmo (2021)):

ΠB(·, υ) =
∫
Θ

[
υ(1 + r)(1− pθ) + (1− ϕ)pθ − ι

]
kθ dθ.

This structure allows us to recover the monetary cost of deposit insurance and, in turn, compute the

marginal welfare externalities on households, dVH/dkp and dVH/dE . Using the observed credit distribu-

tion, we can further identify the threshold shock υ⋆ that triggers deposit insurance, i.e., the bailout cutoff. As

a proxy for aggregate shocks to loan repayments, we use quarterly DAX stock index returns from 2005Q1

to 2022Q4, assuming υ d
= 1 + RDAX .19 Finally, we calibrate the shadow cost of bank equity such that the

current capital adequacy ratio is optimal (µ = 0.48%).

Figure 8 depicts the estimated marginal welfare externalities from credit supply. A one-dollar reduction

in credit supply lowers deposit insurance costs by approximately 2¢ (growing in credit risk) but reduces

entrepreneurial profits by 1.5¢. In contrast, cutting bank equity by one dollar lowers household welfare by

about 6¢. Altogether, the model provides the classic regulatory trade-off between productivity-enhancing

credit supply and fiscal externalities from government guarantees, leading to excessive risk-taking in the

banking sector. Capital regulation is therefore designed to align private with social costs and benefits of

financial intermediation.
18Related frameworks modeling deposit insurance or bailouts as sources of financial externalities include Farhi and Tirole (2012),

Bianchi (2016), Chari and Kehoe (2016), Keister (2016), Cordella et al. (2018), Dávila and Walther (2020), and Dovis and Kirpalani
(2020).

19We obtain a cutoff shock of υ⋆ = 0.9038, an average bailout shock of E(υ | υ ≤ υ⋆) = 0.8454, and a bailout probability of
F (υ⋆) = 0.05.
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5.2 Positive Effects

The right panel of Figure 4 depicts the loan-level responses to the Fed’s Basel Endgame proposal. Consistent

with the direction of risk-weight changes, the distribution of credit responses is markedly nonlinear: credit

supply contracts for loans with low default risk (-20% to -40%) and expands for loans with higher risk (+20%

to +40%). Despite substantial reallocation along the risk distribution, aggregate bank credit supply decreases

only modestly, by 3.57%. At the same time, bank equity rises by 4.33%. This increase is intuitive, given

the high share of loans with very low default probabilities. These exposures initially carry near-zero risk

weights, whereas the Fed proposal assigns them a weight of 65%. This mechanically raises required equity

and, at the same time, attenuates the negative credit-supply responses at the bottom of the risk distribution.

As a result, inframarginal and behavioral effects operate in the same direction, explaining roughly 25% and

75% of the total equity response, respectively.

In line with the proposal’s stated objective (Board of Governors of the Federal Reserve System (2023)),

banks become safer: the simulated bailout probability declines by 1.4 percentage points. To assess the

strength of this effect, we compute how much the capital adequacy ratio would need to adjust downward

to raise the bailout probability back to its intial level. For this we calculate a counteracting lump-sum

perturbation preserving the nonlinear shape of the credit responses. Using equation (20), we obtain ω̂c =

−0.08. Hence, keeping the bailout probability constant after the Fed reform would require reducing the

capital adequacy ratio to Ω = 0.07. Conversely, the regulator would need to raise the capital adequacy ratio

by 8% to achieve the same decline in bailout risk as implied by the Fed proposal (i.e., from 8% to 8.64%).

Simulations based on the U.S. sample. Having estimated the elasticities and distributional moments in

the syndicated loan market, we can also evaluate the Fed proposal using these U.S.-based estimates. The

left panel of Figure 11 shows the response of the bank credit portfolio representative of the syndicated loan

market. Once again, we observe a pronounced reallocation from low- to high-risk loans. Overall credit

supply declines moderately by 1.18%. However, due to the reform’s mechanical effects on the regulatory

constraint, bank equity rises by 5.48%. As a result, the bailout probability declines by one percentage

point. Notice that these numbers are economically comparable to the German simulation highlighting the

robustness of our approach.

Bank-size heterogeneity. to be added
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5.3 Normative Effects

As a next step, we employ our estimates of marginal welfare externalities to evaluate the regulatory counter-

factual normatively. The left panel of Figure 10 depicts each agent’s money-metric welfare response along

the credit-risk distribution. Because equity is costly, the Fed’s proposal reduces bank welfare; however, the

decline is small.

Entrepreneurs, on average, experience welfare losses due to reductions in credit supply induced by

higher risk weights. In line with the nonlinear reallocation of credit, the welfare gradient is also highly

nonlinear: low-risk firms experience substantial welfare losses, whereas high-risk firms benefit from easier

access to credit. By contrast, the reform is welfare-improving for households. As shown in Figure 10, most

of the welfare gains originate from the bottom of the risk distribution: greater bank equity and thus lower

bank leverage reduce the fiscal cost of deposit guarantees.

The total welfare effect depends on the social welfare function. Following the banking literature, we

focus on a utilitarian welfare objective (αH = αB = αE
θ , ∀θ). Under this criterion, the Fed proposal

increases aggregate welfare: the welfare gains for households outweigh the losses incurred by banks and

entrepreneurs.20

5.4 Optimal Nonlinear Risk Weights

We now illustrate the optimal nonlinear risk-weight schedule quantitatively, as derived in Propositions 2

and 3. While we estimate uniform marginal welfare externalities on entrepreneurs, the welfare externalities

on households increase with credit risk (see Figure 8). As a result, the unconstrained and constrained Pareto

optima differ, reflecting the linear dependence of policy instruments in the second-best environment.

In the left panel of Figure 5, we display the optimal risk-weight schedules. Optimal risk weights are

slightly increasing with credit risk, with the constrained Pareto optimum being slightly flatter than the un-

constrained one.

The near-linearity of the optimal schedule reflects the homogeneity of entrepreneurial profit responses

and the residual value accounting by deposit insurance in bankruptcy. This residual value corresponds to

the sum of repayments on the bank’s credit portfolio. Since expected loan repayments decline with credit

risk, high-risk loans are more costly to insure, but this effect is small. What matters most for expected

deposit-insurance costs is the overall size of the lending portfolio rather than its composition. As a result,

the marginal social cost of credit rises roughly proportionally with default risk, yielding an optimal schedule

that is close to linear and relatively flat.

Altogether, both optimal schedules are strikingly close to the risk weights proposed by the Fed. Con-
20The welfare simulations based on the U.S. estimates deliver very similar predictions (see the right panel of Figure 11).
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Figure 5: Optimal nonlinear risk weights.

Note: We parameterize a utilitarian social welfare function: αH = αB = αE
θ , ∀θ .

sequently, the responses of the credit portfolio and bank-level aggregates, depicted in the right panel of

Figure 5, are comparable in direction and magnitude to those observed under the Fed proposal. Moreover,

the welfare effects of moving to the (constrained) Pigouvian optimum are similar, as shown in the right

panel of Figure 10. Both reforms increase household welfare at the expense of entrepreneurs and banks. We

therefore conclude that the risk-weight schedule proposed by the Fed is close to optimal.

Optimal bank-specific risk weights. to be added

6 Extensions

Non-smooth risk-weight schedule. to be added

Large reforms. to be added

Multidimensional heterogeneity. to be added

Dynamic setting. to be added

7 Conclusion

This paper introduces the perturbation approach to the analysis of risk-sensitive bank capital regulation.

We express both the positive and normative effects of nonlinear regulation through a small set of sufficient
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statistics, such as credit-supply elasticities and marginal welfare externalities, thereby unifying a broad class

of banking models. The sufficient statistics we derive are informative about the nature of credit-market

frictions and the degree of competition.

We estimate these statistics using administrative data and quantitatively evaluate reforms of nonlinear

risk weights in bank capital requirements, focusing on the Fed’s proposal for coarser risk weights. Despite

a moderate impact on aggregate credit supply, the reform generates pronounced nonlinear effects across the

firm distribution and increases bank equity, thereby improving financial stability.

Furthermore, we derive new sufficient-statistics representations of optimal nonlinear risk weights. Nu-

merical simulations of the optimum reveal close similarities to the Fed’s proposal. We expect the pertur-

bation approach to be applicable beyond capital regulation, for instance by analyzing other dimensions of

bank regulation (e.g., liquidity requirements) or alternative credit-market structures (e.g., shadow banking).
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A Appendix for Section 2

A.1 General Framework

This appendix provides the derivations underlying the general framework. We formalize the bank’s op-

timization, derive the corresponding first-order conditions, and show how they give rise to the sufficient

statistics introduced in Section 2.1.

Denote the choices by entrepreneurs as dθ = d(kθ, zθ; θ). Denoting the vector of Lagrange multipliers

on the respective constraints as ρθ, optimal choices satisfy the following first-order conditions:

∂dθU
E
θ (dθ; kθ, zθ) + ρTθ ∂dθC

E
θ (dθ; kθ, zθ) = 0, ρTθ CE

θ (dθ; kθ, zθ) = 0.

Similarly, defining the vector of Lagrange multipliers for the depositor constraints as γ, the optimal

depositor choices c = c(x) are characterized by:

∂cU
H(c;x) + γT∂cCH(c;x) = 0, γTCH(c;x) = 0.

Inner problem. Let λ denote the vector of multipliers on the feasibility constraints and ηθ the multipliers

on the risk-formation constraints. The inner Lagrangian is

Linner = UB(k, E , z, p)− λT C(k, E , z, p; c, d)−
∫
Θ
ηθ P(pθ, kθ, zθ; dθ, θ) dθ.

First-order conditions define the optimal operational choices z(k, E , p):

UB
zθ
(k, E , z, p) = λT Czθ(k, E , z, p; c, d) + ηθ Pzθ(pθ, kθ, zθ; dθ, θ),

together with λT C(k, E , z, p; c, d) = 0 and P(pθ, kθ, zθ; dθ, θ) = 0.

Outer problem. Let µ denote the multiplier on the regulatory constraint. All multipliers in the outer

problem are evaluated at the inner optimum z⋆ = z(k, E , p) delivered by the inner problem; for simplicity

we retain the same symbols (λ, η). The outer Lagrangian is

L = UB(k, E , z, p)− λT C(k, E , z, p; c, d)−
∫
Θ
ηθ P(pθ, kθ, zθ; dθ, θ) dθ − µ

(∫
Θ
ω(pθ)kθ dθ − E/Ω

)
.

The first-order conditions for equity, credit supply, and risk are

UB
E (k, E , z, p)− λT CE(k, E , z, p; c, d) = −µ/Ω,
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UB
pθ
(k, E , z, p)− λT Cpθ(k, E , z, p; c, d) = ηθPpθ(pθ, kθ, zθ; dθ, θ) + µω′(pθ)kθ, ∀θ,

UB
kθ
(k, E , z, p)− λT Ckθ(k, E , z, p; c, d) = µω(pθ) + ηθPkθ(pθ, kθ, zθ; dθ, θ), ∀θ,

together with the complementary slackness condition µ(
∫
Θ ω(pθ)kθ dθ − E/Ω) = 0.

