# DISCUSSION OF "CREDIT SURFACES AND ECONOMIC UNCERTAINTY"

Leland E. Farmer<sup>1</sup>

<sup>1</sup>University of Virginia

Financial Stability Conference Federal Reserve Bank of Cleveland November 20, 2025

# **OVERVIEW**

 Big picture. Paper proposes a credit surface—spreads across leverage—to summarize credit conditions and uncertainty instead of a single average spread.

#### Main contributions.

- Concept: define and characterize credit surfaces in theory.
- Uncertainty: show how mean-preserving spreads in collateral values affect the level and slope of the surface.
- Evidence: estimate credit surfaces from corporate bond data across ratings, leverage, and VIX regimes.

# My comments.

- 1. Interpretation of the credit surface as an *uncertainty* object.
- 2. Measurement and testing of the *rise* and *steepening* of the surface.
- 3. CCC bonds and the gap between LTV and empirical leverage.

# WHAT THE PAPER DOES

 Definition. The credit surface is the schedule of credit spreads across contract terms; here, spreads as a function of leverage (LTV, PTV, empirical leverage).

# Theory.

- Collateralized, non-recourse debt with payoff  $\min\{j, X(\omega)\}$ .
- Bond prices and spreads reflect the distribution of collateral values X.
- Under mild conditions, mean-preserving spreads in X raise and steepen the LTV credit surface.

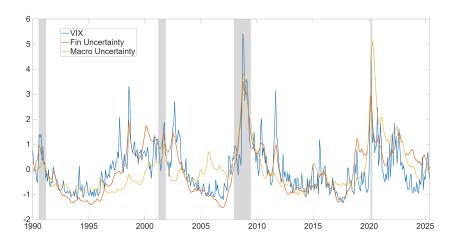
# Empirics.

- US corporate bonds (ICE indices), 7–10 year maturity, non-financial firms.
- OAS as spread; empirical leverage based on book debt and market equity.
- Nonparametric credit surfaces by rating, leverage, and VIX regime.

# KEY TAKEAWAYS

- Conceptual. Moving from a single spread to a credit surface reveals how credit conditions vary across borrowers and leverage.
- **Theoretical.** For standard distributions of *X*, more dispersion implies:
  - higher spreads at all leverage levels;
  - a steeper LTV credit surface.
- Empirical. In the data, high-VIX periods feature:
  - higher spreads across the board;
  - more steepness, especially for high-leverage, lower-rated firms.
- Interpretation. Uncertainty shocks tighten credit disproportionately for high-leverage borrowers, with potential macro and distributional implications.

# COMMENT 1: WHAT IS AN "UNCERTAINTY SHOCK"?


- In the model. An uncertainty shock is a mean-preserving spread in the distribution of collateral value *X*.
- In the empirics. High-VIX months (VIX above its 90th percentile) are treated as uncertainty shocks.
  - But VIX also reflects risk premia, hedging demand, and liquidity.
- Tension. The key interpretation is:

"Steepening of the credit surface ⇔ an uncertainty shock."

Yet high VIX may mix changes in expected volatility and in pricing of risk.

- Suggestion. Sharpen the mapping:
  - incorporate macro and financial uncertainty measures (e.g. Jurado, Ludvigson, Ng 2015);
  - discuss when high VIX corresponds to a mean-preserving spread rather than a change in risk premia.

# COMMENT 1: UNCERTAINTY MEASURES (FIGURE)



# COMMENT 1: UNCERTAINTY MEASURES

# Correlation patterns.

- VIX and financial uncertainty have a correlation of 0.78.
- VIX and macro uncertainty have a correlation of 0.58.

#### Joint tail behavior.

 However, VIX and financial uncertainty are only simultaneously above their 90th percentiles 46% of the time, and for VIX and macro uncertainty it is 38% of the time.

# Interpretation.

- High-VIX episodes likely capture both higher ex-ante uncertainty and shifts in risk premia/funding.
- They need not correspond to a pure mean-preserving spread in *X*.

# Suggestion.

 Show credit surfaces in periods of high macro uncertainty and high financial uncertainty, not just high VIX, to reinforce the uncertainty interpretation.

# COMMENT 1: LOW-UNCERTAINTY PERIODS

 Current focus. The paper emphasizes high-VIX months as uncertainty shocks.

#### Information in calm times.

- Do credit surfaces flatten in low-VIX months?
- Or do they remain steep, indicating persistent structural differences across leverage?

# Suggestion.

- Show surfaces by VIX bins (low / medium / high).
- This clarifies whether uncertainty affects the surface continuously or mainly in crises.

#### Final Question.

 How do I think about high uncertainty periods separately from higher tail risk?

