

Intermediation Networks and Derivative Market Liquidity: Evidence from CDS Markets Mark Paddrik[†] Stathis Tompaidis[‡]

2023 Financial Stability Conference Financial Stability in Times of Macroeconomic Uncertainty November 17, 2023, Federal Reserve Bank of Cleveland [†]Office of Financial Research [‡]McCombs School of Business, University of Texas at Austin

Views expressed in this presentation are those of the speaker(s) and not necessarily of the Office of Financial Research.

Motivation

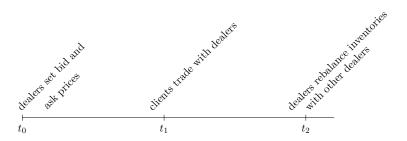
- Study the relationship between intermediation networks and market liquidity in over-the-counter markets
- Over-the-counter (OTC) derivative markets rely on dealers to intermediate trade and provide market liquidity through both holding and managing inventories.
- To maintain these services, dealers form intermediation trade networks with clients and other dealers to offset risk.
- These networks, which are influenced by regulations, affect market liquidity; i.e., the ease of trade.
- Trades and prices reflect the best option for both dealers and clients, and also the existence of indirect options; i.e., the options of a dealer, as well as the options of a dealer's counterparties, to rebalance positions

This Paper

- Studies both the dealer-to-client network and the inter-dealer network
- Considers both networks at the individual dealer level and the aggregate, market, level
- Provides a theoretical model that connects intermediation networks and market liquidity based on cooperatively splitting surplus from trade between dealers
- Uses supervisory data on the U.S single name CDS market to measure the intermediation network in terms of network completeness
- Determines the relationship between measures of the intermediation network and measures of liquidity:
 - Trade Volume
 - Dealer Inventories
 - Trade Costs

Our Results

- A market's **volume** *increases* as an intermediation network is more complete, both in the case of the **dealer-to-client** and **interdealer** subnetworks.
- **2** A **dealer's inventory** *increases* with higher dealer-level intermediation network completeness, while at the market-level higher network completeness *reduces* a **dealer's inventory**.
- 3 At the dealer-level, trading costs *decline* as network completeness *increases*. Our results sharpen prior predictions by finding that dealer trade costs are primarily linked to interdealer relationships.
- At the market-level, *higher* level of completeness are linked to *lower* trading costs. This reduction is associated with the completeness of the interdealer network.
 - accounting for the interdealer network *reduces* the importance of the networks of individual dealers.


Literature

- Dealer inventory management and risk (theory)
 - Ho and Stoll (1983); Viswanathan and Wang (2004); Duffie et al. (2005)
- Intermediation networks and market liquidity (theory)
 - Gofman (2011); Babus and Kondor (2018); Neklyudov (2019); Yang and Zeng (2019); Wang (2018)
- Dealer-level intermediation networks (empirical)
 - Di Maggio et al. (2017); Hollifield et al. (2017); Li and Schürhoff (2019)
- CDS markets
 - Oehmke and Zawadowski (2015); Shachar (2012); Siriwardane (2019); Du et al. (2019); Collin-Dufresne et al. (2020); D'Errico et al. (2018); Eisfeldt et al. (2023)

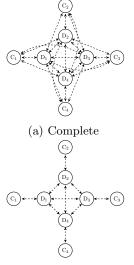
MODEL

Model setup

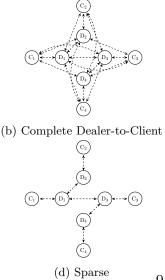
- Key assumptions:
 - each dealer is a monopolist to her clients
 - **costs** are due to:
 - A dealers holding costs that increase with inventory
 - B the length of the intermediation chain
 - the ability to reduce A and B generates a surplus
 - dealers form coalitions \rightarrow to generate a surplus they split

