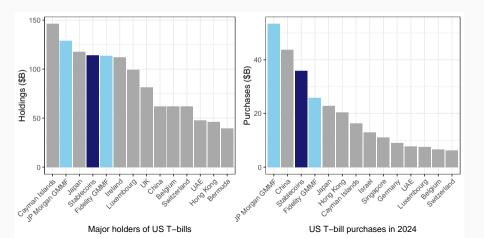
Stablecoins and safe asset prices^a

Rashad Ahmed¹ Iñaki Aldasoro²


Cleveland Fed Financial Stability Conference, November 20-21 2025

¹Andersen Institute ²BIS

^aThe views expressed here are those of the authors only and not necessarily those of the Andersen Institute for Finance and Economics, or the Bank for International Settlements.

Stablecoins are an important player in Treasury markets

Figure 1: Size and growth of stablecoin US T-bill holdings relative to other large holders of T-bills

This paper: effects on T-bill yields

- Local projections (LP) to study effect of SC flows on (3m) T-bill yields
- Two challenges from simple LP
 - Omitted variable bias
 - Simultaneity bias
 - Naive LP deliver implausibly large estimates: 25 bps reduction over 30 days in response to \$3.5B SC inflow (\sim 2 s.d.); similar to Fed rate cut!
- Control for Treasury yield curve (forward & recent), T-bill supply, crypto prices: 2.5-5 bps
- Instrumental variable (IV) approach using daily version of crypto shocks from (Aldasoro et al., 2025): 2-2.5 bps; comparable to small-scale QE
- ullet Decompose into issuer-specific contributions: USDT \sim 70%, USDC \sim 19%

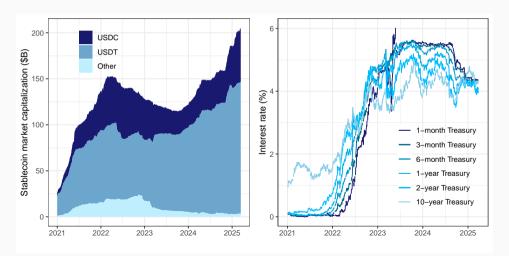
Literature

Demand for safe assets and pricing

 Demand for liquidity and safety suppresses Treasury yields (Krishnamurthy and Vissing-Jorgensen, 2012); incentivize issuance of risky short-term debt (Greenwood et al., 2015); MMFs can influence price of near-money assets (Doerr et al., 2023); foreign demand as well (Ahmed and Rebucci, 2024).

Stablecoins

 Stability (D'Avernas et al., 2023; Lyons and Viswanath-Natraj, 2023), adoption (Bertsch, 2023), runs (Ahmed et al., 2025; Gorton et al., 2022) and market structure (Ma et al., 2023); effects on CP market (Barthélémy et al., 2023; Kim, 2025a) and Treasuries (Kim, 2025b)


Data and empirical approach

- Daily data from January 2021 to March 2025
 - Six USD SCs (USDT, USDC, TUSD, BUSD, FDUSD, PYUSD) market cap
 - Aggregate & compute 5-day change: $Flow(5d)_t = MC_t MC_{t-5}$
 - Bitcoin, Ether prices
 - US Treasury yield curve (1m, 3m, 6m, 1y, 2y, 10y)
 - T-bill auction data
- Daily version of crypto shock series proposed in Aldasoro et al. (2025)
 - Unforecastable component of the Bloomberg Galaxy Crypto Index (BGCI)
 - $BCGI = f(BCGI_{-1}, VIX, Surprise, S\&P, 3mYields, oil, gold, NEER, TermSpread);$ simple supervised learning algorithm (elastic net)
 - Cumulative sum, use to instrument for SC flows

