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1 Introduction

Inflation forecasting has long been understood to be practically important and challenging.

For example, Bernanke (2007) describes the importance of inflation modeling and forecast-

ing to monetary policy. Many studies, such as Faust and Wright (2013) and Knotek and

Zaman (2017), discuss and document challenges in inflation forecasting. The surge of infla-

tion following the COVID-19 pandemic has of course added to practical interest in inflation

forecasting.

One component of inflation forecasting is the problem of nowcasting inflation — that is,

to predict inflation in the current period (month or quarter), before it is published. These

short-horizon forecasts are not only of interest in their own right but also important inputs

to the accuracy of forecasts at longer horizons (see, e.g., Faust and Wright (2009), Faust and

Wright (2013), and Krüger et al. (2017)). In this paper, we focus on nowcasting inflation in

US consumer prices, although our method can be more generally applied. Like much of

the literature, our analysis is based on point forecasts. See Knotek and Zaman (2020) and

references therein for work on density forecasts of inflation.

In the broader economic literature on nowcasting, many studies have focused on mod-

els — such as factor models or vector autoregressions — that can be represented in state

space form, using estimation methods such as the EM Algorithm described by Watson and

Engle (1983). Later contributions, more specifically geared towards mixed frequency ap-

plications, include Durbin and Koopman (2012) and Giannone et al. (2008). These models

have proven adept at real time analysis when differences in frequencies are moderate. They

are particularly useful for handling large (we are speaking of >100 series, as opposed to gi-

gabytes or terabytes of data in some machine learning applications) data sets; frequentist

models already employ dimension reduction to moderate overfitting issues, and Bayesian

applications use shrinkage as well to improve out-of-sample performance, as in Bańbura

et al. (2010) and Cimadomo et al. (2021). Modugno (2013) provides an application of this

modeling approach to inflation. Inputs to the model include gasoline prices (weekly), oil

prices (weekly), and prices of raw materials (daily), as well as aggregate and disaggregate

measures of inflation. This modeling approach performs well when all variables are rele-

vant to the target variable, in this case aggregate inflation. However, dynamic factor models

(DFMs) do not select, that is, set parameters on less important variables to zero. Instead, a

DFM models comovements in all input series, though the use of priors can shrink the model

towards certain variables. Second, DFMs are conditionally linear. One can model regime

changes or stochastic volatility, but this substantially increases computational complexity,

and the ability of DFMs to incorporate non-linearities remains limited.

An alternative, regression based, approach to handling mixed frequency data was in-
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troduced by Ghysels et al. (2004). In MIDAS regressions a low frequency target variable

is regressed on a temporally aggregated high frequency variable, where temporal aggre-

gation weights are constrained by specific parametric functions and optimally determined

together with the other model parameters. A major advantage of MIDAS regressions, be-

sides simplicity, is their ability to handle large frequency mismatches. A disadvantage is the

non-linearity of the model, due to the non-linear temporal aggregation, which typically pre-

vents its use with several regressors (though penalized versions are possible, see Mogliani

and Simoni (2021)) and complicates the analysis of possible nonlinearity and time variation

in the effects of the explanatory variables on the target. MIDAS regressions have also been

used to nowcast inflation; see, in particular, Breitung and Roling (2015), who use daily data

and, in addition, consider a non-parametric approach to determine the aggregation weights.

Knotek and Zaman (2017) develop simpler but effective models to produce daily now-

casts of US headline and core consumer inflation using a small number of carefully selected

indicators at different frequencies. Their models feature time-varying weights on the avail-

able variables, with higher frequency indicators only used when sufficient data are avail-

able to make them informative for forecasting the target. The models, either univariate or

simple multivariate specifications, are estimated over short rolling windows. Empirically,

the short rolling estimation windows and high-frequency energy price data are key to im-

proving nowcasting accuracy. Rolling estimation can attenuate the effects of unaccounted

parameter time variation. However, machine learning methods offer more flexibility in this

regard, can capture nonlinearities, and allow the use of a large information set.

Medeiros et al. (2021) apply a variety of econometric and machine learning approaches

to (US) inflation modeling and forecasting, using the large FRED-MD data set.1 They find

that random forest (RF) models outperform other approaches, particularly in periods of high

uncertainty. They attribute this fact to the ability of RF models to incorporate non-linearity,

and point to the importance of non-linear models in such an exercise. However, data is

uniform frequency (monthly) and the authors eliminate series which are not available over

the full sample period. This highlights a key problem with existing machine learning algo-

rithms: They do not deal well with mixed frequency and missing observations. A first, and

relevant, step in this direction is taken by Babii et al. (2021), who consider mixed frequency

versions of the (sparse group) LASSO regression, both theoretically and in GDP nowcasting

applications.