Model: t_2 dealer intermediation and surplus sharing

- Dealers trade with one another to offset inventory costs from trading with clients and share the **trade surplus**.
- Dealers divide the trade surplus based on **Shapley values** (Shapley (1951)).
 - Shapley values divide surplus based on each dealer's marginal contribution to the generation of surplus
 - a concept from cooperative game theory to distribute gains across actors working in coalition
 - cooperation stems from the repeated interaction of dealers
 - Shapley values, and share of trade surplus, for a dealer increase as her connections to other dealers increase, because the dealer participates in more coalitions


- Each dealer is connected to a subset of \mathcal{C} clients that can only transact with her.
- Downward sloping demand curve: given the ask price (bid price), the probability that clients are buyers (sellers) declines as prices increase (decrease)

Proposition


- A decrease in a dealer's marginal cost to rebalance her inventory ⇒ lower ask and higher bid prices
- An increase in a dealer's marginal cost to rebalance her inventory
 ⇒ higher ask and lower bid prices
- By acquiring an additional connection, a dealer captures a bigger share of trade surplus when trading with other dealers, thereby reducing her marginal cost of taking on and rebalancing a new position.

Intermediation Network Completeness

Shapley values and network completeness: dealer vs. market

(c) Complete Interdealer

9/25

Measuring Completeness

• The number of relationships for participant i are given by

$$k_i = \sum_{i \neq j} a_{ij}, \quad i, j \in \mathcal{M}$$

where a_{ij} is equal to 1 if parties *i* and *j* are connected and the sum is over all market participants in a particular CDS market, \mathcal{M} .

Dealer Completeness:

$$\mathbf{k}_{i}^{\mathrm{D}} = \frac{\sum_{j \neq i} a_{ij}}{|\mathcal{D}| - 1}, \quad i, j \in \mathcal{D}; \qquad \mathbf{k}_{i}^{\mathrm{C}} = \frac{\sum a_{ij}}{|\mathcal{C}|}, \quad i \in \mathcal{D}, j \in \mathcal{C}.$$
(a) Interdealer
(b) Dealer-to-Client

Market Completeness:

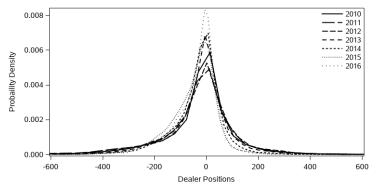
$$\mathbf{K}^{\mathbf{D}} = \frac{\sum_{i} \sum_{j>i} a_{ij}}{|\mathcal{D}|(|\mathcal{D}|-1)/2}, \quad i, j \in \mathcal{D};$$
(a) Interdealer

$$\mathbf{K}^{\mathbf{C}} = \frac{\sum_{i} \sum_{j} a_{ij}}{|\mathcal{D}||\mathcal{C}|}, \quad i \in \mathcal{D}, j \in \mathcal{C}.$$

(b) Dealer-to-Client

10/25

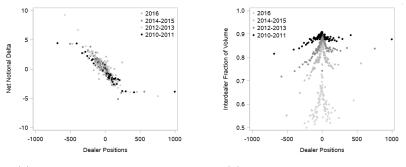
DATA AND SUMMARY STATISTICS


Data

- DTCC CDS data repository covering all counterparties and/or reference entities with U.S.-domicile.
- We use all **single-name corporate U.S. reference entities**' weekly transactions and positions.
 - 1032 reference IDs on senior tier debt
 - counterparty firms identified
 - all maturities, coupons, etc.
 - priced using underlying transaction information and Markit average
- Regulatory TRACE: Transactions on corporate bonds
 - CUSIP matched to underlying single-name
- Markit CDS Daily Pricing
- Period: 1/2010 thru 11/2016