Optimality conditions and elasticities. Combining these expressions yields the marginal rate of substi-

tution between credit supply and equity under a binding capital requirement:

MRSθ ≡
UB
kθ
(·)− λT Ckθ(·) +

[
UB
pθ
(·)− λT Cpθ(·)

]
Pkθ(·)/Ppθ(·)

UB
E (·)− λT CE(·)

= −Ω
[
ω(pθ) +ω′(pθ)pθPp,k

θ

]
, ∀θ,

where Pp,k
θ = −[∂P(·; dθ, θ)/∂ log kθ]/[∂P(·; dθ, θ)/∂ log pθ] captures the internalization of risk responses

by the bank.

The loan-level elasticities with respect to risk weights defined in the main text follow as

ζk,ωθ = −Ω
/
∂MRSθ
∂ log kθ

, ζk,ω
′

θ = −ΩpθPp,k
θ

/
∂MRSθ
∂ log kθ

.

Similarly, the elasticity of bank lending with respect to credit risk can be computed from

ζk,pθ = −

(
Ω
∂[ω(pθ) + ω′(pθ)pθPp,k

θ ]

∂ log pθ
+
∂MRSθ
∂ log pθ

)/
∂MRSθ
∂ log kθ

.

The elasticity of individual credit risk with respect to leverage follows from the risk-formation constraint.

Absent direct effects from bank-level equity (∂Ezθ(·) = 0), it can be expressed as:

εp,kθ = −kθ
pθ

Pkθ(·) + Pzθ(·)∂kθzθ(·) + Pdθ(·)∂kθdθ(·)
Ppθ(·)

.

A.2 Canonical Banking Models

A.2.1 Kim and Santomero (1988): Bank Portfolio Choice

The general framework nests Kim and Santomero (1988) as a special case. Denote by rθ and σθ the expected

return and the standard deviation of the risky asset θ the bank invests in, and assume that across-asset

covariances are zero, as in the original model. Let 1 + rE and 1 + rD denote the interest rate on equity E

and deposits D, where equity is relatively costly rE > rD. The bank’s balance-sheet constraint is L =∫
Θ kθ dθ = D + E .
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Banks choose their portfolio {kθ}θ∈Θ to maximize expected utility under a mean–variance trade-off:

UB(k, E , p) =
∫
Θ
rθkθ dθ −

γ

2

∫
Θ
σ2θk

2
θ dθ − (1 + rD)L − (rE − rD)E ,

subject to the capital-requirement constraint and the feasibility condition

kθ ≥ 0, ∀θ.

Credit risk pθ is summarized by a single exogenous risk factor that affects only the regulatory weights.

There are no productive entrepreneurs receiving the bank investment or moral-hazard frictions, so risk is

technologically fixed and εp,kθ = 0.

Pointwise optimization over θ gives the bank’s portfolio choice:

kθ = max

{
0,
rθ − (1 + rD)− (rE − rD)Ωω(pθ)

γσ2θ

}
, ∀θ.

The bank equates the marginal risk-adjusted return to the cost of equity implied by the binding capital

requirement. Since the regulatory risk weight ω(pθ) enters linearly, a higher level of weights acts as a tax

on the corresponding assets and compresses credit supply proportionally.

At interior points (kθ > 0), the portfolio elasticities with respect to the risk-weight parameters are

ζk,ωθ = − 1

kθ

Ω(rE − rD)

γσ2θ
< 0, ζk,ω

′

θ = 0, ζk,pθ = ω′(pθ)pθζ
k,ω
θ .

Hence, the Kim–Santomero model isolates the pure portfolio channel of capital regulation: risk weights

alter the composition of assets without affecting risk-taking or default probabilities.

A.2.2 Boyd and De Nicolo (2005): Entrepreneurial Moral Hazard

Boyd and De Nicolo (2005) extend the model of Allen and Gale (2000) by allowing for entrepreneurial

risk-taking on the loan market. Entrepreneurs choose their ex-ante level of credit risk pθ under a classi-

cal risk–return trade-off for a given loan contract, while banks choose their lending, taking into account

entrepreneurial moral hazard and its effect on loan pricing. We consider a generalized version with a con-

tinuum of entrepreneurs, each receiving a loan kθ at interest rate rθ.

In case of success, the project yields (1 + pθ) per unit of capital; in failure, output is zero and the

entrepreneur is protected by limited liability. An entrepreneur of ability θ (as in Lucas, 1978) operates a
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production function yθ(kθ) that exhibits decreasing returns to scale. Her expected utility is

UE
θ (pθ; kθ) = (1− pθ)

[
(1 + pθ)yθ(kθ)− rθkθ

]
.

Optimal risk-taking satisfies the first-order condition

pθ =
rθkθ

2yθ(kθ)
, ε̄p,kθ ≡ ∂ log pθ

∂ log kθ
=
yθ(kθ)− y′θ(kθ)kθ

yθ(kθ)
> 0,

so that risk-taking increases with leverage and the loan rate.

Denote by 1 + rE and 1 + rD the gross returns on equity and deposits, where rE > rD. Using the

balance-sheet identity
∫
Θ kθ dθ = D + E , the bank’s objective and risk-formation constraints are

UB(k, E , p) =
∫
Θ
(1− pθ)rθkθ dθ − (1 + rD)

∫
Θ
kθ dθ − (rE − rD)E ,

P(pθ, kθ, z; dθ, θ) = pθ −
rθkθ

2yθ(kθ)
= 0, ∀θ.

For transparency, suppose the deposit rate rD is fixed. As in Boyd and De Nicolo (2005), an inverse

demand function rθ = r(kθ) determines the loan rate. Banks internalize the marginal effect of credit supply

on pricing, εr,kθ ≡ ∂ log rθ/∂ log kθ ≥ 0, which generates monopolistic rents. The Lagrangian is given by

L = UB(k, E , p)− µ

(∫
Θ
ω(pθ)kθ dθ − E/Ω

)
,

where µ is the multiplier on the regulatory constraint, and the bank’s objective internalizes entrepreneurial

risk-taking.

At an interior optimum (under standard regularity), optimal credit supply satisfies

MRSθ =
(1− pθ)rθ(1 + εr,kθ )− pθrθ(ε̄

p,k
θ + εr,kθ )− (rE − rD)

−(rE − rD)/Ω
= −Ω

[
ω(pθ) + ω′(pθ)pθ(ε̄

p,k
θ + εr,kθ )

]
,

where the left-hand side represents the marginal rate of substitution between credit supply and equity.

Monopolistic loan pricing. Under monopoly, a bank internalizes the full effect of loan pricing on risk-

taking. The overall elasticity of default risk with respect to leverage combines price and quantity channels:

εp,kθ =
d log pθ
d log kθ

= ε̄p,kθ + εr,kθ > 0.
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The first-order condition above implicitly defines kθ. The corresponding credit-supply elasticities are

ζk,ωθ = − Ω

∂MRSθ|pθ
∂ log kθ

−Ωω′(pθ)pθ
∂εp,kθ
∂ log kθ

< 0, ζk,ω
′

θ = pθε
p,k
θ ζk,ωθ < 0.

The elasticity of bank lending with respect to credit risk follows as

ζk,pθ =
(
[ω′(pθ)(1 + εp,kθ ) + ω′′(pθ)pθε

p,k
θ ]pθ +Ω−1(1 + ε̄p,kθ )pθrθ

)
ζk,ωθ ≶ 0.

Under monopolistic pricing, the level and slope of the risk-weight schedule affect credit supply both

directly and through the induced response of entrepreneurial risk. A higher level of risk weights increases

the cost of equity funding and compresses credit supply. A steeper schedule penalizes risky loans dispropor-

tionately, which further reduces credit supply and amplifies the risk-taking feedback. Consequently, capital

requirements transmit more strongly in settings where banks possess market power and borrowers respond

elastically to lending conditions.

Competitive loan pricing. Under perfect competition, a single bank’s credit supply does not affect pric-

ing, and loan rates satisfy the zero-profit condition

rθ = min{r ≥ 0 | (1− pθ)r − (1 + rD)− (rE − rD)Ωω(pθ) = 0}.

The equilibrium risk elasticity coincides with the pure quantity channel, εp,kθ = ε̄p,kθ > 0. The corresponding

marginal-rate-of-substitution condition simplifies to

M̃RSθ =
(1 + rD)

(
1− pθ/[(1− pθ)ε

p,k
θ ]
)

−(rE − rD)
= −Ω[ω(pθ)/(1− pθ) + ω′(pθ)]pθε

p,k
θ , ∀θ.

Hence, the credit-supply elasticities with respect to risk weights are

ζk,ωθ = −
Ωpθ/[(1− pθ)ε

p,k
θ ]

∂M̃RSθ|pθ
∂ log kθ

−Ω[ω(pθ)pθ/(1− pθ) + ω′(pθ)pθ]
∂εp,kθ
∂ log kθ

< 0, ζk,ω
′

θ = (1− pθ)ζ
k,ω
θ < 0.

As in the monopolistic case, the elasticity of credit supply with respect to credit risk depends on the curvature

of the risk-weight schedule:

ζk,pθ =
[ ω(pθ)
1− pθ

+ ω′(pθ) + ω′′(pθ)(1− pθ)pθ + (1− pθ)
−1Ω−1(rE − rD)

−1
]
ζk,ωθ ≶ 0.

Under competition, risk weights transmit primarily through balance-sheet costs: banks cannot adjust

46



loan pricing to absorb tighter regulation, so changes in ω(pθ) directly shift the supply of funds. Since

individual banks take prices as given, the feedback from entrepreneurial risk is muted compared to the

monopolistic case. Nevertheless, both the level and slope of the risk-weight schedule influence equilibrium

credit volumes through their impact on the effective cost of capital.

Welfare effects. Finally, applying the Envelope theorem, credit-supply externalities in both competitive

and monopolistic environments consist of scale-induced changes in entrepreneurial profits and loan-price

responses:
dUE

θ (pθ; kθ)

dkθ
= (1− pθ)

[
(1 + pθ)y

′
θ(kθ)− rθ − kθ

drθ
dkθ

]
.

Under imperfect competition, the last term reflects the elasticity of the loan-demand curve εr,kθ , whereas un-

der perfect competition the zero-profit condition directly links loan rates to capital requirements. The model

thus captures how capital regulation interacts with market structure: monopolistic banks internalize pricing

and risk feedback, magnifying policy effects, while competitive markets transmit them more mechanically

through the balance-sheet channel.

A.2.3 Holmstrom and Tirole (1997): Double Moral Hazard

Following the notation in Freixas and Rochet (2008), projects require I units of funding and yield a verifiable

return y in case of success and zero otherwise. Firms differ in initial wealth A ∼ G(A). There are two types

of projects: good projects succeed with probability 1− pθ, and bad projects succeed with probability 1− p̄,

with pθ < p̄ for all θ. Bad projects yield private benefitsB to the firm when not monitored, while monitoring

by the bank reduces these benefits to b < B. Banks monitor at cost c.21 The risk-free rate is 1 + r, and the

bank’s gross return on loans is denoted by βθ.

Borrower contracts and participation. Firms with sufficient capital can obtain direct funding from de-

positors, borrowing I −A and promising a repayment RD
θ . Borrower incentive compatibility requires

(1− pθ)(y −RD
θ ) ≥ (1− p̄)(y −RD

θ ) +B ⇐⇒ RD
θ ≤ y − B

p̄− pθ
.

Depositor participation implies that only firms with sufficient own capital obtain direct finance:

(1− pθ)R
D
θ ≥ (1 + r)(I −A) ⇐⇒ A ≥ Āθ(r) ≡ I − 1− pθ

1 + r

(
y − B

p̄− pθ

)
.

