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Frequency and size of California wildfires, 2000-2021
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(b) Annual wildfire counts




Potential distributional challenges

Statistical forecasting of wildfire risk
occurrence.

Methods to diversify and securitize
wildfire risks (micro-correlations, latent
dependencies),

Reserve strategies under Value-at-Risk
management regimes,

Design of risk management strategies
due to spatial dependencies that affect
many people, properties, and insurance
lines simultaneously
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Wildfire patterns in the West are driven by dynamic and nonlinear
meteorological features
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- Wildfire probabilities increase
non-linearly with daily maximum
temperature.

- A 19%- 22% probability increase for a

one-degree centigrade increase in the
Sierra Nevada
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- Maximum temperature is highly
correlated with other meteorological, 86~
vegetative, and topographic features.
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How do these dynamics threaten the provision of wildfire insurance

in California?

- Underwriting performance 2012 -
2021:
- Direct incurred loss ratio:

- 59.7%in the U.S.
- 73.9% in California.

- Direct underwriting profit:

- 3.6%inthe US..
- —13.1% in California.

- Annual pattern of losses has led to an
intertemporal smoothing problem for
casualty insurers.
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New forecasting strategies: Spatiotemporal CNN - Adding Spatial
and temporal dependence
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Figure: Visualizing the potential dependence structure in a spatiotemporal dataset



Why Spatiotemporal Convolutional Neural Nets

They can automatically extract important spatial and temporal features from data
without relying on hand-crafted features.

They can learn the motion patterns in time series data and fully use those patterns to
account for how past values influence future predictions.

They allow for the complex functions that are needed to accurately model the joint
spatial correlations and temporal dynamics of wildfire prediction.

They can easily handle the cell adjacency correlation structure of wildfire and
temporal aggregation of some wildfire features by accounting for the cumulative
effects of phenomena.

Handling correlations in both space and time helps to prevent over-fitting even with a
high-dimensional nonlinear parameter space.



Out-of-sample one-year ahead model
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CNN one year ahead out-of-sample wildfire prediction to 2021 (using
2000 - 2020 panel)
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