	2010	2011	2012	2013	2014	2015	2016
Volume (\$M)	2,350.6	935.5	639.0	463.2	372.1	192.6	134.9
	(1886.9)	(5878.0)	(1380.9)	(927.9)	(701.4)	(316.3)	(305.9)
Interdealer Volume (\$M)	2,262.3	770.5	530.6	373.4	282.9	127.4	72.1
	(1885.4)	(1761.5)	(1267.2)	(826.5)	(605.6)	(264.3)	(270.6)
Client Volume (\$M)	88.2	165.0	108.4	89.8	89.2	65.2	62.8
	(18.8)	(5585.8)	(227.3)	(179.2)	(174.6)	(108.8)	(103.6)
Dealer Net Notional (\$M)	-17.5	-32.5	-20.8	-20.4	-24.9	-42.7	-35.4
	(20.5)	(263.7)	(243.6)	(195.2)	(180.0)	(133.7)	(101.1)
Dealer Gross Notional (\$M)	7,151.0	7,510.8	7,003.4	5,210.8	$3,\!649.6$	2,716.0	1,962.4
	(974.6)	(9407.0)	(9369.0)	(7181.4)	(5267.3)	(3847.9)	(2946.4)
# of Dealers	10.1	10.1	9.1	8.1	7.2	6.4	5.2
	(0.9)	(4.8)	(4.1)	(3.8)	(3.4)	(2.9)	(2.7)
# of Clients	4.3	5.2	5.3	4.5	4.3	4.1	4.4
	(0.6)	(6.5)	(6.8)	(6.3)	(5.9)	(5.2)	(4.9)

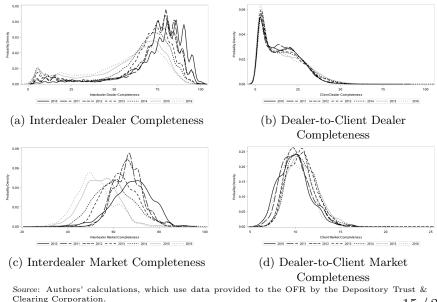
Source: Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.


CDS Statistics: dealer inventory

 $\mathit{Source:}$ Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

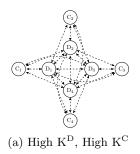
- The plot presents the probability density of weekly dealer positions (\$ millions) across our sample of U.S. single-name CDS markets.
- The overlay highlights the tightening of inventory by dealers over time.

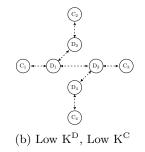
CDS Statistics: dealer inventory management



 $[\]mathit{Source:}$ Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

- Plot (a): as inventories grow away from zero, dealers work to reduce their inventory risk.
- Plot (b): a tightening of inventory by dealers over time, and a growing tendency of dealers to offset inventories with clients.


CDS Statistics: intermediation networks



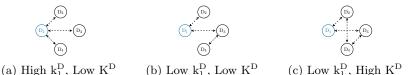
15/25

MODEL HYPOTHESES & EMPIRICAL RESULTS

H1: The completeness of a market's intermediation network is positively related to the transaction volume between dealers and clients.

• Controls for demand, fixed effects

Hypothesis H1: client volume


	Dependent Variable					
	log(Client Volume)					
	(1)	(2)	(3)	(4)		
Intercept	4.1000***	3.5409^{***}	3.7766^{***}	3.4533^{***}		
Interdealer Market Completeness		0.0082^{***}		0.0061***		
Dealer-to-Client Market Completeness			0.0379^{***}	0.0267^{***}		
CDS spread	1.3409^{***}	1.2907***	1.1012***	1.1341^{***}		
ΔCDS spread	-0.2721	-0.2476	-0.1929	-0.1978		
CDS Recovery Rate	0.7434^{***}	0.5875^{***}	0.6129^{***}	0.5346^{***}		
log(Bond Volume)	0.1139^{***}	0.1218^{***}	0.1080^{***}	0.1157^{***}		
log(Client Index CDS Volume)	0.2481^{***}	0.2495^{***}	0.2503^{***}	0.2506^{***}		
CDS Clearing Eligible	-0.0005	0.0163	0.0395^{***}	0.0402^{***}		
Interdealer Volume Share	-0.0096***	-0.0097^{***}	-0.0097^{***}	-0.0097^{***}		
Time Fixed Effects	Y	Y	Y	Y		
Observations	36,248	36,248	36,248	36,248		
Adjusted \mathbb{R}^2	27.09%	28.29%	28.18%	28.76%		

 $\overline{Source:}$ Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

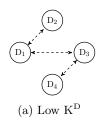
• Client volume and intermediation network completeness are *positively* related, in both the dealer-to-client and interdealer segments.