21Martinez-Miera and Repullo (2017) analyze a continuous-monitoring extension of Holmstrom and Tirole (1997).
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Intermediated funding and bank monitoring. Entrepreneurs with lower wealth (A < Āθ(r)) require

bank intermediation. They borrow IDθ from depositors and IBθ = I − IDθ − A from the bank, promising a

repayment RB
θ = βθI

B
θ /(1− pθ).

Entrepreneurial incentive compatibility now requires

(1− pθ)(y −RD
θ −RB

θ ) ≥ (1− p̄)(y −RD
θ −RB

θ ) + b,

which, using depositor participation, can be written as

(p̄− pθ)

[
y −

(1 + r)(I − IBθ −A)

1− pθ
−RB

θ

]
≥ b.

Bank monitoring requires its own incentive constraint:

(1− pθ)R
B
θ − c ≥ (1− p̄)RB

θ ,

which implies c(1 − pθ)/(p̄ − pθ) = βθI
B
θ . Combining the two constraints yields the threshold for firm

participation:

A ≥ Aθ(βθ, r) ≡ I − 1− pθ
p̄− pθ

c

βθ
− 1− pθ

1 + r

[
y − b+ c

p̄− pθ

]
.

Hence, moral hazard induces credit rationing: only firms withA ∈ [Aθ, Āθ] receive intermediated credit,

while poorer firms cannot commit to prudent behavior compatible with uninformed depositors’ participation.

Entrepreneurial welfare. Individual welfare is therefore defined piecewise:

UE
θ (k,A) = (1+r)A+1{Aθ≤A≤Āθ}

[
(1−pθ)y−(1+r)(I−Im(βθ))

]
+1{A≥Āθ}

[
(1−pθ)y−(1+r)(I−A)

]
,

where Im(βθ) denotes the bank-financed share of investment.

Bank optimization. The bank’s profit function is

UB(k, E , p) =
∫
Θ
kθπ

B
θ (βθ) dθ − (1 + r)L − (rE − r)E ,

where we have plugged in the balance-sheet identity L =
∫
Θ kθ dθ = D + E , and defined the per-loan

margin as

πBθ (βθ) =
(1− pθ)R

B
θ − c

IBθ
= βθ

1− p̄

1− pθ
.
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Feasibility requires

kθ ≤ IBθ
[
G(Āθ(r))−G(Aθ(βθ, r))

]
, ∀θ.

Because default risk pθ is a model primitive (following Holmstrom and Tirole (1997)), the credit-risk

elasticity is zero:

εp,kθ = 0.

Two cases describe the transmission of capital regulation: fixed bank capital and competitive loan pricing.

Fixed bank capital. When informed capital is scarce, as in the benchmark case of Holmstrom and Tirole

(1997), the bank’s credit supply is determined by the available informed capital kθ = k̄θ and unaffected by

regulation:

ζk,ωθ = 0, ζk,ω
′

θ = 0, ζk,pθ = 0.

Banks earn a scarcity rent on capital, and the prudential constraint is slack.

Competitive loan pricing. When informed capital is in excess supply, the return rate βθ adjusts to ensure

zero profits on each loan:

β
θ
= min{βθ ≥ 0 | πBθ (βθ)− (1 + r)− (rE − r)Ωω(pθ) = 0}.

Since β
θ

rises with ω(pθ),
∂β

θ

∂ω(pθ)
=

(rE − r)Ω(1− pθ)

1− p̄
> 0,

higher risk weights increase the cost of intermediation and lower credit supply:

ζk,ωθ = −
g(Aθ(βθ, r))

G(Āθ(r))−G(Aθ(βθ, r))

∂β
θ

∂ω(pθ)
< 0, ζk,ω

′

θ = 0.

Because credit supply depends on borrower wealth, the relationship between credit and risk may be

positive or negative:

ζk,pθ =
pθ

1− pθ
+ pθ

[
g(Āθ(r))− g(Aθ(βθ, r))

] [
1

1+r

(
y − B

p−pθ

)
+ 1−pθ

1+r
B

(p−pθ)2

]
+ g(Aθ(β, r))

1−pθ
1+r

B−(b+c)
(p−pθ)2

G(Āθ(r))−G(Aθ(βθ, r))

− pθ
∂β

θ

∂pθ

[
1 +

g(Aθ(βθ, r))

G(Āθ(r))−G(Aθ(βθ, r))

]
≶ 0
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where
∂β

θ

∂pθ
= (rE − r)Ω ω′(pθ)

1− pθ
1− p̄

− βθ
1− pθ

≶ 0.

This reflects offsetting effects from leverage (intensive margin), borrower selection (extensive margin),

and pricing adjustments.

Welfare effects. Finally, credit-supply externalities stem solely from loan pricing. There are no additional

externalities from bank-level variables:

dUE
θ (k,A)

dkθ
= 1{Aθ≤A≤Āθ}(1 + r)

1

kθ/I
B
θ + g(Aθ(βθ, r))I

B
θ

> 0.

A.2.4 Stiglitz and Weiss (1981): Adverse Selection

Consider the adverse-selection model of Stiglitz and Weiss (1981), adopting the notation of Freixas and

Rochet (2008). Entrepreneurs θ undertake risky projects that require I units of funding and yield a random

return y ≥ 0. Borrowers possess private information about project quality q ∼ H(q). Project quality affects

the distribution of returns F (y; q, θ) via a mean-preserving spread. Collateral is denoted c and the loan

interest rate 1+ r. Since banks cannot observe q, they offer a single contract per type θ, knowing that it will

endogenously screen borrowers by quality.

Entrepreneurs decide whether to participate in the credit market, dθ ∈ {0, 1}, to maximize

UE
θ (dθ;x) = dθ · πI(r, q, θ),

where entrepreneurial expected profits πI(r; q, θ) are

∫
y
max[−c, y − (1 + r)I] dF (y; q, θ) = −c

∫ (1+r)I−c

0
dF (y; q, θ) +

∫ ∞

(1+r)I−c
[y − (1 + r)I] dF (y; q, θ).

Assuming profits increase in project quality q, there exists a cutoff q∗θ such that πI(r; q∗θ , θ) = 0. En-

trepreneurs with q > q∗θ participate. The cutoff rises with the interest rate:

dq∗θ
dr

=
I [1− F ((1 + r)I − c; q∗θ , θ)]

πIq (r; q
∗
θ , θ)

> 0,

so higher rates exclude low-risk borrowers and worsen the applicant pool (adverse selection).

Let 1+rE and 1+rD denote the gross returns on equity and deposits, with rE > rD. Using the balance-

sheet identity
∫
Θ kθ dθ = D + E , the bank chooses its interest-rate schedule z = {rθ}θ∈Θ and equity E to
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maximize

UB(r, k, E) =
∫
Θ
kθπ

B
θ (rθ) dθ − (1 + rD)L − (rE − rD)E ,

where per-loan expected repayments are

πBθ (rθ) = Eq

[∫
y
min{y + c, (1 + rθ)I} dF (y; q, θ)

∣∣∣∣ q ≥ q∗θ

]
,

and the ex-ante credit-risk probability is

P(pθ, kθ, z; dθ, θ) = pθ − Eq[F ((1 + rθ)I − c; q, θ)] .

Feasibility is defined by

kθ ≤ I [1−H(q∗θ)], ∀θ,

i.e. credit supply cannot be greater than total loan demand at the rate rθ.

As in Stiglitz and Weiss (1981), πBθ (rθ) is concave in the interest rate. The intuition is that higher rates

raise repayments by existing borrowers but worsen pool quality, as low-risk applicants exit. The bank’s

optimal rate depends on its capital cost: it supplies credit if the expected return per loan exceeds the cost of

deposits plus the risk-weighted equity charge. In particular, the bank does not lend to θ if

max
r

[
πBθ (r)− (1 + rD)− (rE − rD)Ω ω(pθ)

]
< (=) rD.

We abstract from such corner cases of redlining and partial rationing.22 Hence, credit supply equals the

number of active borrowers at rate rθ, so the interest rate directly pins down credit volume:

kθ = I [1−H(q∗θ)].

Monopolistic loan pricing. Under monopoly, the bank internalizes how rθ affects both loan profits and

borrower participation. The optimal rate satisfies

dπBθ (r)

dr

∣∣∣∣
r=rθ

+
[
πBθ (rθ)− (1 + rD)− (rE − rD)Ω

(
ω(pθ) + pθ ε

p,k
θ ω′(pθ)

)]d log[1−H(q∗θ)]

dr

∣∣∣∣
r=rθ

= 0.

The elasticity of credit risk with respect to credit supply follows from the risk-formation constraint:

εp,kθ =
Eq[f((1 + rθ)I − c; q, θ)] /pθ

d log[1−H(q∗θ)]/dr
∣∣
r=rθ

< 0.

22Riley (1987) notes that the measure of rationed borrowers vanishes as the number of observable characteristics increases.
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Expected credit risk improves as lower interest rates expand credit supply.

The concavity of per-loan returns at the optimum (SOCθ < 0) implies the following credit-supply

elasticities:

ζk,ωθ =

(
d log[1−H(q∗θ)]

dr

∣∣∣∣
r=rθ

)2
(rE − rD)Ω

SOCθ
< 0, ζk,ω

′

θ = pθ ε
p,k
θ ζk,ωθ > 0,

and

ζk,pθ = pθ
[
ω′(pθ) + pθ ε

p,k
θ ω′′(pθ)

]
ζk,ωθ .

A higher level of risk weights raises funding costs and lowers credit supply due to a rise in interest rates.

Because banks internalize that lower rates improve pool quality (reducing pθ), a steeper schedule mitigates

this effect and expands credit supply.

Competitive loan pricing. Under competition, the equilibrium interest rate satisfies the zero-profit condi-

tion:

rθ = min
{
r ≥ 0

∣∣πBθ (r)− (rE − rD)Ω ω(pθ) = rD

}
, ∀θ.

At that rate, marginal profitability is positive. Otherwise, banks would have an incentive to further cut

interest rates:
dπBθ (r)

dr

∣∣∣∣
r=rθ

− (rE − rD)Ω ω′(pθ)Eq[f((1 + rθ)I − c; q, θ)] I > 0.

Thus, the credit-supply elasticities can be expressed as:

ζk,ωθ =
d log[1−H(q∗θ)]/dr

∣∣
r=rθ

· (rE − rD)Ω

dπBθ (r)/dr
∣∣
r=rθ

− (rE − rD)Ω ω′(pθ)Eq[f((1 + rθ)I − c; q, θ)] I
< 0, ζk,ω

′

θ = 0,

and

ζk,pθ = ω′(pθ)pθζ
k,ω
θ .

The risk elasticity again satisfies the risk-formation constraint:

εp,kθ =
Eq[f((1 + rθ)I − c; q, θ)] /pθ

d log[1−H(q∗θ)]/dr
∣∣
r=rθ

< 0.

