Digital Payments and Monetary Policy Transmission

Pauline Liang¹ Matheus Sampaio² Sergey Sarkisyan³

¹Stanford GSB ²Kellogg, Northwestern University ³Fisher, Ohio State

November 21, 2024

Cleveland Fed Financial Stability Conference

Motivation

- Banks' market power is an impediment to monetary transmission
- Central bank \uparrow rates by x b.p. \neq banks \uparrow deposit rates by x b.p.
- Reasons: services offered, deposit stickiness, switching costs
- Digitalization makes switching between banks easier:

Question: How do cashless payments change monetary transmission?

Motivation

- Banks' market power is an impediment to monetary transmission
- Central bank \uparrow rates by x b.p. \neq banks \uparrow deposit rates by x b.p.
- Reasons: services offered, deposit stickiness, switching costs
- Digitalization makes switching between banks easier:

Question: How do cashless payments change monetary transmission?

Overview of results

- Empirically, cashless payments (Pix) reduce banks' market power
- Banks' deposit rates respond more to policy rate changes
- Banks' loans flow out more after the policy rate increases
- Dynamic banking model to study counterfactuals and channels
- Monetary policy transmits *more* after Pix
- Mainly driven by the deposit channel

Overview of results

- Empirically, cashless payments (Pix) reduce banks' market power
- Banks' deposit rates respond more to policy rate changes
- Banks' loans flow out more after the policy rate increases
- Dynamic banking model to study counterfactuals and channels
- Monetary policy transmits more after Pix
- Mainly driven by the deposit channel

Outline

2 Empirical results

Outline

Empirical results

Deposit market power and deposit channel

- Banks have market power over deposits
- Services offered, safety, etc
- When policy rate increases, banks increase deposit rates...
 - ... by less than the policy rate change
- Deposit spreads increase

• For banks with higher market power deposit spreads increase more

Deposit market power and deposit channel

- Banks have market power over deposits
- Services offered, safety, etc
- When policy rate increases, banks increase deposit rates...
 - ... by less than the policy rate change
- Deposit spreads increase
- For banks with higher market power deposit spreads increase more

Setting: Pix in Brazil

- Launched by Central Bank of Brazil in November 2020
- Pix became a preferred means of payments
- Covers > 90% of banks and 86% of adult population
- Free and instant transfers and cashless payments, 24/7

"Pix promotes lower financial costs, digitization of the retail payments market, ... **higher** market competition and efficiency ..." – Central Bank of Brazil

Pix vs other payments

Setting: Pix in Brazil

- Launched by Central Bank of Brazil in November 2020
- Pix became a preferred means of payments
- Covers > 90% of banks and 86% of adult population
- Free and instant transfers and cashless payments, 24/7

"Pix promotes lower financial costs, digitization of the retail payments market, ... higher market competition and efficiency ..." – Central Bank of Brazil

Pix and bank competition

- Pix facilitates transfers and payments among banks
 - Lower switching costs, payment costs
- Less usage of cash \Rightarrow less dependence on physical branches
 - Allows banks with a limited branch network to better compete with larger banks
- Potential to facilitate monetary policy transmission

by promoting competition among banks

Outline

Data

- Municipality-level monthly data on Pix transactions (Central Bank of Brazil)
- Number of transactions, value of transactions
- Branch-level monthly data on banks' balance sheet (ESTBAN)
- Deposits, loans, and assets
- Bank-level data on interest rates and equity (Central Bank of Brazil and Bloomberg)
- Deposit rates (interest expense), loan rates (interest income), equity returns
- Municipality-level demographic and economic data (IBGE)
- HHI, Census, capital investments, savings, GDP
- Macro variables (IPEA and Central Bank of Brazil)

Deposit spread betas are lower in areas with more Pix usage

 $\Delta DepSpread_{i,t} = \beta_i \Delta Selic_t + \varepsilon_{i,t}, \qquad \Delta \beta_i = \beta_{i,\text{after } 2020\text{m}11} - \beta_{i,\text{before } 2020\text{m}11}$

ow heta

Within-bank evidence

• Challenges: banks are different and local unobservable demand

• Solution: run within-bank regressions

$$Y_{imt} = \beta MS_t \cdot PixPerCap_{mt} + \gamma X_{imt} + \alpha_{im} + \theta_{it} + \varepsilon_{imt}$$

where *PixPerCap_{mt}* is value of Pix transactions per capita

Lower spreads, less deposits and loans

$$Y_{imt} = \beta MS_t \cdot PixPerCap_{mt} + \gamma X_{imt} + \alpha_{im} + \theta_{it} + \varepsilon_{imt}$$

	Dependent variable:					
	Deposit spreads		Lending flows		Deposit flows	
	(1) (2		(3) (4)		(5)	(6)
Pix Per Capita $ imes$ MS	-0.539***	-0.532***	-1.604***	-1.566***	-0.468**	-0.456**
	(0.038)	(0.037)	(0.122)	(0.120)	(0.228)	(0.228)
Branch FE	Yes	No	Yes	No	Yes	No
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank-Time FE	No	No	No	No	Yes	Yes
Obs.	126,945	126,970	388,323	388,345	365,090	365,113
R^2	0.129	0.127	0.063	0.012	0.066	0.043

Standard errors are clustered at the municipality level Significance: 10%*, 5%**, 1%***

Channels

• Why does Pix increase deposit rates and lead to more outflows?