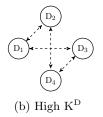
Hypothesis H2 & H3 (a): individual dealer inventory

- H2: The completeness of a dealer's intermediation network is positively related to the dealer's risk-bearing capacity, i.e. the dealer's net inventory.
- H3 (a): The completeness of a market's intermediation network, controlling for the completeness of the intermediation network of individual dealers, is positively related to the risk-bearing capacity of individual dealers, i.e., their net inventory.

• Controls for demand, fixed effects

Hypothesis H2 & H3 (a): individual dealer inventory


	Dependent Variable					
	log(Dealer Inventory)					
	(1)	(2)	(3)	(4)		
Intercept	7.5027^{***}	6.4385^{***}	7.3278***	6.7409^{***}		
Interdealer Dealer Completeness		0.0124^{***}		0.0129***		
Dealer-to-Client Dealer Completeness		0.0051^{***}		0.0047^{***}		
Interdealer Market Completeness			0.0027^{***}	-0.0052***		
Dealer-to-Client Market Completeness			0.0006	-0.0014		
CDS Clearing Eligible	0.0116^{***}	0.0251^{***}	0.0115^{***}	0.0263^{***}		
log(Client Volume)	0.0015	0.0032	0.0009	0.0045^{**}		
Interdealer Volume Share	0.0000	0.0000	0.0000	0.0000		
Time Fixed Effects	Y	Y	Y	Y		
Reference Entity Fixed Effects	Υ	Υ	Υ	Υ		
Observations	470,264	470,264	470,264	470,264		
Adjusted R^2	9.14%	22.13%	9.19%	22.31%		


 $\overline{S}ource:$ Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

- Intermediation network completeness, both dealer-to-client and interdealer, *positively* related to dealer inventory.
- However, market interdealer intermediation network completeness *negatively* related to dealer inventory.

Hypothesis H3 (b): aggregate dealer inventory

H3 (b): The completeness of a market's intermediation network, controlling for the completeness of the intermediation network of individual dealers, is positively related to the gross risk-bearing capacity of all dealers.

• Controls for demand, fixed effects

Hypothesis H3 (b): aggregate dealer inventory

	Dependent Variable					
	$\log(\Sigma \text{ Individual Dealer } \ \text{Inventory}\)$					
	(1)	(2)	(3)	(4)		
Intercept	8.5227^{***}	8.2679^{***}	8.3913***	8.2076***		
Interdealer Market Completeness		0.0042^{***}		0.0035***		
Dealer-to-Client Market Completeness			0.0172^{***}	0.0106***		
CDS Clearing Eligible	0.0904^{***}	0.0916^{***}	0.0921***	0.0924^{***}		
log(Client Volume)	0.0158^{***}	0.0146^{***}	0.0149^{***}	0.0143^{***}		
Interdealer Volume Share	0.0002^{***}	0.0002^{***}	0.0002^{***}	0.0002^{***}		
Time Fixed Effects	Y	Y	Y	Y		
Reference Entity Fixed Effects	Y	Υ	Υ	Y		
Observations	36,508	36,508	36,508	36,508		
Adjusted R ²	81.54%	82.05%	81.86%	82.15%		

 \overline{Source} : Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

• Intermediation network completeness, both dealer-to-client and interdealer, *positively* related to aggregate dealer inventories.

Hypothesis H4 & H5: trade costs

- H4: The completeness of a dealer's intermediation network is negatively related to the bid-ask spread faced by clients and individual dealers.
- H5: The completeness of a market's intermediation network, conditional on the completeness of the intermediation network of individual dealers, is negatively related to the bid-ask spreads faced by clients and individual dealers.