Welfare effects. In both cases, there are no bank-level externalities. However, credit supply affects bor-

rower welfare via the interest-rate channel: a higher kθ (lower rate) raises expected returns inframarginally,

dUE
θ (dθ;x)

dkθ
=
I
∫∞
q∗θ

[1− F ((1 + rθ)I − c; q, θ)] h(q)
h(q∗θ )

dq

dq∗θ/dr
∣∣
r=rθ

> 0.
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A.2.5 Gale and Hellwig (1985): Costly State Verification

Instead of ex-ante adverse selection, private information on the loan market may be ex-post, giving rise

to non-verifiability of outcomes. In that case, banks may audit and the loan contract must be incentive

compatible, as in Gale and Hellwig (1985). There are two dates t = 0, 1. At t = 0, an entrepreneur θ invests

kθ ≥ 0 units in a project; at t = 1 the project yields f(kθ; s), where s ∈ [0,∞) is a privately observed

state drawn from Hθ(s) with density hθ(s). The production function is increasing and concave in scale:

f ′(·; s) > 0, f ′′(·; s) < 0, and ∂sf(·; s), ∂sf ′(·; s) > 0. The bank can observe the state by paying a weakly

convex audit cost c1(kθ; s); auditing may also impose a non-pecuniary penalty c0 ≥ 0 on the entrepreneur.

The risk-free deposit rate is 1 + rD and the return on equity is 1 + rE . Entrepreneurs start with no assets or

debt.

A loan contract for type θ is a quadruple
(
kθ, C1,θ(s),W1,θ(s), Bθ(s)

)
consisting of the loan size, the

bank’s state-contingent repayment, the entrepreneur’s payoff, and an audit indicator Bθ(s) ∈ {0, 1}. The

optimal per-type contract maximizes bank profits subject to (i) entrepreneurial participation Es[W1,θ(s) −

c0Bθ(s)] ≥ Ūθ, (ii) non-negativity W1,θ(s) ≥ 0 and kθ ≥ 0, (iii) resource feasibility C1,θ(s) +W1,θ(s) ≤

f(kθ; s)−c1(kθ; s)Bθ(s), and (iv) incentive compatibility (truthful reporting without audit). An allocation is

incentive compatible iff repayments are constant in non-audited states,C1,θ(s) = R1,θ wheneverBθ(s) = 0.

One can further show that in audited states (Bθ(s) = 1), the verification cost needs to be covered, so

R1,θ − C1,θ(s) ≥ c0 + c1(kθ; s).

Under a mild regularity condition, the optimal contract is a standard debt contract: (i) C1,θ(s) = R1,θ

if Bθ(s) = 0; (ii) bankruptcy (audit) occurs iff f(kθ; s) < R1,θ; (iii) in bankruptcy, the bank recovers

C1,θ(s) = f(kθ; s) − c1(kθ; s). Hence there is a default threshold γθ with f(kθ; γθ) = R1,θ, and defaults

occur for s < γθ. The default probability is pθ = Hθ(γθ).

Using the notation by Gale and Hellwig (1985), one can define the following payment functions:

fγθ(kθ; s) ≡ f(kθ; s)−1{s<γθ}
(
c0+c1(kθ; s)

)
, gγθ(kθ; s) ≡ 1{s≥γθ}f(kθ; γθ)+1{s<γθ}

(
f(kθ; s)−c1(kθ; s)

)
.

Imposing the balance-sheet identity L =
∫
Θ kθ dθ = D+E , the bank chooses credit {kθ}θ∈Θ, equity E , and

default thresholds z = {γθ}θ∈Θ to maximize

UB(k, E , z) =
∫
Θ
Es[gγθ(kθ; s)] dθ − (1 + rD)L − (rE − rD) E ,

subject to regulation. We now distinguish two contracting environments.
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Monopolistic contracting. If banks choose the entire loan contract, entrepreneurial utility equals

UE
θ (kθ, γθ) = Es[fγθ(kθ; s)]− Es[gγθ(kθ; s)],

and the participation constraint UE
θ ≥ Ūθ binds in optimum. This pins down the risk feedback from credit

supply:

εp,kθ =
hθ(γθ) kθ
Hθ(γθ)

∫
s≥γθ

[
f ′(kθ; s)− f ′(kθ; γθ)

]
dHθ(s)

(1−Hθ(γθ)) ∂γθf(kθ; γθ) + hθ(γθ) c0
> 0.

Intuitively, with standard debt, a larger loan raises the audit region (more states fall below the fixed face

value), increasing expected verification and the default probability.

The bank’s per-type Lagrangian is defined as

Lθ = Es[gγθ(kθ; s)]− (1 + rD) kθ − (rE − rD)Ω ω(pθ) kθ + λθ

[
Ūθ − Es[fγθ(kθ; s)] + Es[gγθ(kθ; s)]

]
,

yielding the first-order condition for kθ:

Es[g
′
γθ
(kθ; s)]− (1 + rD)− (rE − rD)Ω ω(pθ) + pθε

p,k
θ

[
Es[∂γθgγθ(kθ; s)]

kθhθ(γθ)
− (rE − rD)Ω ω′(pθ)

]
= 0.

Perturbing around the optimum and assuming concavity gives the credit-supply elasticities:

ζk,ωθ =
(rE − rD)Ω/kθ

Es[g′′γθ(kθ; s)] + pθ ∂kθ

{
εp,kθ

Es[∂γθgγθ (kθ;s)]

kθhθ(γθ)

} < 0, ζk,ω
′

θ = pθ ε
p,k
θ ζk,ωθ < 0.

The elasticity with respect to default risk depends on the curvature of the risk-weight schedule and the shape

of the production function

ζk,pθ =

(
Es[∂γθg

′
γθ
(kθ; s)]hθ(γθ)− (rE − rD)Ω

[(
1 + εp,kθ + pθ ∂γθε

p,k
θ hθ(γθ)

)
ω′(pθ) + pθε

p,k
θ ω′′(pθ)

]
+
pθ
kθ
εp,kθ Es[g

′
γθ
(kθ; s)]

[
∂γθ log ε

p,k
θ +

Es[∂γθg
′
γθ
(kθ; s)]

Es[g′γθ(kθ; s)]
−
h′θ(γθ)

hθ(γθ)

])
pθ ζ

k,ω
θ

(rE − rD)Ω
≶ 0.

Competitive rates. Under posted rates, entrepreneurs choose k, taking the loan rate rθ as given. In equi-

librium, each rate satisfies the bank’s zero-profit condition, and borrowers choose scale optimally. En-

trepreneurial expected utility is

UE
θ (kθ; rθ, γθ) = Es[max{ f(kθ; s)− (1 + rθ)kθ, 0 }]− c0Hθ(γθ),
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The constraints are summarized by three conditions: (i) borrower demand pins down credit supply kθ ≤

argmaxk≥0 U
E
θ (k; rθ, γθ), (ii) banks make zero profits on each loan

γθ = min
{
γ ≥ 0

∣∣ Es[gγ(kθ; s)] = (1 + rD) kθ + (rE − rD)Ω ω(pθ) kθ

}
,

and (iii) the face value is consistent with the posted rate

rθ = min{ r ≥ 0
∣∣ f(kθ; γθ) = (1 + r) kθ }, ∀θ.

Combining these conditions, the equilibrium allocation (kθ, γθ) solves

Es[gγθ(kθ; s)]

kθ
= (1 + rD) + (rE − rD)Ω ω(pθ), Es

[
f ′(kθ; s)

∣∣ s ≥ γθ
]
=
f(kθ; γθ)

kθ
.

Rewriting the second condition as an implicit relation for γθ(kθ), the risk feedback is case-specific

εp,kθ =
kθhθ(γθ)

pθ

Es

[
f ′′(kθ; s)

∣∣ s ≥ γθ
]
−
[
f ′(kθ; γθ)− f(kθ; γθ)/kθ

]
/kθ

∂γθf(kθ; γθ)/kθ − ∂γθEs

[
f ′(kθ; s)

∣∣ s ≥ γθ
] ≶ 0,

i.e. scale effects (decreasing returns) and threshold effects (moving the default boundary) can offset or

reinforce each other.

Using the zero-profit condition, the credit-supply elasticities are given by

ζk,ωθ = − (rE − rD)Ω

Es[gγθ(kθ; s)]/kθ − Es[g′γθ(kθ; s)]
< 0, ζk,ω

′

θ = 0,

and

ζk,pθ = −
(rE − rD)Ω ω′(pθ) pθ − Es[∂γθgγθ(kθ; s)]

pθ
kθhθ(γθ)

Es[gγθ(kθ; s)]/kθ − Es[g′γθ(kθ; s)]
≶ 0.

Welfare effects. Under monopolistic contracting, welfare is pinned down by the participation constraint.

Under posted rates, borrower welfare moves with the loan price and with the non-pecuniary default cost.

Because of decreasing returns, a larger scale tends to reduce the implied rate (via the face value), improving

welfare; but if kθ raises default risk, the expected bankruptcy cost may increase. Using kθ drθ/dkθ =

f ′(kθ; γθ)− f(kθ; γθ)/kθ + ∂γθf(kθ; γθ) dγθ/dkθ, we obtain

dUE
θ (kθ; rθ, γθ)

dkθ
= − pθ kθ

drθ
dkθ

− c0 hθ(γθ)
dγθ
dkθ

.
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B Appendix for Section 3

B.1 Loan-Level Incidence

Arbitrary reforms. We consider an arbitrary risk-weight reform that changes the schedule from ω to

ω + ϵω̂ with ϵ → 0. Using the optimality condition from Section A.1 and the definitions of elasticities, we

observe that the equilibrium loan-level response can be expressed as

k̂θ
kθ

= ζk,ωθ ω̂(pθ) + ζk,ω
′

θ ω̂′(pθ) + εk,pθ

p̂θ
pθ

− ∂MRSθ
∂E

Ê
kθ

−
∫
θ′

(
∂MRSθ
∂kθ′

k̂θ′

kθ
+
∂MRSθ
∂p̄θ′

p̂θ′

kθ

)
dθ′. (19)

The change to credit risk follows from the entrepreneurial risk functional: p̂θ/pθ = εp,kθ (k̂θ/kθ). Thus,

there are direct own-price effects from reforming the risk weight and indirect responses from across-asset

substitution. The latter originate from circular responses in credit supply and changes to bank equity (see

below).

As a next step, we plug the credit risk response into (19) to obtain a characterization of the equilibrium

credit-supply response to risk weights

k̂θ
kθ

=
ζk,ωθ

1− εk,pθ εp,kθ

ω̂(pθ) +
ζk,ω

′

θ

1− εk,pθ εp,kθ

ω̂′(pθ) + Ψθ({ω̂(pθ), ω̂′(pθ)}θ∈Θ),

where, assuming invertibility, the across-asset substitution term reads as

Ψθ(·) ≡ −∂MRSθ
∂E

Ê/kθ
1− εk,pθ εp,kθ

−
∫
θ′∈Θ

(
∂MRSθ
∂kθ′

+
pθ′

kθ′

∂MRSθ
∂p̄θ′

εp,kθ′

)
k̂θ′/kθ

1− εk,pθ εp,kθ

dθ′.

Counteracting reforms. Suppose the cross derivatives of MRSθ are independent from θ. Then, we

may construct a lump-sum perturbation ω̂c, with ω̂′
c = 0, that counteracts all responses from across-asset

substitution to ω̂. Intuitively, ω̂c is chosen such that all bank-level aggregates in the portfolio problem remain

unchanged. Defining

Λθ′ ≡ −Ω[ω(pθ′) + ω′(pθ′)pθ′ε
p,k
θ′ ] +

(
∂MRSθ
∂kθ′

+
pθ′

kθ′

∂MRSθ
∂p̄θ′

εp,kθ′

)/
∂MRSθ
∂E

,

the lump-sum reform can be written as:

ω̂c = −
∫
θ ω̂(pθ)(Λθζ

k,ω
θ −Ω)kθdθ +

∫
θ ω̂

′(pθ)Λθζ
k,ω′

θ kθdθ∫
θ(Λθζ

k,ω
θ −Ω)kθdθ

. (20)

56



Then, the across-asset substitution response in (9) becomes zero, Ψθ(·) = 0, and the change in equilibrium

credit supply is given by

k̂θ
kθ

=
ζk,ωθ

1− εk,pθ εp,kθ

[ω̂(pθ) + ω̂c] +
ζk,ω

′

θ

1− εk,pθ εp,kθ

ω̂′(pθ).