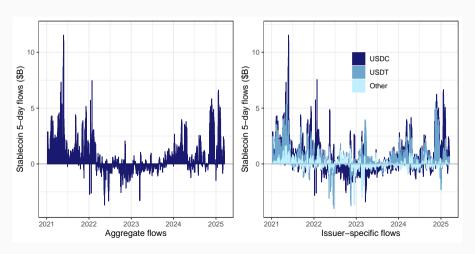
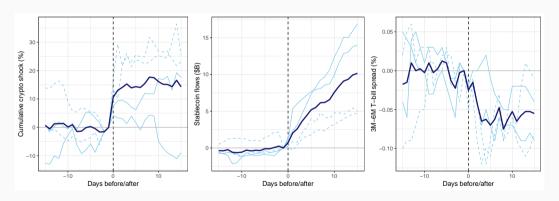

Stablecoin market cap and Treasury yields

Figure 2: Stablecoin market capitalization and US Treasury yields

Stablecoin flows

Figure 3: 5-day aggregate and issuer-specific stablecoin flows


Event study evidence

We study outcomes [stablecoin flows, T-bill yields] 15 days before/after four stablecoin flow-inducing events

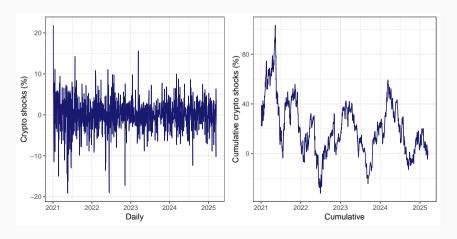
- May 9, 2022 Terra-Luna crash (outflow)
- Nov 8, 2022 FTX collapse (outflow)
- Nov 6, 2024 US election (inflow)
- Jan 17, 2025 Trump announces 'TRUMP' memecoin (inflow)

Event study evidence

Figure 4: Average outcomes around events (normalized to inflows)

LP with controls

$$y_{t+h}^{3M} - y_{t-1}^{3M} = \alpha_h + \beta_h Flow(5d)_t + \sum_{k \in K} \gamma_h [y_{t+h}^k - y_{t-1}^k] + \sum_{p \in P} B_h^p X(5d)_{p,t} + e_{t+h}, \quad (1)$$


where
$$\sum_{p} B_{h}^{p} X(5d)_{p,t} =$$

$$\sum_{k' \in P} B_h^{k'}[y_t^{k'} - y_{t-5}^{k'}] + B_h^0[\ln BTC_t - \ln BTC_{t-5}] + B_h^1[\ln ETH_t - \ln ETH_{t-5}],$$

with
$$h = \{0, ..., 30\}$$
, $k = \{6M, 1Y\}$, and $k' = \{1M, 3M, 6M, 1Y, 2Y, 10Y\}$.

Instrument SC flows with crypto shocks

Figure 5: Daily and cumulative idiosyncratic cryptocurrency price shocks

IV first stage

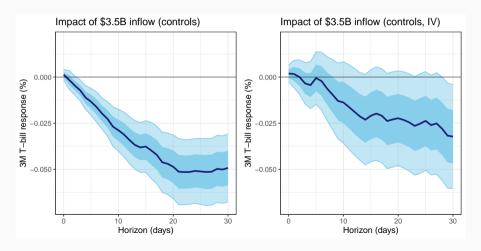
Table 1: First stage IV regressions of stablecoin flows on crypto shocks

	Dependent variable:						
	Aggregate $Flow(5d)_t$	USDC $Flow(5d)_t$	USDT $Flow(5d)_t$	Other $Flow(5d)_t$			
	(1)	(2)	(3)	(4)			
Intercept	0.479*** (0.063)	0.185*** (0.043)	0.322*** (0.050)	-0.028 (0.022)			
Cumulative crypto shocks	3.261*** (0.254)	0.611*** (0.176)	2.286*** (0.167)	0.365*** (0.087)			
Observations	1,091	1,091	1,091	1,091			
Adjusted R ²	0.207	0.016	0.215	0.025			
F Statistic	164.710***	11.962***	187.07***	17.337***			