Bid-Ask Spread: $\gamma_{i,j,t} = \left| \frac{\text{CDS Transaction Spread}_{i,j,t} - \text{CDS Markit Spread}_{j,t}}{\text{CDS Markit Spread}_{j,t}} \right|$ (1)

• Controls for participation, inventory, demand, fixed effects

Hypothesis H4 & H5: dealer-to-client bid-ask spread

		Depender	nt Variable	
	De	ealer-to-Client	t Bid-Ask Spr	read
	(1)	(2)	(3)	(4)
Intercept	8.1679	12.5522^{**}	12.6502^{*}	14.4924**
Interdealer Dealer Completeness		-0.0551^{***}		-0.0468***
Dealer-to-Client Dealer Completeness		0.0000		-0.0008
Interdealer Market Completeness			-0.0695***	-0.0381
Dealer-to-Client Market Completeness			-0.0199	-0.0227
log(Dealer Inventory)	-0.5635***	-0.4793***	-0.5743^{***}	-0.4963***
log(Net All Dealer Inventory)	-0.3215^{*}	-0.3028^{*}	-0.3195^{*}	-0.3036^{*}
log(All Dealer Inventory)	1.2448^{*}	1.5369^{***}	2.0847^{***}	2.1290^{***}
CDS Clearing Eligible	-0.1347	-0.1967	-0.1893	-0.2171
Number of Market Dealers	0.0264	-0.1215	-0.3314^{***}	-0.3014^{**}
Interdealer Volume Share	-0.0049	-0.0044	-0.0044	-0.0042
Time Fixed Effects	Y	Y	Y	Y
Reference Entity Fixed Effects	Y	Υ	Υ	Υ
Observations	284,008	284,008	284,008	284,008
Adjusted R^2	5.00%	5.06%	5.03%	5.07%

Source: Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

- A dealer's bid-ask spread with clients is *negatively* related with the completeness of a dealer's network with other dealers.
- A dealer's bid-ask spread with clients is *negatively* related with the completeness of the interdealer network. 23 / 25

Hypothesis H4 & H5: interdealer bid-ask spread

		Depender	nt Variable			
	Interdealer Bid-Ask Spread					
	(1)	(2)	(3)	(4)		
Intercept	15.0386^{***}	16.1376^{***}	21.1550^{***}	21.2713***		
Interdealer Dealer Completeness		-0.0135		-0.0029		
Dealer-to-Client Dealer Completeness		-0.0025		-0.0037		
Interdealer Market Completeness			-0.0694***	-0.0673***		
Dealer-to-Client Market Completeness			-0.0941**	-0.0884^{*}		
log(Dealer Inventory)	-0.0424	-0.0037	-0.0496	-0.0339		
log(Net All Dealer Inventory)	-0.2575^{**}	-0.2565^{**}	-0.2442^{**}	-0.2449^{**}		
log(All Dealer Inventory)	0.3847	0.4419	1.2815^{***}	1.2574^{***}		
CDS Clearing Eligible	1.0337***	1.0180***	0.9396^{***}	0.9445***		
Number of Market Dealers	-0.1540^{***}	-0.1903^{***}	-0.5636^{***}	-0.5582^{***}		
Interdealer Volume Share	0.0064^{***}	0.0068^{***}	0.0071^{***}	0.0071^{***}		
Time Fixed Effects	Y	Y	Y	Y		
Reference Entity Fixed Effects	Y	Υ	Υ	Υ		
Observations	1,011,154	1,011,154	1,011,154	1,011,154		
Adjusted R^2	9.37%	9.38%	9.44%	9.44%		

Source: Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

• Dealer-to-dealer bid-ask spread is *not* related to the intermediation network the dealer maintains.

24 / 25

• Dealer-to-dealer bid-ask spread is *negatively* related with dealer-to-client and interdealer market-level completeness.

Conclusions

- We study the relationship between measures of intermediation networks and liquidity, and are able to identify how variation in OTC market subnetworks, and the entire network, relate to market liquidity.
- As intermediation networks can be influenced by regulatory changes, evaluating how relationships may evolve can provide a mechanism for estimating a regulation's impact on market liquidity.