Elementary reforms. We now specialize our analysis of credit-supply incidence by considering the class

of elementary risk-weight reforms defined by (12). Changing from unobserved types to observable credit

risk, the first-order effects on credit supply and risk read as

k̂p
kp

=
ζk,ωp

1− εk,pp εp,kp

1[p > p∗]

Ω
∫
p>p∗ kpdR (p)

+
ζk,ω

′
p

1− εk,pp εp,kp

δ(p− p∗)

Ω
∫
p>p∗ kpdR (p)

+ Ψp(p
∗), (21)

where δ(p− p∗) denotes the Dirac delta function.

B.2 Proof of Proposition 1

We now derive the bank-level responses to an arbitrary reform ω̂. First, we perturb the bank credit-supply

equation L =
∫
θ kθdθ:

L̂ =

∫
θ∈Θ

k̂θdθ,

where the behavioral response in the bank’s portfolio is given by (9). Similarly, we compute the response of

equity E = Ω
∫
θ∈Θ ω(pθ)kθdθ:

Ê = Ω

∫
θ∈Θ

ω̂(pθ)kθdθ +Ω

∫
θ∈Θ

[ω(pθ) + ω′(pθ)pθε
p,k
θ ]k̂θdθ.

Thus, in addition to an incentive effect from portfolio adjustments, bank equity depends directly on risk

weights leading to an inframarginal response.

B.3 Proof of Corollary 1

B.3.1 General Environment

We now derive the bank-level incidence of elementary reforms. We plug the reform-specific loan-level

responses into the expressions from Proposition 1. Changing from types to credit risk and ignoring cross-

price effects, bank credit supply and equity respond according to

L̂ (p∗) =

∫
p>p∗

kpζ
k,ω
p

Ω
∫
p′>p∗ kp′dR (p′)

dR (p) +
kp∗ζ

k,ω′

p∗

Ω
∫
p′>p∗ kp′dR (p′)

r (p∗)
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and

Ê (p∗) = 1 +

∫
p>p∗

kp[ω(p) + ω′(p)pεp,kp ]ζ
k,ω
p∫

p′>p∗ kp′dR (p′)
dR (p) +

kp∗ [ω(p
∗) + ω′(p∗)p∗εp,kp∗ ]ζ

k,ω′

p∗∫
p′>p∗ kp′dR (p′)

r (p∗) .

B.3.2 Structural Example for Across-Asset Substitution

Setup. As in the main text, the economy consists of three agent groups: banks (B), households (H), and

entrepreneurs (E). Firms demand credit and undertake risky projects, while households supply deposits and

ultimately bear the cost of deposit guarantees. Each agent X ∈ {B,H,E} receives an endowment nXt in

each period and consumes a single good cXt . Let βX ∈ (0, 1] denote the agent’s discount factor. All agents

are risk-neutral, so their utility is

UX(·) = cX0 + βXEυ[c
X
1 (υ)],

where υ ∈ [υ, υ] ∼ F (υ) is an aggregate shock realized in the second period.

In the first period, banks provide credit to entrepreneurs. Given bank credit supply, each entrepreneur

chooses an ex-ante probability of failure p under a standard risk–return trade-off (see, e.g., Allen and Gale

(2000); Boyd and De Nicolo (2005); Corbae and D’Erasmo (2021)). In case of success, the project yields

(1+ p) per unit of capital invested; in case of failure, output is zero. Expected project returns, therefore, are

equal (1− p)(1 + p) per unit.

Each entrepreneur θ operates a production function f(kθ, θ) = θk1−a
θ , where a ∈ (0, 1) captures de-

creasing returns to scale. The aggregate shock υ is realized only after project and funding choices are made.

If successful, the entrepreneur repays an interest rate rθ per unit of bank credit. If unsuccessful, limited

liability prevents repayment. Production capital depreciates at a rate δ.

The entrepreneur’s budget constraints are:

cE0 = nE0 (θ), cE1 (υ) = nE1 (θ) + (1− p)
[
(1 + p)θk1−a

θ − (rθ + δ)kθ
]
.

Optimal risk-taking satisfies pθ = (rθ + δ)kaθ/(2θ), which increases with leverage, implying εp,kθ = a.

Banks raise deposits D from households at price qD and choose a credit portfolio {kθ}θ∈Θ in the first

period. As in Tobin’s q models of investment, banks face convex adjustment costs kθ + (bθ/2)k
2
θ for each

unit of capital they extend. In the second period, they receive state-contingent loan repayments:23

ΠB(·, υ) =
∫
Θ
(1− pθ) υ (1 + rθ) kθ dθ, Eυ[υ] = 1.

In adverse states, banks may default on their debt. To prevent household losses, taxpayers provide a deposit
23The term ΠB(·, υ) can capture “forced safety” effects as in Bahaj and Malherbe (2020).
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or bailout guarantee T (·, υ) financed by households.

The budget constraints are:

cB0 = nB0 + qDD − L−
∫
Θ

bθ
2
k2θ dθ, cB1 (υ) = nB1 +max{ΠB(·, υ) + T (·, υ)−D, 0}, ∀υ.

Banks repay their debt and consume their residual claim in states where loan repayments plus bailouts

exceed the face value of debt; otherwise, they default. Because the profit function is asymmetric (unbounded

above but bounded below), banks do not fully internalize the social cost of credit supply, which leads to

excessive risk-taking. Capital regulation can mitigate these incentives.

We consider a bailout policy (deposit insurance) that fully prevents bank default in bad states:

T (·, υ) = max{D −ΠB(·, υ), 0}, ∀υ.

Define υ⋆ ∈ (υ, υ) as the cutoff shock below which banks receive a bailout. It represents the lowest

realization of υ for which the bank remains solvent. For rθ = 0, the cutoff equals the book value of debt

relative to total expected loan repayments:

υ⋆ =
L − E
L −K

, K ≡
∫
Θ
pθkθ dθ,

where L denotes total bank lending and E the equity position of the bank.

Elasticities. The optimal credit portfolio is then given by

kθ =
βB
[
1− (1 + a)pθ

]
(1 + rθ)

∫ υ
υ⋆ υ dF (υ)− µ

[
ω(pθ) + apθω

′(pθ)
]
− (1 + βB)

bθ
, ∀θ.

The first term captures expected marginal loan returns weighted by the survival probability above the bailout

cutoff. The second term represents the regulatory cost from risk weights, and the last term reflects the

adjustment cost of capital creation. Here, µ/Ω = qD − βB
(
1 − F (υ⋆)

)
denotes the shadow price of bank

equity. The corresponding credit-supply elasticities are:24

ζk,ωθ = − µ

bθkθ
< 0, ζk,ω

′

θ = apθζ
k,ω
θ , εk,pθ = −(1 + a)pθ

ω′(pθ)µ+ βB(1 + rθ)
∫ υ
υ⋆ υ dF (υ)

bθkθ
< 0.

These expressions describe how lending responds to changes in average and marginal risk weights, as well

as to shifts in credit risk.
24For transparency, we assume a locally flat risk-weight schedule, ω′′(pθ) = 0, in the second expression.
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Equilibrium. To close the model, consider households. They supply deposits at price qD and derive

second-period utility ψ ≥ 1 per deposit unit, capturing a liquidity preference. They also bear the fiscal

cost of government guarantees, (1 + κT )T (·, υ), where κT ≥ 0 denotes the deadweight loss from fiscal

intervention. Hence, the presence of a deposit insurance introduces a financial externality analogous to that

in Dávila and Walther (2021) or Corbae and D’Erasmo (2021). The household budget constraints are:

cH0 = nH0 − qDD, cH1 (υ) = nH1 + ψD − (1 + κT )T (·, υ).

The equilibrium deposit price is determined by qD = βHψ. Assuming that households are at least as pa-

tient as banks (βH ≥ βB; cf. Dávila and Walther (2023)) implies a positive cost of bank equity (µ > 0).

The existence of bailouts (F (υ⋆) > 0) breaks the Modigliani–Miller capital-structure irrelevance result

(Modigliani and Miller 1958), even when there is no liquidity preference (ψ = 1) or discount-rate differen-

tial (βH = βB).

Across-asset substitution. We now extend the analysis to allow for cross-asset interactions in the bank’s

portfolio choice. In this case, changes in the bailout cutoff affect lending across assets through the substitu-

tion term

Ψp (p
∗) =

∂ log kp/∂υ
⋆

1− εk,pp εp,kp

υ̂⋆ (p∗) .

For f(υ⋆) → 0, loans are unaffected by circularities from the bailout cutoff, ∂kθ/∂υ⋆ = 0. Otherwise, a

binding bailout cutoff generates nontrivial portfolio adjustments due to across-asset substitution.

Using the aggregate solvency condition, the response of the bailout cutoff to an elementary reform at

threshold p∗ is given by

υ̂⋆ (p∗) =

∫
p>p∗

kp
(
Λpζ

k,ω
p −Ω

)
Ω E

(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)
+

kp∗Λp∗ζ
k,ω′

p∗

Ω E
(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)

dΠB({kθ}θ∈Θ, υ⋆)
dυ

−
∫
p
Λp
∂ log kp
∂υ⋆

kp dR(p)

. (22)

Here, R(p) denotes the cumulative distribution of loan risk types. The numerator collects the direct inci-

dence effects for loans above and at the cutoff p∗, while the denominator adjusts for general-equilibrium

feedback through the bank’s portfolio re-optimization.

Elementary reforms. We now derive the bank-level incidence of elementary reforms in the presence of

across-asset substitution. Plugging the loan-level incidence (9) into Proposition 1 and integrating over credit
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risk types yields the following expressions for the responses of aggregate credit supply and bank equity:

L̂ (p∗) =

∫
p>p∗

kp
(
1 + φLΛp − φLΩ/ζ

k,ω
p

)
ζ
k,ω
p

Ω E
(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)
+
kp∗
(
1 + φLΛp∗

)
ζ
k,ω′

p∗

Ω E
(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)
,

Ê (p∗) =

∫
p>p∗

kp
[
ω(p) + ω′(p)pεp,kp + φEΛp − φEΩ/ζ

k,ω
p

]
ζ
k,ω
p

E
(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)

+
kp∗
[
ω(p∗) + ω′(p∗)p∗εp,kp∗ + φEΛp∗

]
ζ
k,ω′

p∗

E
(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)
.

The correction terms φL and φE capture circularities arising from the feedback of the bailout cutoff:

φL =

∫
p
kp
∂ log kp/∂υ

⋆

1− εk,pp εp,kp

dR(p)

dΠB({kθ}θ∈Θ, υ⋆)
dυ

−
∫
p
Λp

∂ log kp
∂υ⋆

kp dR(p)

, φE =

∫
p
ω(p) kp

∂ log kp/∂υ
⋆

1− εk,pp εp,kp

dR(p)

dΠB({kθ}θ∈Θ, υ⋆)
dυ

−
∫
p
Λp

∂ log kp
∂υ⋆

kp dR(p)

.

