Nonlinear Bank Capital Regulation

Maximilian Jager and Karl Schulz

Cleveland Fed Financial Stability Conference 2025

Discussion by Pab Jotikasthira SMU - Dallas

Summary

Presents a unifying framework for bank capital regulation, and uses the perturbation approach with a few calibrated sufficient statistics to perform "quantitative" positive and normative analyses (e.g., assessing different policy proposals).

Entrepreneurs:
$$\mathcal{V}^E_{\theta} = \max_{d_{\theta}} \, U^E_{\theta}(d_{\theta}; k_{\theta}, z_{\theta})$$
 s.t. $\mathcal{C}^E_{\theta}(d_{\theta}; k_{\theta}, z_{\theta}) \leq 0$, Households (depositors): $\mathcal{V}^H = \max_{c} \, U^H(c; x)$ s.t. $\mathcal{C}^H(c; x) \leq 0$.

Households (depositors):
$$\mathcal{V}^H = \max_c U^H(c;x)$$
 s.t. $\mathcal{C}^H(c;x) \leq 0$

Bank:

$$\mathcal{V}^B = \max_{x,p} \, U^B(x,p) \quad \text{s.t.} \quad \mathcal{P}(p_\theta,k_\theta,z_\theta;d_\theta,\theta) = 0, \ \forall \theta, \quad \mathcal{C}(x,p;c,d) \leq 0, \quad \mathcal{R}(x,p) \leq 0.$$

where
$$\mathcal{R}(k,\mathcal{E},p) \equiv \int_{\Theta} \omega(p_{ heta}) k_{ heta} \, d heta - \mathcal{E}/\Omega \le 0$$

Nonlinear capital regulation (nonlinear function of default risk) Capital adequacy ratio, e.g., 8%

Summary -cont'd

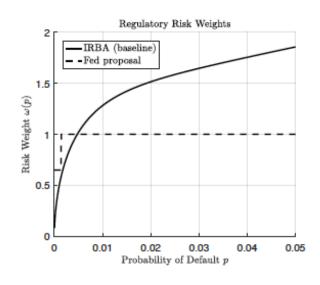
In equilibrium (all agents respond optimally to others), behavioral responses can be characterized by the following sufficient statistics:

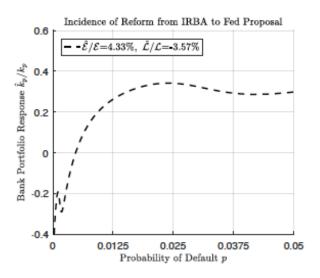
$$\zeta_{\theta}^{k,\omega} \equiv \left. \frac{\partial \log k_{\theta}}{\partial \omega(p_{\theta})} \right|_{\bar{p}}, \qquad \zeta_{\theta}^{k,\omega'} \equiv \left. \frac{\partial \log k_{\theta}}{\partial \omega'(p_{\theta})} \right|_{\bar{p}}, \qquad \zeta_{\theta}^{k,p} \equiv \left. \frac{\partial \log k_{\theta}}{\partial \log \bar{p}_{\theta}}, \qquad \varepsilon_{\theta}^{p,k} \equiv \left. \frac{d \log p_{\theta}}{d \log k_{\theta}}. \right.$$

Also needs a few marginal welfare externalities to be able to perform normative analyses:

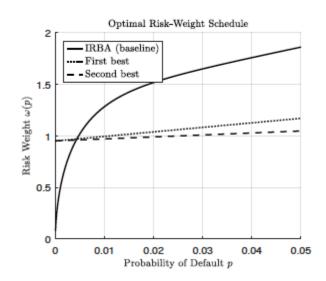
$$\chi^H \equiv -\frac{1}{\mu} \frac{d\mathcal{V}^H}{d\mathcal{E}} \qquad \xi^H_{\theta} \equiv -\frac{1}{\mu} \frac{d\mathcal{V}^H}{dk_{\theta}} \qquad \text{and} \qquad \xi^E_{\theta} \equiv -\frac{1}{\mu} \frac{d\mathcal{V}^E_{\theta}}{dk_{\theta}}, \ \forall \theta.$$

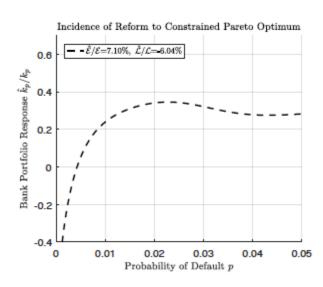
These statistics are then estimated using detailed German credit registry data (where banks provide probability of default estimate for each loan).