References I

- Babus, A. and Kondor, P. (2018). Trading and information diffusion in over-the-counter markets. *Econometrica*, 86(5):1727–1769.
- Collin-Dufresne, P., Junge, B., and Trolle, A. B. (2020). Market structure and transaction costs of index CDSs. The Journal of Finance, 75(5):2719–2763.
- Di Maggio, M., Kermani, A., and Song, Z. (2017). The value of trading relations in turbulent times. *Journal of Financial Economics*, 124(2):266–284.
- Du, W., Gadgil, S., Gordy, M. B., and Vega, C. (2019). Counterparty risk and counterparty choice in the credit default swap market. Finance and Economics Discussion Series 2016-087, Board of Governors of the Federal Reserve System.
- Duffie, D., Gârleanu, N., and Pedersen, L. H. (2005). Over-the-counter markets. Econometrica, 73(6):1815–1847.
- D'Errico, M., Battiston, S., Peltonen, T., and Scheicher, M. (2018). How does risk flow in the credit default swap market? *Journal of Financial Stability*, 35:53–74.
- Eisfeldt, A. L., Herskovic, B., Rajan, S., and Siriwardane, E. (2023). OTC intermediaries. *The Review of Financial Studies*, 36(2):615–677.
- Gofman, M. (2011). A network-based analysis of over-the-counter markets. In AFA 2012 Chicago Meetings Paper.

References II

- Ho, T. S. Y. and Stoll, H. R. (1983). The dynamics of dealer markets under competition. *The Journal of Finance*, 38:1053–1074.
- Hollifield, B., Neklyudov, A., and Spatt, C. (2017). Bid-ask spreads, trading networks, and the pricing of securitizations. *The Review of Financial Studies*, 30(9):3048–3085.
- Li, D. and Schürhoff, N. (2019). Dealer networks. *The Journal of Finance*, 74(1):91–144.
- Neklyudov, A. (2019). Bid-ask spreads and the over-the-counter interdealer markets: Core and peripheral dealers. *Review of Economic Dynamics*, 33:57–84.
- Oehmke, M. and Zawadowski, A. (2015). Synthetic or real? the equilibrium effects of credit default swaps on bond markets. *The Review of Financial Studies*, 28(12):3303–3337.
- Shachar, O. (2012). Exposing the exposed: Intermediation capacity in the credit default swap market. Working Paper.
- Shapley, L. S. (1951). Notes on the N-person Game II: The Value of an N-Person Game. Rand Corporation, Santa Monica, CA.

- Siriwardane, E. N. (2019). Limited investment capital and credit spreads. The Journal of Finance, 74(5):2303–2347.
- Viswanathan, S. and Wang, J. J. (2004). Inter-dealer trading in financial markets. *The Journal of Business*, 77(4):987–1040.
- Wang, C. (2018). Core-periphery trading networks. Wharton Working Paper.
- Yang, M. and Zeng, Y. (2019). The coordination of intermediation. University of Washington Working Paper.

APPENDIX

Hypothesis HA1: interdealer volume

• Hypothesis H2 is based on Wang (2018) which identifies a negative relation between the share of interdealer volume $(\lambda^{\rm D}/\lambda)$ and the volume of transactions between dealers and clients (λ^{C}) in equilibrium.

$$\frac{\lambda_{j,t}^{\mathrm{D}}}{\lambda_{j,t}} = \beta_0 + \beta_1(\log(\lambda_{j,t})) + \beta_2 \mathbb{1}_{j,t}^{\mathrm{Clearable}} + \beta_{3-84} \mathbb{1}^{\mathrm{M/Y}} + \beta_{85-381} \mathbb{1}_j^{\mathrm{R}} + \epsilon.$$
(2)

- λ_{j,t}: volume
 1^{Clearable}: clearable indicator
- $\mathbb{1}^{M/Y}$, $\mathbb{1}_i^R$: month/year, reference entity

	Dependent Variable
	Inderdealer Volume Share
Intercept	248.7***
CDS Clearing Eligible	-5.4***
log(Client Volume)	-23.7***
Time Fixed Effects	Y
Reference Entity Fixed Effects	Υ
Observations	38,817
Adjusted \mathbb{R}^2	42.4%