Building on the success of Medeiros et al. (2021) in forecasting inflation with machine

learning approaches, we focus on random forest methods. An important rationale is that

we want to be able to include a large number of predictors, motivated partly by continued

1Medeiros et al. (2022) find that RF models can be helpful for forecasting global inflation.
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increases in the availability of data. We extend random forest methods in two dimensions.

First, we develop an approach that allows for data with general patterns of missing obser-

vations, generated for example by the use of mixed frequency data or alternative indicators

only available in the later part of the sample. Second, we generalize the expected value of

the target variable at each node of the regression tree to allow for a linear relationship be-

tween right-hand side and target variables, which we refer to as a random forest regression

node model. The standard model takes the mean of the target variable given the condi-

tions to reach that node as the expected value; we simply generalize this to a slope and

intercept term. Thus the standard model is a subset of this generalization when the slope is

constrained to zero.

To establish possible benefits of our random forest extensions, we conduct simple Monte

Carlo experiments comparing our approach with alternatives that do not include the miss-

ing observation treatment and that take the mean of the target variable given the conditions

to reach that node as the expected value (i.e., restrict to 0 the slope coefficients of our general

model). As a baseline, we first compare the performance of our missing observation random

forest approach with existing RF alternatives using simulated data without missing obser-

vations, finding our missing observation approach to work as well as other RF approaches.

Then, still using simulated data, we show that our missing observation random forest model

works better than common RF methods for handling missing observations, such as replac-

ing them with averages of the available observations, or dropping the series with missing

observations. We then conduct experiments to assess the marginal benefit of adding the

linear relationship piece to each node, and we find that, despite the cost of an additional pa-

rameter at each node of the model, we are able to reduce out-of-sample mean square error

over the missing observation random forest model regardless of missing observations, as

our final model combines these two innovations.

We then turn to applying our proposed random forest models to nowcast monthly US

inflation using a large set of indicators which are either high-frequency or published be-

fore the target inflation measures, including about roughly 150 to 200 macro, financial, and

(mostly commodity) price indicators. Our analysis looks at nowcasting consumer price in-

flation directly, as well as breaking it down into its major components of commodities (con-

sumer goods), commodities less food and energy, food, services, and services less energy

services. We focus on headline CPI and PCE inflation as well as their ex food and energy

counterparts. In out-of-sample nowcasting, we compare results from random forest models

to the nowcasts the Federal Reserve Bank of Cleveland has published since late 2013, based

on the approach of Knotek and Zaman (2017). As detailed in Knotek and Zaman (2017),

historically their nowcast accuracy often beats the accuracy of forecasts from surveys of pro-
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fessional forecasters (which in turn beat the accuracy of many other model-based nowcasts)

and is comparable to the accuracy of nowcasts from the staff of the Federal Reserve Board

of Governors (published in Greenbook/Tealbook).

Our empirical work yields the following main findings. In fitting the data, for the overall

CPI, gasoline prices dominate. For categories that do not directly measure energy costs,

variables measuring real economic activity such as the weekly economic index of Lewis et

al. (2021) or the purchasing managers index often account for the first split in the regression

trees. In out-of-sample forecasting, our model performs well, with an approximately 50

percent improvement in root mean square error over the sample 2013:M10-2022:M2 relative

to the corresponding nowcast benchmarks from a univariate model and an approximate 10

percent improvement with regards to the Cleveland Fed nowcasts.

The rest of the paper is structured as follows: Section 2 details our methodology and

modifications to the standard random forest framework. We discuss the performance of the

model using simulated data when one or several series may contain missing observations in

Section 3. Section 4 then applies our models to the task of nowcasting US inflation. Section

5 concludes.

2 Econometric Methodology

In this section we develop our variant of the standard random forest model. We modify the

original work by Breiman (2001) in two ways. First, we propose an approach to handling the

structure of missing observations arising from the data processing methodology, i.e., ragged

head data, whereby earlier nodes in a regression tree can use more data than later nodes

(i.e., leaves). However, our proposed procedure is capable of handling an arbitrary pattern

of missing observations. We refer to the approach as missing observation random forest

(MO-RF). Second, instead of simply calculating the mean of our target variable at a given

node, we allow for a simple univariate linear regression in the splitting variable, which we

will call random forest regression node (MO-RFRN). One can implement these adaptations

of the random forest individually or together; each is developed in turn below.