# COMMENT 2: IDENTIFICATION OF STEEPENING

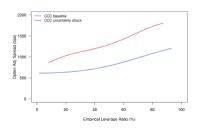
- Visual message. Figures suggest:
  - upward shift of spreads in high-VIX months;
  - steeper spread-leverage relation, especially for BB and above.
- Quantification. A simple regression can summarize steepening:

$$\mathsf{OAS}_{it} = \alpha + \beta_1 \mathsf{Lev}_{it} + \beta_2 \mathsf{HighVIX}_t + \beta_3 \mathsf{Lev}_{it} \times \mathsf{HighVIX}_t + \varepsilon_{it}.$$

- $\beta_2$ : average level shift in high-VIX months.
- $\beta_3$ : change in slope (steepening) when VIX is high.
- Implementation.
  - Estimate by rating bucket to mirror the nonparametric plots.
  - Report simple slope differences between low and high leverage quantiles.

# COMMENT 2: HYPOTHESIS TESTING

 Current presentation. Surfaces are reported without error bands or formal tests.


#### Why tests matter.

- Help assess whether the upward shift and steepening are statistically meaningful.
- Especially important given nonparametric estimation and sample variation.

# Suggestions.

- In the regression, test  $\beta_2 > 0$  (higher level) and  $\beta_3 > 0$  (steeper slope).
- For the nonparametric surfaces, use bootstrap bands or permutation tests for differences.
- Discuss bandwidth choice (cross-validation?) and robustness of qualitative conclusions.

# COMMENT 3: CCC CREDIT SURFACES



- Fact. For CCC bonds, the credit surface in high-VIX months is:
  - very high in levels, but
  - relatively flat or concave at the top of the leverage distribution.
- Contrast. For higher ratings, surfaces are:
  - increasing and roughly convex in leverage;
  - clearly steeper in high-VIX months.
- Question. Why do CCC bonds deviate from the benchmark of increasing, convex spreads in LTV?

# COMMENT 3: COVENANTS AND RENEGOTIATION

#### Model benchmark.

- Payoff is  $min\{j, X(\omega)\}$ ; no covenants, no renegotiation.
- Higher LTV ⇒ smoothly higher expected losses ⇒ convex surface.

#### CCC environment.

- Tight covenants and strong creditor control.
- Frequent renegotiation, exchange offers, restructurings.
- Going-concern value puts an effective cap on recoveries.

# Implication.

- At very high leverage, extra promised j adds little to expected loss.
- Spreads rise less with leverage ⇒ concave or flattened credit surface.

# COMMENT 3: EMPIRICAL LEVERAGE VS LTV

- Theory. LTV uses market values of both debt and collateral.
- Data. Empirical leverage (EL) is typically

$$EL = rac{D_{ ext{book}}}{D_{ ext{book}} + E_{ ext{mkt}}}.$$

- In high-VIX / CCC states.
  - Equity values collapse; book debt adjusts slowly.
  - Many distinct true LTV values cluster at EL near 1.
- Implication.
  - Compression at the top of EL can flatten or bend the estimated surface, even if the underlying LTV surface is convex and steepening.

# COMMENT 3: CONCRETE SUGGESTIONS FOR CCC

# Clarify interpretation.

- Explain why CCC bonds fall outside the pure  $\min\{j, X\}$  benchmark.
- Present concavity as informative about covenants and restructuring, not just a deviation.

#### Simple extensions.

- Introduce a toy recovery cap or renegotiation option at high leverage and show it generates concave surfaces.
- Use a simulation where a convex LTV surface appears concave when measured using empirical leverage under stressed equity.

#### Empirical robustness.

- Split high-yield/CCC bonds by covenant tightness (using FISD or similar);
   check if concavity is stronger where covenants are stricter.
- Re-estimate CCC surfaces using lagged leverage and alternative measures (book leverage, approximate market debt for a subsample) to gauge the role of measurement.

# WHAT I LEARNED / TAKE-AWAYS

 Conceptual. Credit surfaces provide a compact and informative way to summarize credit conditions and uncertainty across borrowers.

# Comment 1 – Uncertainty.

- Clarify the link between the model's mean-preserving uncertainty shocks and empirical proxies (VIX, macro and financial uncertainty).
- Show surfaces across different uncertainty measures and in low- as well as high-uncertainty periods.

#### Comment 2 – Steepening.

- Quantify and test the rise and steepening of the credit surface using simple slope/interaction regressions.
- Add error bands or bootstrap tests to support the visual patterns.

# WHAT I LEARNED / TAKE-AWAYS

- Comment 3 CCC and leverage.
  - Treat CCC concavity as informative about covenants, renegotiation, and payoff structure.
  - Explore robustness to leverage measurement (lagged leverage, alternative metrics, market debt for a subsample).

 Bottom line. The paper makes a strong case for credit surfaces as a lens on uncertainty and financial conditions; these additions would further strengthen the empirical and interpretive contributions.

Thank You!