Source: Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

Hypothesis HA2: number of dealers

- The number of dealers ($|\mathcal{D}|$) accommodating trade in a market potentially depends on the demand for trade, the risk-capacity of individual dealers, as well as the risk capacity of the entire market.
- Hypothesis H3 suggests that the completeness of a market's intermediation network is negatively related to the number of dealers.

$$\begin{aligned} |\mathcal{D}_{j,t}| = &\beta_0 + \beta_1 \mathbb{1}_{j,t}^{\text{Clearable}} + \beta_2 \mathbf{K}_{j,t}^{\text{D}} + \beta_3 \mathbf{K}_{j,t}^{\text{C}} + \beta_4 \log(\lambda_{j,t}^{\text{C}}) \\ &+ \beta_5 \lambda_{j,t}^{\text{D}} / \lambda_{j,t} + \beta_{6-87} \mathbb{1}^{\text{M/Y}} + \beta_{88-384} \mathbb{1}_{j}^{\text{R}} + \epsilon. \end{aligned}$$
(3)

- $\lambda_{j,t}$: volume
- λ^{D}/λ : fraction of interdealer volume
- $\mathbb{1}^{\text{Clearable}}$: clearable indicator
- $\mathbb{1}^{M/Y}$, $\mathbb{1}^{R}$: month/year, reference entity

Hypothesis HA2: number of dealers

	Dependent Variable					
	Number of Dealers					
	(1)	(2)	(3)	(4)	(5)	
Intercept	21.4^{***}	21.3^{***}	27.5^{***}	24.0^{***}	27.7^{***}	
Interdealer Volume Share		0.001**			0.001***	
Interdealer Market Completeness			-0.098***		-0.093***	
Client Market Completeness				-0.253***	-0.078***	
CDS Clearing Eligible	0.186^{***}	0.190^{***}	0.112^{***}	0.160^{***}	0.115^{***}	
log(Client Volume)	-0.010	0.004	0.001	0.000	0.036	
Time Fixed Effects	Y	Y	Y	Y	Y	
Reference Entity Fixed Effects	Υ	Υ	Υ	Y	Υ	
Observations	38,817	38,817	38,817	38,817	38,817	
Adjusted R ²	86.9%	86.9%	93.2%	88.4%	93.3%	

Source: Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

$$\mu_{i,j,t}^{C} = \beta_{0} + \beta_{1} |\mathcal{D}_{j,t}| + \beta_{2} \mathbb{1}_{j,t}^{\text{Clearable}} + \beta_{3} \mathbf{K}_{j,t}^{D} + \beta_{4} \mathbf{K}_{j,t}^{C} + \beta_{5} \mathbf{k}_{i,j,t}^{D} + \beta_{6} \mathbf{k}_{i,j,t}^{C} + \beta_{7} \lambda_{j,t}^{D} / \lambda_{j,t}$$

$$+ \beta_{8} \log(x_{i,j,t}) + \beta_{9} \log(\mathbf{X}_{j,t}) + \beta_{10} \log(\sum ||x_{i,j,t}||) + \beta_{11-92} \mathbb{1}^{M/Y} + \beta_{93-389} \mathbb{1}_{j}^{R} + \epsilon$$

$$\begin{split} \mu_{i,j,t}^{\mathrm{D}} = & \beta_0 + \beta_1 |\mathcal{D}_{j,t}| + \beta_2 \mathbb{1}_{j,t}^{\mathrm{Clearable}} + \beta_3 \mathrm{K}_{j,t}^{\mathrm{D}} + \beta_4 \mathrm{K}_{j,t}^{\mathrm{C}} + \beta_5 \mathrm{k}_{i,j,t}^{\mathrm{D}} + \beta_6 \mathrm{k}_{i,j,t}^{\mathrm{C}} + \beta_7 \lambda_{j,t}^{\mathrm{D}} / \lambda_{j,t} \\ & + \beta_8 \log(x_{i,j,t}) + \beta_9 \log(\mathrm{X}_{j,t}) + \beta_{10} \log(\sum \|x_{i,j,t}\|) + \beta_{11-92} \mathbb{1}^{\mathrm{M/Y}} + \beta_{93-389} \mathbb{1}_{j}^{\mathrm{R}} + \epsilon \end{split}$$