When ∂kp/∂υ⋆ = 0, all circularities disappear and φL = φE = 0.

Under a flat baseline risk-weight scheme (ω(p) = 1), the corrections in the equity and credit-supply

responses are uniform φL = φE = φ. We can then redefine the semi-elasticities to incorporate circularities:

ζ̃k,ωp =
(
1 + φΛp − φΩ/ζ

k,ω
p

)
ζ
k,ω
p , ζ̃k,ω

′
p =

(
1 + φΛp

)
ζ
k,ω′

p ,

yielding the same functional forms as in Corollary 1.

We also derive closed-form expressions for the response of the bailout cutoff. Differentiating the defini-

tion of υ⋆ = (L − E)/(L −K) yields

υ̂⋆

υ⋆
=

L̂ − Ê
L − E

− L̂ − K̂
L − K

.

Hence, the bailout probability decreases with higher bank equity and increases with higher expected credit

losses. For an elementary reform and ∂kp/∂υ⋆ = 0, we obtain the following expression:

υ̂⋆(p∗)(L −K) = −
∫
p>p∗

kp

{
[1− (1 + εp,kp )p] υ⋆ −Ω[ω(p) + ω′(p)p εp,kp ] ζ

k,ω
p

}
Ω E

(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)

−
kp∗
{
[1− (1 + εp,kp∗ )p

∗] υ⋆ −Ω[ω(p∗) + ω′(p∗)p∗εp,kp∗ ] ζ
k,ω′

p∗

}
Ω E

(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)
. (23)

The first term captures the mechanical effect of higher equity requirements, which reduces the likelihood of

a bailout. The second and third terms summarize the behavioral effects of higher risk weights for loans with
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p > p∗ and p = p∗, respectively, which may offset the mechanical effect depending on the slope of ω(p).

Counteracting reforms. Using Equation (20), we obtain a sequence of lump-sum perturbations ω̂c(p
∗)

that counteracts the effects of elementary reforms ω̂(p∗) on the bailout cutoff and, thus, removes circularities

in banks’ responses:

ω̂c(p
∗) = −

∫
p>p∗

kp
(
Λpζ

k,ω
p −Ω

)
Ω E

(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)
+

kp∗Λp∗ζ
k,ω′

p∗

Ω E
(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)∫
p
kp
(
Λpζ

k,ω
p −Ω

)
dR(p)

. (24)

The combined reform ω̂(p∗)+ ω̂c(p
∗) has the following first-order impact on bank credit supply and equity:

L̂c (p
∗) =

∫
p>p∗

kp
(
1 + φc

LΛp − φc
LΩ/ζ

k,ω
p

)
ζ
k,ω
p

Ω E
(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)
+
kp∗
(
1 + φc

LΛp∗
)
ζ
k,ω′

p∗

Ω E
(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)
,

Êc (p∗) =
∫
p>p∗

kp
[
ω(p) + ω′(p) p εp,kp + φc

EΛp − φc
E Ω/ζ

k,ω
p

]
ζ
k,ω
p

E
(
kp′
∣∣ p′ > p∗

) dR(p)

1−R(p∗)

+
kp∗
[
ω(p∗) + ω′(p∗) p∗ εp,kp∗ + φc

EΛp∗
]
ζ
k,ω′

p∗

E
(
kp′
∣∣ p′ > p∗

) r(p∗)

1−R(p∗)
,

where the correction factors now include only own-price effects:

φc
L ≡ −

∫
p
kp ζ

k,ω
p dR(p)∫

p
kp
(
Λpζ

k,ω
p −Ω

)
dR(p)

, φc
E ≡ −

∫
p
ω(p) kp ζ

k,ω
p dR(p)∫

p
kp
(
Λpζ

k,ω
p −Ω

)
dR(p)

.

Starting from a flat risk-weight scheme (ω(p) = 1), the corrections are uniform, φc
L = φc

E = φc.

Redefining the semi-elasticities to incorporate these corrections,

ζ̃k,ωp ≡
(
1 + φcΛp + φcΩ/ζ

k,ω
p

)
ζ
k,ω
p , ζ̃k,ω

′
p ≡

(
1 + φcΛp

)
ζ
k,ω′

p ,

yields the same expressions as in Corollary 1.

B.4 Proof of Lemma 1

To derive the welfare effects of risk-weight reforms, we apply the envelope theorem for arbitrary choice sets

(Milgrom and Segal (2002)). Under monopolistic banking, credit supply, loan pricing, and all operational

decisions are locally optimal, implying that behavioral adjustments are second order. However, the bank’s
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welfare still depends mechanically on the equity required by capital regulation. Thus, a reform of the risk-

weight schedule induces an inframarginal welfare response:

V̂B = −µ

∫
Θ
ω̂(pθ) kθ dθ.

Under competitive loan pricing, interest rates {rθ} adjust such that bank profits are zero for all policy

regimes. In this case, price responses exactly offset the mechanical effect of a regulatory reform:(
dLinner

drθ

)
r̂θ = µ ω̂(pθ) kθ, ∀θ.

Aggregating across loan types, the total change in bank welfare is therefore zero:

V̂B =

∫
Θ

dLinner

drθ
r̂θ dθ − µ

∫
Θ
ω̂(pθ) kθ dθ = 0.

For entrepreneurs, the welfare response follows from the same envelope logic. Since each dθ is optimally

chosen, the indirect effect of a reform operates only through induced changes in credit supply:

V̂E
θ =

(dUE
θ

dkθ
+ ρ⊤θ

dCE
θ

dkθ

)
k̂θ = −µ ξEθ k̂θ.

Interpreting loan rates as functions of credit supply, rθ = rθ(kθ), this welfare effect also embeds loan-

price adjustments. To highlight this mechanism, one can decompose the response into direct and interest-rate

components:

V̂E
θ =

(∂UE
θ

∂kθ
+ ρ⊤θ

∂CE
θ

∂kθ

)
k̂θ +

(∂UE
θ

∂rθ
+ ρ⊤θ

∂CE
θ

∂rθ

)drθ
dkθ

k̂θ = −µ (ξEθ,k + ξEθ,r) k̂θ.

Hence, interest-rate movements redistribute surplus between entrepreneurs and banks, giving rise to

distributive pecuniary externalities in the sense of Dávila and Korinek (2018). Their total welfare impact at

the loan level can be expressed as

αB

(
dLinner

drθ

)
r̂θ + αE

θ

(
∂UE

θ

∂rθ
+ ρ⊤θ

∂CE
θ

∂rθ

)
r̂θ.

Finally, household welfare responds through the same envelope logic, reflecting the externalities from

changes in bank equity and credit supply:

V̂H =
(dUH

dE
+ γ⊤

dCH

dE

)
Ê +

∫
Θ

(dUH

dkθ
+ γ⊤

dCH

dkθ

)
k̂θ dθ = −µχH Ê − µ

∫
Θ
ξHθ k̂θ dθ.
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B.5 Proof of Proposition 2

The unconstrained Pigouvian regulation maximizes (15) absent any market frictions, εp,kθ = 0, ∀θ. Using

Lemma 1, the welfare response to any reform ω̂ or Ω̂ can be expressed as

Ŵ/µ =

∫
Θ

[
αBω(pθ)− (αE

θ ξ
E
θ + αHξHθ )

]
k̂θdθ −

(
αB/Ω + αHχH

)
Ê .

Under credit-market competition, distributive pecuniary effects add to these welfare responses. For clarity,

we assume they are second-order for welfare. Therefore, the first-best regulation satisfies αB/Ω+αHχH =

0 and αBω(p)− (αE
p ξ

E
p + αHξHp ) = 0.

B.6 Proof of Proposition 3

In the second-best case, the welfare effect of an arbitrary regulatory reform ω̂ or Ω̂ is given by

Ŵ/µ =

∫
θ∈Θ

[
αB[ω(pθ) + ω′(pθ)pθε

p,k
θ ]− (αE

θ ξ
E
θ + αHξHθ )

]
k̂θdθ −

(
αB/Ω + αHχH

)
Ê .

Again, we omit distributive pecuniary effects. While the condition for the optimal capital adequacy ratio

remains unchanged relative to the first-best benchmark, the optimal risk-weight schedule follows an ordinary

differential equation:

ω(p) + ω′(p)pεp,kp = (αE
p /α

B)ξEp + (αH/αB)ξHp ≡ b(p).

Using the variation of parameters, we obtain the general solution to the ODE

ω(p) = exp

[
−
∫ p

p
1/(p′εp,kp′ )dp

′

](
C0 +

∫ p

p
b(p′)/(p′εp,kp′ ) exp

[∫ p

p
1/(p′′εp,kp′′ )dp

′′

]
dp′

)
.

Accordingly, we define γ(p′; p) ≡ exp[
∫ p′

p 1/(εp,kp′′ p
′′)dp′′]. For a constant risk-taking elasticity, εp,kp = εp,k,

it is easy to verify that γ(p′; p) = (p′/p)1/ε
p,k

. Noting that ω(p) = C0, the general solution reads as

ω(p) =

∫ p

p
b
(
p′
)
γ′(p′; p)dp′ + γ(p; p)ω(p).

To pin down the value of the constant C0, we note from the ODE that the optimal bottom marginal risk

weight is ω(p) = b(p) for p → 0. Integrating by parts, the formula for the optimal risk-weight schedule
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simplifies to

ω(p) = b(p)−
∫ p

0
b′(p′)γ(p′; p)dp′.

B.7 Third-Best Regulation

In addition to market failures, εp,kp > 0 for some p, certain dimensions of bank regulation may be structurally

constrained and, as a result, imperfectly chosen, as in Dávila and Walther (2021). In this spirit, we derive

optimal risk weights under market imperfections when the capital adequacy ratio is exogenously fixed at a

potentially suboptimal level Ω.

Proposition 4. Suppose the regulator maximizes aggregate social welfare, market failures exist, and the

capital-adequacy ratio is fixed at Ω. Defining γ(p′; p) ≡ exp[
∫ p′

p 1/(εp,kp′′ p
′′)dp′′], the optimal risk-weight

schedule satisfies

ω(p) = b(p)−
∫ p

0
b′(p′) γ(p′; p) dp′, (25)

where

b(p) ≡
(αE

p /α
B)ξEp + (αH/αB)ξHp

−Ω(αH/αB)χH
+

∆Ω

−(αH/αB)χH

E[γ(p; p′)kp′/kp|p′ ≥ p]

ζ
k,ω′

p r(p)/[1−R(p)]
,

captures the welfare externalities from credit supply, and ∆Ω ≡ −(αH/αB)χH − 1/Ω is the Pigouvian

wedge from bank equity.

The optimal risk weights correct the welfare externalities from credit supply, summarized by b(p). As

in the second-best setting, the presence of market failures implies an adjustment for linear dependence mea-

sured through εp,kθ . Compared to the second best, the externality term b(p) now incorporates a correction

for imperfectly chosen bank equity. When the equity subsidy rate is too low, a positive Pigouvian wedge

∆Ω > 0 arises. In that case, banks fail to internalize the externality of their equity choice on households

fully, and equilibrium bank equity is inefficiently low from a social perspective. Risk weights can miti-

gate this wedge by affecting bank equity in the regulatory constraint. The optimal risk-weight schedule is

therefore adjusted to handle this policy imperfection. For ∆Ω = 0, we recover (17).