Relevance: ✓

IV first stage

Table 1: First stage IV regressions of stablecoin flows on crypto shocks


	Dependent variable:						
	Aggregate $Flow(5d)_t$	USDC $Flow(5d)_t$	USDT $Flow(5d)_t$	Other $Flow(5d)_t$			
	(1)	(2)	(3)	(4)			
Intercept	0.479*** (0.063)	0.185*** (0.043)	0.322*** (0.050)	-0.028 (0.022)			
Cumulative crypto shocks	3.261*** (0.254)	0.611*** (0.176)	2.286*** (0.167)	0.365*** (0.087)			
Observations	1,091	1,091	1,091	1,091			
Adjusted R ²	0.207	0.016	0.215	0.025			
F Statistic	164.710***	11.962***	187.07***	17.337***			

Relevance: ✓

Exogeneity: crypto small relative to Tsy (\$3T vs \$35T); unforecastable component of crypto prices unlikely to causally affect Treasury prices other than through SC channel

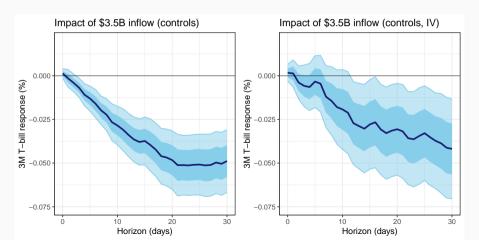

Main result: stablecoin flows have an impact on T-bill yields

Figure 6: IRF of \$3.5B stablecoin inflow on 3-month T-bill yields

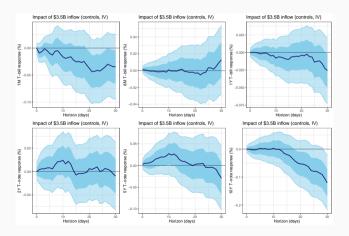

Robust to the controlling for T-bill supply

Figure 7: IRF of \$3.5B stablecoin inflow on 3-month T-bill yields, controlling for 3-month T-bill issuance

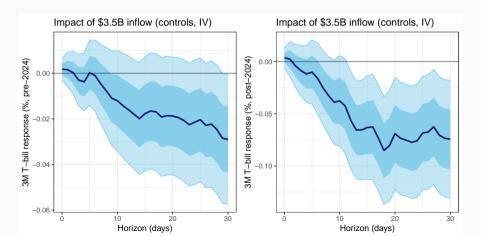

Not present for other tenors

Figure 8: Instrumented IRF of \$3.5B stablecoin inflow on 1-month, 6-month, 1-year, 2-year, 5-year, and 10-year Treasury yields

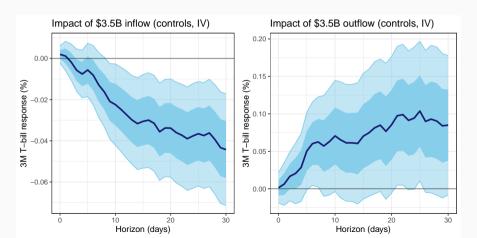

Effects are stronger post-2024

Figure 9: IRF of \$3.5B stablecoin inflow on 3-month T-bill yields, before (left) and after (right) January 2024

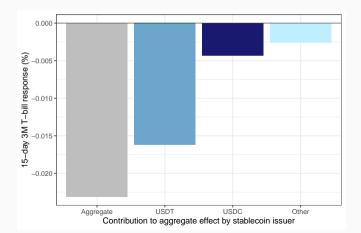

Effects are asymmetric: stronger for outflows

Figure 10: Instrumented IRF of \$3.5B stablecoin inflow (left) and outflow (right) on 3-month T-bill yields from asymmetric local projection regressions

Issuer-specific contributions based on IV estimates

Figure 11: 15-day impact of \$3.5B stablecoin inflow on 3-month T-bill yields decomposed into issuer-specific contributions