- Less reliance on bank branches

- More competition - potential effects on fees

- Ease of transfers - more bank accounts (not today)

Channels

• Why does Pix increase deposit rates and lead to more outflows?

- Less reliance on bank branches

- More competition - potential effects on fees

- Ease of transfers - more bank accounts (not today)

Number of branches declines in high-Pix areas

Payment-related fees decline more in high-Pix areas

Non-payment-related fees increase in high-Pix areas

Outline

Institutional setting

2 Empirical results

Infinite-horizon bank industry equilibrium model

- Households: discrete choice on savings
 - Linear utility, Pix affects households' sensitivity to deposit rate
- Firms: discrete choice on financing
- Banks: imperfect competition as in Wang, Whited, Wu and Xiao (2022)
 - Financial frictions such as market power, capital and reserve requirements
- Government: set monetary policy

Households

• Continuum with wealth W, each household endowed with R\$ 1

• Each household *i* makes saving decision between J+2 options:

• Banks offer Pix after Oct 2020

Households' deposit demand

• Households choose the best investment to maximize their utility:

$$\max_{j \in \mathscr{A}^d} u_{i,j} = \alpha^d r_j^d + \beta^d \rho_j^d r_j^d + \gamma^d x_j^d + \mu_j^d + \varepsilon_{i,j}^d$$

- α^d sensitivity of households to rate $r_{j,m}^d$
- β^d additional sensitivity to interest rates with Pix
- μ_i^d product invariant quality difference (bank FEs)
- $\varepsilon_{i,i}^d$ relation-specific shock, with type II extreme value distribution
- IV with fixed costs/assets and loss provisions
- Aggregate deposit demand

$$D_j\left(r_j^d|f\right) = \underbrace{s_j^d\left(r_j^d|f\right)}_{W}$$

Share of bank *j* deposits

Banks

• Imperfect competition, J banks

• They choose deposit and loan spreads, join Pix in Nov 2020

• Banks' balance sheet

Assets	Liabilities		
Loans	Deposits		
Reserves	Wholesale funds		
Gov't Securities	Equity		

Banks

• Imperfect competition, J banks

• They choose deposit and loan spreads, join Pix in Nov 2020

• Banks' balance sheet

	Assets	Liabilities	
Charge-offs, service costs \Leftarrow	Loans	Deposits	\Rightarrow Service costs
	Reserves	Wholesale funds	\Rightarrow Quadratic costs
$Earn \ f_t \Leftarrow$	Gov't Securities	Equity	\Rightarrow Fixed ops. costs

Bank profits and maximization problem

• Profits:

$$\begin{split} \Pi_t = & I_t - (L_t + B_t)(\eta \, \delta_t + \phi^\ell) + G_t f_t \quad \text{Profits from loans and securities} \\ & - (r_t^d + \phi^d) D_t \quad \text{Expenses from deposits} \\ & - \Phi^N(N_t) N_t \quad \text{Expenses from wholesale borrowing} \\ & - \psi \bar{E} \quad \text{Net fixed operating costs} \end{split}$$

- Banks make decisions on
 - Deposit rate r_t^I and loan rate r_t^d
 - Gov't securities G_t , wholesale funds N_t , reserves R_t
 - Cash dividend $C_{t+1} \ge 0$
- Maximize expected discounted cash dividends to shareholders

Estimation procedure

- Step 1: Calibrate parameters
 - Based on banking data and regulations in Brazil
 - Set number of banks, reserve ratio, capital ratio, tax rate, etc.
- Step 2: Estimate deposit and loan demands via BLP
 - Supply shifters: fixed operation costs and loss provisions
 - Key non-rate characteristic: number of branches
- Step 3: Estimate bank parameters via SMD
 - 8 moments directly estimate parameters, 2 free moments for model fits

Baseline deposit rates and deposits

Baseline loan rates and lending

Structural model

Counterfactual: impact of Pix on deposit rates and lending

• Banks offer more competitive rates and their lending declines more

Counterfactual: Pix enhances deposit channel effect on deposits and loans

Takeaways

- Empirically, digital payments reduce banks' market power
- Banks' deposit rates respond more to policy rate changes
- Banks' deposits flow out more after the policy rate increases
- Banks' lending flows out more after the policy rate increases
- Dynamic banking model to study counterfactuals and channels
- Higher transmission of monetary policy after Pix
- Mainly driven by the deposit channel