While the adjustment term captures complex interactions between market and policy failures,25 its prop-

erties are intuitive. Importantly, the size of adjustment decreases with the magnitude of policy distortions

from risk weights, resembling inverse elasticity formulas in optimal taxation (see Diamond (1998); Saez
25The proof below shows that an integro-differential equation characterizes the optimal risk-weight schedule. It balances welfare

gains and losses from changes in average and marginal risk weights, given an imperfectly set capital ratio. As before, we assume
the lower bound of credit risk approaches zero (p → 0) to solve for the particular solution to the differential equation.
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(2001)). This distortion is measured by the credit-supply semi-elasticity with respect to marginal risk

weights. The elasticity is weighted by the hazard rate of credit risk, r(p)/[1−R(p)], to capture the relative

magnitude of behavioral responses at each point in the risk distribution. A stronger behavioral response

implies that risk weights are more effective at addressing welfare externalities from bank equity, thereby

reducing optimal risk weights. Conversely, optimal risk weights rise with the share of high-risk exposures,

E[γ(p; p′)kp′/kp|p′ ≥ p]. This measure of credit-risk granularity reflects the strength of market failures

when correcting suboptimal bank equity.

Altogether, the regulatory optimum inherits central features of classical tax formulas in public finance

and clarifies the main trade-off of bank capital regulation. On the one hand, regulation should correct

all welfare-relevant externalities of credit supply. On the other hand, the corrective motives embedded in

the risk-weight schedule must be balanced against its effectiveness in addressing regulatory and market

imperfections.

Proof. We now prove Proposition 4. First, we derive welfare effects from an elementary risk-weight reform,

showing that the optimal schedule satisfies a differential equation. We then solve this equation using the

method of variation of parameters.

When the capital-adequacy ratio is chosen suboptimally, welfare effects from changes in bank equity

must be accounted for. Using Proposition 1, the welfare response to a reform of the risk-weight schedule is

Ŵ/µ =

∫
θ∈Θ

[
−αHχHΩ[ω(pθ) + ω′(pθ)pθε

p,k
θ ]− (αE

θ ξ
E
θ + αHξHθ )

]
k̂θdθ

−
(
αB/Ω + αHχH

)
Ω

∫
θ∈Θ

ω̂(pθ)kθdθ.

To characterize the optimal nonlinear risk-weight schedule in sufficient-statistics form, we consider the

class of elementary reforms (12) and abstract from across-asset substitution effects. The aggregate welfare

effect of increasing the risk weight at p∗ is then

Ŵ(p∗)/µ = −
(
αB/Ω + αHχH

)
+

∫
p>p∗ kp

[
−αHχHΩ[ω(p) + ω′(p)pεp,kp ]− (αE

p ξ
E
p + αHξHp )

]
ζ
k,ω
p dR(p)

Ω
∫
p>p∗ kpdR(p)

+
kp∗
[
−αHχHΩ[ω(p∗) + ω′(p∗)p∗εp,kp∗ ]− (αE

p∗ξ
E
p∗ + αHξHp∗)

]
ζ
k,ω′

p∗ r(p∗)

Ω
∫
p>p∗ kpdR(p)

.

Setting welfare effects to zero Ŵ(p∗) = 0, the optimal risk-weight schedule satisfies the following
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integro-differential equation:

−
[
−αHχHΩ[ω(p∗) + ω′(p∗)p∗εp,kp∗ ]− (αE

p∗ξ
E
p∗ + αHξHp∗)

]
kp∗ζ

k,ω
p∗ r (p

∗)

=
ζ
k,ω
p∗

ζ
k,ω′

p∗

[∫
p>p∗

[
−αHχHΩ[ω(p) + ω′(p)pεp,kp ]− (αE

p ξ
E
p + αHξHp )

]
kpζ

k,ω
p dR (p)

+Ω
(
αB/Ω + αHχH

) ∫
p>p∗

kpdR (p)

]
This expression trades off welfare effects from marginal and average risk weights.

We can rewrite this equation as a first-order differential equation K ′(p∗) = D(p∗)[K(p∗)+C(p∗)] with

boundary condition K(p) = 0. Using the method of variation of constants, the solution is

K(p∗) = −
∫ p

p∗
D(p)C(p) exp

[
−
∫ p

p∗
D(p′)dp′

]
dp.

Integration by parts yields

K(p∗) = −
∫ p

p∗
C ′(p) exp

[
−
∫ p

p∗
D(p′)dp′

]
dp− C(p∗).

Differentiating gives

K ′(p∗) = C ′(p∗) exp

[
−
∫ p∗

p∗
D(p′)dp′

]
−D(p∗)

∫ p

p∗
C ′(p) exp

[
−
∫ p

p∗
D(p′)dp′

]
dp− C ′(p∗)

= −D(p∗)

∫ p

p∗
C ′(p) exp

[
−
∫ p

p∗
D(p′)dp′

]
dp.

Recall that C(p) = Ω(αB/Ω + αHχH)
∫
p>p∗ kpdR(p), so C ′(p) = −Ω(αB/Ω + αHχH)kpr(p), and

that D(p∗) = 1/(εp,kp∗ p
∗). Hence, the optimal risk-weight schedule satisfies

−
(
−αHχHΩ[ω(p∗) + ω′(p∗)p∗εp,kp∗ ]− (αE

p∗ξ
E
p∗ + αHξHp∗)

)
kp∗r(p

∗)

=
Ω(αB/Ω + αHχH)

ζ
k,ω′

p∗

∫ p

p∗
kp exp

[
−
∫ p

p∗
ζk,ωp′ /ζ

k,ω′

p′ dp′
]
dR(p),

which can be expressed as a first-order inhomogeneous differential equation:

ω′(p∗) + ω(p∗)/(εp,kp∗ p
∗) = b(p∗) /(εp,kp∗ p

∗), (26)
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where

b(p) ≡
αE
p ξ

E
p + αHξHp

−ΩαHχH
− αB/Ω + αHχH

−αHχHζ
k,ω′

p

1−R(p)

r(p)
E
[
γ(p; p′)

kp′

kp

∣∣∣∣ p′ ≥ p

]
.

Applying the variation of parameters yields the general solution to (26):

ω(p∗) = exp

[
−
∫ p∗

p
1/(εp,kp′ p

′)dp′

](
C0 +

∫ p∗

p
b(p)/(εp,kp p) exp

[∫ p

p
1/(εp,kp′ p

′)dp′

]
dp

)
.

As in the second best, define γ(p′; p) ≡ exp[
∫ p′

p 1/(εp,kp′′ p
′′)dp′′]. Since ω(p) = C0, we can rewrite the

expression as

ω(p∗) = exp

[
−
∫ p∗

p
1/(εp,kp′ p

′)dp′

]∫ p∗

p
b(p)/(εp,kp p) exp

[∫ p

p
1/(εp,kp′ p

′)dp′

]
dp+ γ(p; p∗)ω(p)

=

∫ p∗

p
b(p)γ′(p; p∗)dp+ γ(p; p∗)ω(p).

Letting p → 0, the bottom risk weight is ω(p) = b(p). Integrating by parts then yields the closed-form

expression for the optimal risk-weight schedule:

ω(p∗) = b(p∗)−
∫ p∗

0
b′(p′) γ(p′; p∗) dp′.

C Appendix for Section 4

As a complementary exercise, we re-estimate the key elasticities using data from the U.S. syndicated loan

market. While the German administrative data provide a more comprehensive coverage of all bank–firm

relationships, the U.S. setting offers an informative benchmark, particularly for assessing the implications

of the Federal Reserve’s proposed reform.

C.1 Data

Syndicated loans are a primary source of corporate financing in the United States, with total committed

credit exceeding $6 trillion in 2023 (see Board of Governors of the Federal Reserve System (2024)). Already

before the global financial crisis, 90% of the 500 largest U.S. public firms had obtained syndicated credit

(Sufi (2007)); this share now approaches 100% as the market has expanded more than fivefold since then.

We use data from LPC Loan Connector (formerly Dealscan) covering syndicated loan issuances, including
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Panel A: Loan-Level Characteristics
Variable Mean Median St. Dev. Min Max

Loan volume (log) 19.14 19.23 1.50 11.51 24.62
Maturity (in months) 48 60 21.75 1 361

Interest spread (in bps) 211.40 175 147.15 17.5 750
Panel B: Borrower Characteristics

Total assets (in billion $) 7.35 1.17 21.2 0 158.69
Total debt (log) 18.93 19.30 2.78 11.35 24.37

Bank debt share (in %) 46.43 42.62 38.84 0 100
PoD 0.04 0 0.15 0 0.89

Risk weight (imputed) 1.01 1 0.18 0.2 1.5

Table 7: Summary statistics (U.S. syndicated loan market).

information on lender and borrower identities, loan volumes, pricing terms, and other contractual features.

Unlike the German administrative data, the U.S. data do not include banks’ internal default-probability

estimates (pθ). To enrich the dataset, we link borrowers to Compustat/CRSP and Capital IQ, which provide

firm-level balance sheet information, debt structure, and performance measures.

Table 7 summarizes the U.S. data, with loan characteristics reported in Panel A and borrower charac-

teristics in Panel B. Panel A shows that the average loan size is roughly $200 million, underscoring the

importance of the syndicated loan market in corporate finance. The typical loan has a maturity of four to

five years, and borrowers pay a spread of 175–225 basis points above the reference rate. Panel B indicates

that the average firm in our sample has total assets of about $7 billion. On average, 46% of these firms’

debt is provided by banks—a share that varies widely across firms. The average probability of default (PD),

described below, is around 4%, with a large mass of firms exhibiting near-zero default risk. Imputed risk

weights based on external credit ratings average around 1.26

To obtain the PD estimates and thus empirically characterize the credit-risk distribution, we compute

the distance to default (DtDi,t) for each firm-quarter following the methodology of Bharath and Shumway

(2008):

DtDi,t =
log((E + F )/F ) + (ri,t − 0.5σnaivev )

σnaivev

,

where E denotes the market value of equity, F the face value of debt, ri,t the stock return over the previous

year, and σnaivev a proxy for firm-value volatility. We compute

σnaivev =
E

E + F
σE +

F

E + F
(0.05 + 0.25σE),

where σE is the standard deviation of past equity returns, 0.05 approximates term-structure volatility, and
26The imputation procedure is described in Section 4.2.
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Figure 6: Credit risk distribution (U.S. syndicated loan market).

debt volatility is assumed to be one-quarter of equity volatility (see Bharath and Shumway (2008)). Because

all inputs vary at a quarterly frequency, we obtain a time series of firm-level credit-risk distributions. We

use 2019Q4 as the benchmark quarter to inform the model with a representative cross-section. Finally, we

convert the distance-to-default measure into a probability of default, pθ = GN (−DtD), where GN is the

standard normal cumulative distribution function. The resulting distribution of pθ is shown in Figure 6.

C.2 Estimation

While the elasticity estimates based on the German administrative data serve as our benchmark, we com-

plement them with estimates for the U.S. economy. The U.S. data, though less comprehensive, primarily

capture the upper tail of the firm-size distribution and rely on market-based measures of default risk (see

Section 4.1). Nonetheless, analyzing the U.S. syndicated loan market is informative, as it represents one

of the key segments the Federal Reserve considers when calibrating its proposed reform of the risk-weight

schedule evaluated below.