- $|\mathcal{D}|$: number of dealers
- x: individual dealer inventory
- X: net aggregate dealer inventory
- $\sum ||x_{i,j}||$: gross aggregate dealer inventory
- $\overline{\lambda^{\rm D}}/\lambda$: fraction of interdealer volume
- $\mathbb{1}^{\text{Clearable}}$: clearable indicator
- $1^{M/Y}$, 1^{R} : month/year, reference entity

Hypothesis H4 & H5: dealer-to-client execution cost

	Dependent Variable					
	I	Dealer-Clien	t Execution	Cost $(\mu_{i,j,t}^{\mathrm{C}})$)	
	(1)	(2)	(3)	(4)	(5)	
Intercept	17.93^{*}	17.9149	18.1596^{*}	18.6753^{*}	18.5967^{*}	
Interdealer Volume Share		0.0004			0.0004	
Interdealer Dealer Completeness			-0.0110		-0.0103	
Client Dealer Completeness			0.0137		0.0142	
Interdealer Market Completeness				-0.0104	-0.0033	
Client Market Completeness				-0.0065	-0.0312	
log(Dealer Inventory)	0.4213***	0.4214***	0.4091***	0.4198^{***}	0.4067^{**}	
log(Net All Dealer Inventory)	-0.1907	-0.1914	-0.1833	-0.1900	-0.1812	
log(All Dealer Inventory)	-1.8847^{*}	-1.8855^{*}	-1.7885^{*}	-1.7514	-1.7156	
CDS Clearing Eligible	0.3577	0.3617	0.3174	0.3477	0.3146	
Number of Market Dealers	-0.0684	-0.0684	-0.0934	-0.1240	-0.1233	
Time Fixed Effects	Y	Y	Y	Y	Y	
Reference Entity Fixed Effects	Υ	Υ	Υ	Υ	Υ	
Observations	295,327	295,327	295,327	295,327	295,327	
Adjusted R^2	1.91%	1.91%	1.91%	1.91%	1.91%	

 $\overline{Source:}$ Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.

Hypothesis H4 & H5: interdealer execution cost

		D	ependent Var	iable		
	Interdealer Execution Cost $(\mu_{i,j,t}^{D})$					
	(1)	(2)	(3)	(4)	(5)	
Intercept	0.2314	0.2201	0.6452	0.2513	0.5861	
Interdealer Volume Share		0.0001			-0.0001	
Interdealer Dealer Completeness			0.0090		0.0106	
Client Dealer Completeness			-0.0411***		-0.0425^{***}	
Interdealer Market Completeness				-0.0011	-0.0093	
Client Market Completeness				0.0076	0.0787^{***}	
log(Dealer Inventory)	-0.0095	-0.0094	0.0619	-0.0096	0.0608	
log(Net All Dealer Inventory)	0.0062	0.0062	0.0037	0.0055	-0.0037	
$\log(\text{All Dealer } \ \text{Inventory}\)$	-0.0945	-0.0945	-0.2168^{*}	-0.0920	-0.2282^{**}	
CDS Clearing Eligible	0.0644^{***}	0.0652^{***}	0.1511^{***}	0.0633***	0.1469^{***}	
Number of Market Dealers	0.0089	0.0088	0.0285	0.0067	0.0225	
Time Fixed Effects	Y	Y	Y	Y	Y	
Reference Entity Fixed Effects	Υ	Υ	Υ	Υ	Υ	
Observations	1,053,312	1,053,312	1,053,312	1,053,312	1,053,312	
Adjusted R^2	0.02%	0.02%	0.10%	0.02%	0.10%	

Source: Authors' calculations, which use data provided to the OFR by the Depository Trust & Clearing Corporation.