Discussion

- Magnitude: TBAC estimates \$2T market cap by 2028;
 - Our estimates point to lower yields by 6-8 bps
 - Growing SC market can potentially interfere with transmission of MP to market-based yields
- Mechanisms: SC can impact Treasury market pricing via
 - Direct demand (reduces available bill supply)
 - Indirect: relieve dealer balance sheets;
 - Signaling (institutional risk appetite)

Policy implications:

- Reserve transparency
- MP: weaker control of short-term rates ('Greenspan conundrum')
- Financial stability: fire sales (our estimates likely lower bound)
- Blurring the lines between crypto and traditional finance

Thank you for your attention!

References i

References

- Ahmed, R., Aldasoro, I., and Duley, C. (2025). Public information and stablecoin runs. *BIS Working Paper*, 91(1164).
- Ahmed, R. and Rebucci, A. (2024). Dollar reserves and U.S. yields: Identifying the price impact of official flows. *Journal of International Economics*, 152:103974.
- Aldasoro, I., Cornelli, G., Ferrari Minesso, M., Gambacorta, L., and Habib, M. M. (2025). Stablecoins, money market funds and monetary policy. *Economics Letters*, 247:112203.

References i

- Barthélémy, J., Gardin, P., and Nguyen, B. (2023). Stablecoins and the Financing of the Real Economy. Working papers 908, Banque de France.
- Bertsch, C. (2023). Stablecoins: Adoption and Fragility. Working Paper Series 423, Sveriges Riksbank (Central Bank of Sweden).
- D'Avernas, A., Maurin, V., and Vandeweyer, Q. (2023). Can Stablecoins Be Stable? Working paper, (available at SSRN).
- Doerr, S., Eren, E., and Malamud, S. (2023). Money market funds and the pricing of near-money assets. *BIS Working Paper*, (1096).
- Gorton, G. B., Klee, E. C., Ross, C. P., Ross, S. Y., and Vardoulakis, A. P. (2022). Leverage and stablecoin pegs. Technical report, National Bureau of Economic Research.

References iii

- Greenwood, R., Hanson, S. G., and Stein, J. C. (2015). A comparative-advantage approach to government debt maturity. *The Journal of Finance*, 70(4):1683–1722.
- Kim, S. (2025a). How the cryptocurrency market is connected to the financial market. *working paper*.
- Kim, S. (2025b). Macro-financial impact of stablecoin's demand for treasuries. working paper.
- Krishnamurthy, A. and Vissing-Jorgensen, A. (2012). The aggregate demand for treasury debt. *Journal of Political Economy*, 120(2):233–267.

References iv

Lyons, R. K. and Viswanath-Natraj, G. (2023). What keeps stablecoins stable? *Journal of International Money and Finance*, 131:102777.

Ma, Y., Yeng, Z., and Zhang, A. L. (2023). Stablecoin runs and the centralization of arbitrage. Working paper, (available at SSRN).

Summary statistics

 Table 2: Summary statistics

Variable	Т	Mean	St. Dev.	Min	Max
5-day stablecoin flow (\$B)	1,091	0.812	1.747	-4.019	11.539
5-day USDT flow (\$B)	1,091	0.555	1.202	-8.684	5.308
5-day USDC flow (\$B)	1,091	0.247	1.148	-6.533	7.716
1-month US yield (%)	1,046	3.105	2.343	0.000	6.020
3-month US yield (%)	1,046	3.214	2.302	0.010	5.630
6-month US yield (%)	1,046	3.276	2.218	0.020	5.610
1-year US yield (%)	1,046	3.224	2.061	0.040	5.490
2-year US yield (%)	1,046	3.115	1.800	0.090	5.190
10-year US yield (%)	1,046	3.212	1.176	1.040	4.980
Bitcoin price (\$)	1,091	45,230.03	21,628.71	15,787.28	106,146.30
Ether price (\$)	1,091	2,429.25	860.46	1,038.19	4,812.08