Appendix

Circular city model and households' banking decision

- *n* banks located equidistantly in a circular city
- HH utility based on deposit rate r, auxiliary services u, and travel cost $t_d \times$ distance
 - Bank_i only: $v = r_i + u_i t_d x_-$
 - Bank_{i-1} only: $v = r_{i-1} + u_{i-1} t_d(\frac{1}{n} x_-)$
 - Deposit α_{-} at $Bank_i$ and rest at $Bank_{i-1}$: $v = \alpha_{-}r_i + (1 \alpha_{-})r_{i-1} + \max(u_i, u_{i-1}) t_d \frac{1}{n}$
- Mix region exists if benefits from splitting deposits compensate for the travel costs

Deposit demand from households

- Sum up deposit demand from left of Bank; and right of Bank;
- If mix region exists on both side, deposit share is

$$DepShare_{i} = \overbrace{x_{1-}^{*} + \alpha_{-}(x_{2-}^{*} - x_{1-}^{*})}^{\text{Left of bank } i} + \overbrace{x_{1+}^{*} + \alpha_{+}(x_{2+}^{*} - x_{1+}^{*})}^{\text{Right of bank } i}$$

• Share of households who will choose bank *i* and a neighboring bank is

$$MixDepositors_{i} = (x_{2-}^{*} - x_{1-}^{*}) + (x_{2+}^{*} - x_{1+}^{*})$$

Comparative statics for the simple model

- Reduction in transportation costs: t_d decreases
 - Deposit demand \uparrow for banks with higher benefits of deposit rate and banking services
 - Households are more likely to have two bank accounts
- Equal payment service utility: $u_i = u_{i-1}$
 - More benefits to the bank that originally had inferior payment convenience
- Decrease in concentration: *n* increases
 - Number of banks $\uparrow \Longrightarrow$ Less costly to travel to nearby banks
 - Choosing both banks is more likely
 - Deposit demand \downarrow for bank *i*

Deposit flow betas

Deposit spread betas: quantity of Pix usage

Deposit spread betas: users of Pix

Monetary shocks

	Dependent variable:					
	Deposit spreads		Lending flows		Deposit flows	
	(1)	(2)	(3)	(4)	(5)	(6)
	О Г 4***	0 00***	1 CO***	1 ((***	0 47**	0.00***
Pix Per Capita \times MS	-0.54	-0.30	-1.60	-1.00	-0.47	-0.98
	(0.04)	(0.04)	(0.12)	(0.14)	(0.23)	(0.31)
Method	OLS	IV	OLS	IV	OLS	IV
Branch FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank-Time FE	No	No	No	No	Yes	Yes
Obs.	126,945	126,945	388,323	388,323	365,090	365,090
R^2	0.129		0.063		0.066	
Wald <i>F</i> -stat		5.1		106.9		5,243.8

Standard errors are clustered at the municipality level Significance: 10%*, 5%**, 1%***

Z-scored Pix values

	Dependent variable:					
	Deposit spreads		Lending flows		Deposit flows	
	(1)	(2)	(3)	(4)	(5)	(6)
Pix Per Capita (Z-score) $ imes$ MS	-0.17***	-0.17***	-0.50***	-0.49***	-0.15**	-0.14**
	(0.01)	(0.01)	(0.04)	(0.04)	(0.07)	(0.07)
Branch FE	Yes	No	Yes	No	Yes	No
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank-Time FE	No	No	No	No	Yes	Yes
Obs.	126,945	126,970	388,323	388,345	365,090	365,113
<i>R</i> ²	0.129	0.127	0.063	0.012	0.066	0.043

Standard errors are clustered at the municipality level Significance: 10%*, 5%**, 1%***

Persistence and speed of the transmission

BLP Estimation: salaries

Parameter	Symbol	Estimate	Standard error		
	4		()		
Sensitivity to deposit rates	α^{a}	0.037	(0.022)		
Sensitivity to deposit rate with Pix	β^d	0.002***	(0.001)		
Observations		7,679			
R ²		0.924	Ļ		
Standard errors are clustered at the bank level					

Significance: 10%*, 5%**, 1%***

BLP Estimation: dummy for Pix

Parameter	Symbol	Estimate	Standard error		
	,		<i>.</i>		
Sensitivity to deposit rates	α^{a}	0.027	(0.019)		
Sensitivity to deposit rate with Pix	β^d	0.127***	(0.048)		
Observations		6,584	ŀ		
R ²	0.934	Ļ			
Standard errors are clustered at the bank level					

Significance: 10%*, 5%**, 1%***

BLP Estimation: state-level

Parameter	Symbol	Estimate	Standard error		
	,				
Sensitivity to deposit rates	α^{a}	0.4456***	(0.0563)		
Sensitivity to deposit rate with Pix	β^d	0.0961***	(0.0265)		
Observations		22,356	j		
R ²	0.936				
Standard errors are clustered at the bank level					

Significance: 10%*, 5%**, 1%***