2.1 Modeling Mixed Frequency

In order to work with mixed frequency data sets which allow the use of all data in real time,

an aggregation rule such as the one proposed by Mariano and Murasawa (2003) is not ef-

fective in our context. The model would become overly burdensome with large differences

in frequencies. For example, with daily and monthly observations, one would need to in-

clude about 60 lags to accommodate low frequency data in differences. Hence, we propose
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to simply aggregate observations we have for the current period to date, and replicate these

aggregations in the historical data.

We can classify right hand side (RHS) variables in the model as either lagged or con-

temporaneous. For example, we may include a daily variable such as the Baltic Dry index

for the previous month; this would constitute a lagged variable. If the current date is the

15th of the month, then the Baltic Dry index through the 15th constitutes a contemporaneous

variable, including the first 14 observations assuming the index has not yet been published

for the current day. In order to incorporate this variable in our model, we take the first 14

observations of the Baltic Dry index for each month in the historical data as a RHS vari-

able against the contemporaneous target variable, for instance the consumer price index, for

that month. Thus while lagged variables are typically complete, that is, contain all high fre-

quency observations within a month, contemporaneous variables are not. Our treatment of

predictors on the right-hand side is analogous to the blocking-based approaches of Carriero

et al. (2015) and McCracken et al. (2021): At each forecast origin, the variables included as

predictors are specified to reflect the actual data availability; accordingly, the predictor set

varies by forecast horizon.

It should be noted that our approach to mixed frequencies, which uses a simple average

of high frequency (daily) observations over the low frequency (monthly) period, is poten-

tially more restrictive than MIDAS (Ghysels et al. (2004)), which allows for different weights

on high frequency observations within the low frequency period. However, introducing this

flexibility into our random forest model would greatly increase the number of parameters

to estimate and the nonlinearity of the specification, making estimation overly complex.

2.2 Data Processing

Though our approach to mixed frequency data is conceptually simple, aggregating non-

stationary data introduces an additional step. The issue is that high frequency data are typ-

ically aggregated before log differencing. Because contemporaneous variables will change

every day as more observations are realized, log differencing must be repeated at each new

point in time. Additionally, because non-stationary data must be log-differenced after ag-

gregation, all series initially enter the model in unprocessed, level form. Generically, our

data processing proceeds as follows:

1. For lagged variables, aggregate to low frequency (monthly) if no observations are miss-

ing; if observations are still missing, identify this pattern and replicate it in previous

low frequency periods, then aggregate.

2. For contemporaneous variables, identify which observations within the low frequency
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period (month) are missing, and replicate this pattern of missing data in previous low

frequency periods, then aggregate to low frequency (monthly). When going from daily

to monthly data, we might, for example, observe days 1 through 15 of the month.

Thus we would also take days 1 through 15 in previous months before aggregating to

monthly frequency.

3. Data from steps 1 (including lags of our LHS variable) and 2 constitute our RHS vari-

ables; we take logs of variables where appropriate.

4. Take differences where needed to insure stationarity. Stationarity is necessary for this

model as for other time series models to insure that relationships between variables

identified in-sample remain valid for out-of-sample estimations; this rules out vari-

ables that grow over time. However, the model is capable of estimating regime changes

so long as we have historical observations of regimes, and are not constantly transition-

ing into new, not yet observed regimes. 2

2.3 Regression Trees

Because we are dealing only with continuous data, our random forest will consist of a sam-

ple of regression trees. This means that splits will divide data into observations greater or

smaller than the cut point, as opposed to distinct categories. Our regression tree will con-

tinue to split the data until either the maximum number of nodes is reached, or nodes reach

a minimum size. When we include both slope and intercept terms at each node, we set this

minimum size to ten observations. Each split is on a single variable, where the variable and

cut point are selected according to the greatest improvement in in-sample fit, as measured

by mean square error. Our basic regression tree algorithm is simply:

1. Search over all RHS variables for the split that gives the maximum improvement (re-

duction) in mean square error. For a split in variable x1 at cut point c1 the minimum

mean square error is equivalent to minimizing

∑
x1<=c1

(
yi − E(y|x1 <= c1)

)2
+ ∑

x1>c1

(
yi − E(y|x1 > c1)

)2

where E(y|A) is simply the mean of observations of y when condition A is satisfied.