	Homogeneous (1)	Risk Category 1 (2)	Risk Category 2	Risk Category 3 (4)	Risk Category 4 (5)
$\log(\widehat{credit}_{i,t-1})$	0.019***	0.019***	0.011***	0.023***	-0.024***
	(0.002)	(0.004)	(0.002)	(0.002)	(0.004)
Firm FE	Y	Y	Y	Y	Y
Time FE	Y	Y	Y	Y	Y
Obs. R^2	280,171	7,334	30,392	213,491	26,528
	0.693	0.733	0.536	0.632	0.635


Table 4: Estimated credit-risk elasticities (German credit registry).

	Homogeneous (1)	Risk Category 1 (2)	Risk Category 2	Risk Category 3 (4)	Risk Category 4 (5)
$\log(p_{i,b,t-1})$	-0.063*** (0.017)	-0.006 (0.091)	0.045 (0.050)	-0.049** (0.018)	-0.129*** (0.027)
$\omega_{i,b,t-1}$	-0.759*** (0.124)	-1.289*** (0.370)	-1.430*** (0.280)	-0.732*** (0.121)	-0.271*** (0.052)
Bank FE	Y	Y	Y	Y	Y
Borrower x Time FE	Y	Y	Y	Y	Y
Obs.	1,616,772	82,962	213,888	909,427	62,196
R^2	0.677	0.605	0.646	0.692	0.719


Table 5: Estimated credit-supply elasticities (German credit registry).


We can then assess policy – e.g., the Fed's Basel Endgame

And, we can obtain "optimal" risk weights:

My Thoughts

Ambitious paper addressing important question!

- Circumventing complex theory and specific designs using sufficient statistics.
- Flexible and easy to calibrate, permitting positive and normative analyses around the observed equilibrium.

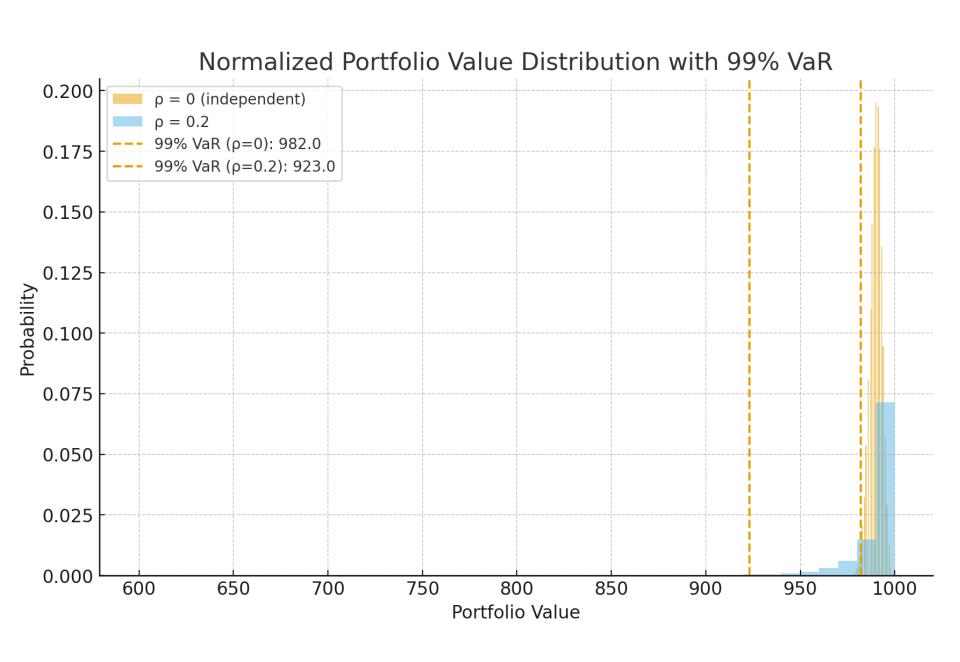
Generality comes at a cost ...

- Silent on exact economic mechanisms and decisions (price, in particular, is missing).
- Needs assumptions anyway when calibrate.
- Results are local and may not be generalized for complex, nonlinear models.

1. Economic Mechanisms

Silent.

- Signs of sufficient statistic estimates may be consistent with some mechanisms but not others.
- No system to look across all estimates to pin down the exact model.
- Not transparent on missing ingredients and simplifying assumptions.


Cross-loan spillovers and correlations?