Credit-risk elasticity. To estimate εp,kp using U.S. data, we face the same identification challenges dis-

cussed in Section 4.3: isolating exogenous variation in credit supply to measure its effect on firm default

probabilities. A direct analogue to the German bank levy, which shifted aggregate credit supply, is difficult

to identify in the U.S. context. However, unlike the mostly bank-dependent firms in Germany, the large,

publicly listed firms in our U.S. sample rely substantially on bond-market financing. We therefore exploit a

credit-supply shock originating in the corporate bond market: the Federal Reserve’s intervention following

the COVID-19 shock. Beginning in 2020Q2, the Fed established special-purpose vehicles to purchase cor-
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porate bonds in both primary and secondary markets, shifting the demand curve for corporate bonds outward

(Gilchrist et al. (2020)). This market-wide intervention was implemented in response to aggregate financial

stress rather than firm-specific fundamentals, thus addressing the endogeneity concern discussed above.

Importantly, the intervention’s impact was heterogeneous across firms: those more reliant on bond-

market financing (and less reliant on bank loans) benefited more strongly. We capture this differential ex-

posure through a shift-share design based on firms’ pre-crisis debt composition. The first-stage and second-

stage specifications are:

log(debti,t) = γ
(
ShareOfBankDebti,2019Q4 × FedInterventiont

)
+ βXi,t−1 + µi + vi,t,

log(pi,t) = εp,kp
̂log(debti,t) + βXi,t−1 + µi + µt + ui,t,

where log(debti,t) is the logarithm of firm i’s total debt, µi and µt denote firm and time fixed effects,

ShareOfBankDebti,2019Q4 measures the share of bank-provided debt in 2019Q4, and FedInterventiont

is a dummy equal to one for quarters starting in 2020Q2. The vector Xi,t−1 includes lagged firm-level

controls: the logarithm of total assets, sales, and net income, the current ratio, the cash-to-assets ratio, and

leverage. Probabilities of default, pi,t, are obtained by translating firms’ credit ratings into PDs using the

S&P Global Fixed Income Tables (S&P Global (2024)).

Credit-supply elasticities. To identify εk,pp and ζk,ωp , we generate exogenous variation in p and ω, as out-

lined in Section 4.3. In the U.S. setting, we cannot directly observe banks’ internal default-risk estimates

that feed into regulatory formulas. We therefore approximate p using market-implied probabilities of default

and construct risk weights ω from the Basel Committee’s standardized mapping of external credit ratings

(see Table 3). Although these measures are coarser than those in the German dataset, systematic measure-

ment error should not arise if market prices on average reflect default probabilities accurately and the Basel

mapping correctly represents regulatory capital constraints.

Because the U.S. data are reported at the firm rather than the bank–firm level, the Khwaja and Mian

(2008) identification strategy cannot be implemented. To disentangle supply from demand, we instead

follow the approach proposed by Degryse et al. (2019). We include industry-by-time fixed effects (µs × µt)

and assume that firms within the same three-digit industry face a common demand for credit at each point

in time. Variation in εk,pp then captures differences in credit supply across banks (bank fixed effects) to firms

within the same industry that differ in their time-varying default probabilities, controlling for time-invariant

firm characteristics (firm fixed effects). The coefficient ζk,ωp measures the differential credit supply by the

same bank when facing two borrowers from the same industry at the same time with identical economic risk

(log(pi,t−1)), holding constant firm-specific heterogeneity.
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Sufficient Statistic Market Side Estimate for the U.S.

elasticity of default risk w.r.t. credit supply entrepreneurs εp,kp = 0.177

credit-supply elasticity w.r.t. default risk banks εk,pp = −0.002

credit-supply semi-elasticity w.r.t. average risk weight banks ζk,ωp = −0.399

Table 8: Overview of estimated elasticities (U.S. syndicated loan market).

To mitigate simultaneity between credit supply and default risk, we lag the probability of default by one

quarter, ensuring that feedback effects through εp,kp do not bias our estimates. The estimation equation is:

log(creditb,i,t) = εk,pp log(pi,t−1) + ζk,ωp ωi,t−1 +Xb,t−1 + µb + µi + µs × µt + ui,t,

where log(creditb,i,t) denotes the logarithm of the credit volume extended by bank b to firm i at time t. The

vector Xb,t−1 includes lagged bank-level controls: the logarithm of total assets, the equity-to-assets ratio,

the deposits-to-assets ratio, and the ratio of non-performing loans to total loans. µb, µi, and µs × µt denote

bank, firm, and industry-by-time fixed effects, respectively, following the setup of Degryse et al. (2019).

In Table 8, we summarize the estimated elasticities. All parameters are statistically significant at the

1% level. We do not estimate heterogeneity by risk category because both the risk classification and key

regressors originate from the same input (the credit rating) and subsample sizes are too small for reliable

estimation.

We estimate an elasticity of default risk with respect to leverage of 0.177. A 1% increase in debt raises

the probability of default by roughly 0.18%. This coefficient indicates a strong sensitivity of default risk

to leverage among U.S. firms. The positive sign is consistent with the benchmark mechanisms of Boyd

and De Nicolo (2005) and Gale and Hellwig (1985). Large U.S. firms appear to exhibit stronger risk-

shifting or moral-hazard incentives, potentially due to greater convexity in shareholder payoffs or managerial

compensation (Meckling and Jensen (1976)).

The credit-supply elasticity with respect to default risk is estimated at –0.002, implying that a 1% in-

crease in borrower risk reduces credit supply by 0.002%. Although smaller in magnitude than the German

estimate, it carries the same sign and supports the same benchmark models. Because probabilities of default

in the U.S. data are typically an order of magnitude lower than in the German sample, this weaker elasticity

is largely mechanical.

Finally, the credit-supply semi-elasticity with respect to the average risk weight is estimated at –0.421. A

10-percentage-point increase in risk weights reduces credit supply by approximately 4.2%. This magnitude

aligns closely with the estimates from the French administrative credit registry reported by Fraisse et al.
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(2020), who find effects between 2.3% and 4.5%. Hence, banks in the U.S. syndicated loan market exhibit

a comparable sensitivity to regulatory capital costs, albeit slightly lower than that of German banks.

While measurement quality and identification strength are somewhat weaker in the U.S. setting, the

estimated elasticities share the same signs, significance, and broad magnitudes as those derived from the

German data. This consistency supports two conclusions. First, corporate loan markets across countries,

despite institutional, scale, and compositional differences, can be described by a similar class of models.

Second, our sufficient-statistics approach is robust and adaptable, delivering meaningful insights even in

less comprehensive data environments.

D Appendix for Section 5

D.1 Calibrated Model
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Figure 7: Estimated credit distribution (German credit registry).
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Figure 8: Estimated marginal welfare externalities (German credit registry).

D.2 Robustness
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Figure 9: Robustness of Fed proposal incidence; left panel: no credit-market frictions; right panel: homogeneous
elasticity estimates (German credit registry).
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D.3 Welfare Decomposition
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Figure 10: Decomposition of welfare effects (in thousands); left panel: Fed proposal; right panel: constrained Pareto
optimum (German credit registry).

D.4 Additional Simulations Based on U.S. Estimates
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Figure 11: Positive and normative effects of Fed proposal based on U.S. estimates; left panel: loan- and bank-level
incidence; right panel: welfare decomposition (in millions) (U.S. syndicated loan market).

D.5 Elementary Risk-Weight Reforms

While the main text focuses on the Fed proposal as a specific policy application, our framework allows for

the analysis of arbitrary classes of regulatory reforms. In this section, we study the effects of elementary
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Figure 12: Bank-level effects of elementary reforms of risk weights (German credit registry).

reforms, as defined by equation (12), which raise risk weights at each point in the credit distribution. We

employ the same model calibration as in the main text.

Bank-level effects. Figure 12 depicts the effects on bank credit supply (solid line) and equity (dashed line),

as given by equations (13) and (14). Consider, for instance, a reform that raises risk weights for all loans

with a default probability greater than or equal to 5% (p∗ = 0.05). Recall that the reform is constructed to

have a mechanical effect of one dollar on the bank’s required equity. Absent any behavioral adjustments in

bank credit supply, equity would therefore increase by one dollar. Hence, the observed value of 0.46 implies

that 54¢ of this one-dollar increase in equity is offset by behavioral reductions in credit supply.

Since the capital constraint binds, the lending response on the asset side of the bank’s balance sheet is

a scaled version of the equity response (even if all risk weights were set to one), with the capital adequacy

ratio Ω serving as the scaling factor. The corresponding total reduction in bank credit supply in this case

amounts to approximately 4.28 dollars. Across the distribution, a clear pattern emerges: the magnitude

of these behavioral offsets declines with credit risk. This pattern is driven by heterogeneous credit-supply

responses, as shown in the following.
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Figure 13: Decomposition of bank-level effects (German credit registry).

Decomposition. In Figure 13, we decompose the total equity and credit-supply responses into their me-

chanical and behavioral components. The left panel displays the responses of bank equity. Recall that, in

general, behavioral effects arise from changes in risk-weight levels, with responses for p > p∗ (solid line),

and from changes in marginal risk weights, with responses at p = p∗ (dashed line). However, since we

detect no significant responses to the slope of the schedule, the behavioral adjustments are driven entirely

by risk-weight levels.

While the mechanical response is uniform across all levels of credit risk, the behavioral responses exhibit

pronounced nonlinearities throughout the risk distribution. As we discuss in more detail below, in addition

to the declining credit-supply elasticity, a further source of nonlinearity in the behavioral responses is the

curvature of the existing risk-weight schedule.

The right panel depicts the decomposition of credit-supply responses. Note that by construction, there is

no mechanical response. Moreover, all behavioral responses are due to risk-weight levels, as for the equity

response. However, there is no nonlinearity in behavioral responses inherited from the risk-weight scheme.
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Figure 14: Robustness of elementary reform incidence; left panel: bank-level effects for εp,kp = 0, ∀p; right panel:
bank-level effects for ω(p) = 1, ∀p (German credit registry).

Robustness. While the qualitative features of elementary reforms are intuitive, their quantitative magni-

tude depends on the estimated credit-risk distribution, the specified elasticities, and the regulatory policies

under which they are evaluated. Therefore, in Figure 14, we investigate robustness with respect to some of

these measures.

The left panel examines the role of market frictions for the risk-weight incidence. Specifically, we re-

estimate the bank-level responses while setting the elasticity of credit risk with respect to entrepreneurial

leverage to zero. This corresponds to a frictionless environment in which the bank does not internalize

endogenous risk choices when determining credit supply. In this case, credit risk becomes an entrepreneurial

characteristic rather than an equilibrium object. We find that the absence of risk feedback dampens the

behavioral responses of both equity and credit supply.

In the right panel, we display the regulatory incidence under a flat risk-weight schedule, similar to

the standardized approach (SA). While the credit-supply response remains largely unaffected, the effect

on equity becomes noticeably flatter. In particular, by attaching less weight to credit-supply changes at the

bottom of the risk distribution, positive marginal risk weights in the baseline specification (ω′ > 0) attenuate

the behavioral response of bank equity. The uniform risk-weight scheme shown in the right panel removes

this channel, leading to a substantially flatter equity response.

E Appendix for Section 6

E.1 Non-Smooth Risk-Weight Schedule

To be added
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E.2 Large Reforms

To be added

E.3 Multidimensional Heterogeneity

To be added

E.4 Dynamic Setting

To be added
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