- Only see substitution but it's not the same.
- Not clear why the MRS are not part of sufficient statistics and not estimated

$$\frac{\hat{k}_{\theta}}{k_{\theta}} = \zeta_{\theta}^{k,\omega} \hat{\omega}(p_{\theta}) + \zeta_{\theta}^{k,\omega'} \hat{\omega}'(p_{\theta}) + \varepsilon_{\theta}^{k,p} \frac{\hat{p}_{\theta}}{p_{\theta}} - \frac{\partial MRS_{\theta}}{\partial \mathcal{E}} \frac{\hat{\mathcal{E}}}{k_{\theta}} - \int_{\theta'} \left(\frac{\partial MRS_{\theta}}{\partial k_{\theta'}} \frac{\hat{k}_{\theta'}}{k_{\theta}} + \frac{\partial MRS_{\theta}}{\partial \bar{p}_{\theta'}} \frac{\hat{p}_{\theta'}}{k_{\theta}} \right) d\theta'.$$

1. Economic Mechanisms -cont'd

- Risk pricing and capital adequacy must be used together.
 - The authors wonder why the sensitivity of credit to risk is weak, and mention price adjustments as perhaps a reason.
 - Without frictions, price NOT quantity captures the expected default loss (plus risk premium, etc.)
 - Capital captures the "unexpected" loss (or, VaR EL). Default probability is actually not a sufficient statistic for unexpected losses.
 - Price is part of many canonical models, and is also observable.

2. Calibration Problems

- Adhoc assumptions are made in the calibration, diminishing generality.
- For example, profits = utility. Where is risk? Firms maximize oneperiod profits?
- Externalities on households are just the losses in bailout?

of the bank $\Pi^B(\cdot, v)$. Letting $\kappa_T = 25\%$ denote the deadweight cost of deposit insurance, the total fiscal externality is

$$-(1+\kappa_{\mathcal{T}})\mathcal{T}, \quad \text{where} \quad \mathcal{T} \equiv \max\{0, \mathcal{D} - \Pi^B(\cdot, v)\}.$$

The state-contingent going concern value of the bank consists of total loan repayments (loan rate r=4.68%; see Corbae and D'Erasmo (2021)), recovered loans in default (recovery rate $\phi=0.6030$; see Corbae and D'Erasmo (2021)), and the post-liquidation value of the loan portfolio (depreciation rate $\iota=0.1965$; see Corbae and D'Erasmo (2021)):

$$\Pi^{B}(\cdot, v) = \int_{\Theta} \left[v(1+r)(1-p_{\theta}) + (1-\phi)p_{\theta} - \iota \right] k_{\theta} d\theta.$$

Even the proper estimation of sensitivities is not coherent.

2. Calibration Problems -cont'd

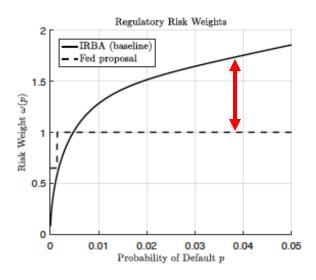
$$\log(credit_{i,b,t}) = \gamma(BankLevy_{b,t-1} \times LevyIntroduction_t) + p_{i,b,t-1} + \beta X_{b,t-1} + \mu_{i,t} + \mu_b + v_{i,t}$$

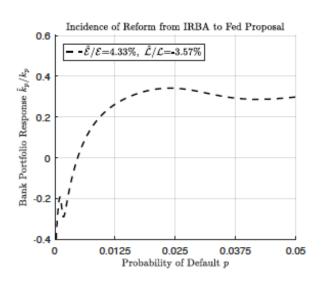
and

$$p_{i,t} = \zeta_p^{p,k} \log(\widehat{credit}_{i,t-1}) + \beta X_{i,t-1} + \mu_i + \mu_t + u_i.$$

Should have bankfirm fixed effects (b,i)

Why not the same equation?


Should include all controls from above especially past default probability


$$\log(credit_{b,i,t}) = \varepsilon_p^{k,p} \log(p_{i,b,t-1}) + \zeta_p^{k,\omega} \omega_{i,b,t-1} + X_{b,t-1} + \mu_b + \mu_{i,t} + u_{i,t}$$

Where is the slope effect (w')? How to proxy for it?

3. Local vs. Global Assessment

 Sensitivity estimates are local, but some of the assessments look at large changes.

	Homogeneous (1)	Risk Category 1	Risk Category 2	Risk Category 3 (4)	Risk Category 4 (5)
$\log(p_{i,b,t-1})$	-0.063***	-0.006	0.045	-0.049**	-0.129***
	(0.017)	(0.091)	(0.050)	(0.018)	(0.027)
$\omega_{i,b,t-1}$	-0.759***	-1.289***	-1.430***	-0.732***	-0.271***
	(0.124)	(0.370)	(0.280)	(0.121)	(0.052)

To Conclude ...

Ambitious paper addressing important question!

- Circumventing complex theory and specific designs using sufficient statistics from a general model.
- Interesting policy-relevant results.

My two cents ...

- Bring in price and cross-loan correlations. Discuss the sufficient statistic estimates, taken together – consistent with which models?
- Motivate assumptions used in the calibration, and perform sensitivity analysis. Can we really take the quantitative exercise seriously? Any standard error bound?
- Be careful extrapolating beyond the local estimates.