2. Identify the terminal node or "leaf" with the greatest variance, and split this node fol-

lowing the procedure in step 1. After the first split, there will be two terminal nodes,

2Instructions to the code on where to take logs and differences are contained in a library file, borrowing
from the "transform" row containing a code for the appropriate transformation in the FRED-MD database; see
McCracken and Ng (2016). Where transformations from FRED-MD do not exist we use both visual analysis
and a unit root test to asses which series need difference.
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one corresponding to x1 <= c1 and the other to x1 > c1. After the second split, there

will be three terminal nodes, and so on.

3. Continue splitting nodes until the stopping condition (the maximum number of nodes

or minimum node size) is met. Fitted values are then the conditional means of each

leaf.

Our random forest comes from sampling many (1000 in the Monte Carlo simulations and

2000 in the application, which features a much larger number of predictors) regression trees

while randomizing in two ways. First, for each tree, we randomly select a subset of the rows

of the data, or data points over time ("bagging"). Following the existing literature and code

libraries, we use ceiling(0.632T) rows, where ceiling denotes the R function that rounds up

to the nearest integer and T is the total number of observations.3 Second, at each node,

we randomly select ceiling(k/3) candidate series for splitting ("feature bagging"), where k

denotes the number of predictors (columns of the data matrix). To motivate this approach

see Breiman (2001) and Ho (1995).

Advantages of random forest models include the fact that they allow a high degree of

non-linearity, select relevant series from the data so inclusion of uninformative series tends

not cause poor out-of-sample performance, are resistant to overfitting, are computationally

lightweight and quick to estimate, and are simple to interpret. These last three points set

random forests apart from neural networks. In particular, computational intensity matters

for this exercise as the data changes from one day to the next as more observations within

the month arrive. This means we cannot train a model once and then run it on subsequent

data sets, but must re-train the model as each new data point is observed, since, for example,

the Baltic Dry index for the first 5 days of the month is not the same variable as the Baltic

Dry index for the first 25 days.

2.4 Ragged Head Data

The previous subsection describes a standard approach to random forest models with con-

tinuous variables. Our approach to mixed frequency data in Section 2.1 ensures that our

data will have a square tail. However, series begin at different times, creating what we will

call a "ragged head" structure to the data. One option is of course to discard observations

prior to the start of the youngest series. However, this would discard a large amount of in-

formation that we wish to use in constructing our model. Our solution is to write a random

forest algorithm in which the data used by each node is conditional on the date of the first

observation of the current splitting variable. The approach is illustrated in Figure 1.

3We use the statistical software R, in which the available RF packages are ranger and randomForest.
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Figure 1: Ragged Head Regression Tree

The figure depicts a regression tree based on data for the US described in our application

in Section 4. The first split is on weekly gasoline prices, which will always be the case if

gasoline prices are included in candidate splitting variables due to their dominant impact

on the CPI, in line with results by Knotek and Zaman (2017). Because gasoline prices go

back to the beginning of the CPI data, the model uses all (bootstrapped) observations. If the

second split is on a variable that also goes back to the beginning of the data, such as bond

spreads, then again all (bootstrapped) observations are used. Suppose then the model splits

on a variable for which we have a shorter history, such as the 5 year breakeven inflation rate

(which we have from 2003). Because some of the observations of this series are missing, we

have three possible outcomes: xa <= ca; xa > ca; or xa is NA. This sounds similar to the

approach when using categorical data of assigning missing as a new category. However, xa

is NA is not a candidate for future splits; this restriction makes sense in our framework as

the tail of our data is always square, so that xa is NA will never be used to make predic-

tions. Additionally, when calculating the resulting variance for potential splitting variables

we do not use the mean of y (our target, the CPI) conditional on the previous splits (gas

price change < 0 and bond spreads > 0.01) and xa is NA. Rather, if xa is NA then the ex-

pected value of y is simply its expected value at the previous node (gas price change < 0

and bond spreads > 0.01). Thus later nodes are restricted to the periods for which splitting

variables at previous nodes were observed. This is illustrated in Figure 1 with green leaves

(terminal nodes) corresponding to the (hypothetical) data set outlined in green, the yellow

leaf corresponding to the data outlined in yellow, and the red leaves corresponding to the

data outlined in red.
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Figure 2: Regression nodes vs. standard nodes

2.5 Regression Nodes

Our second innovation is to allow for both a slope and an intercept term at each node.

Conceptually, this is a simple modification illustrated by Figure 2; we estimated these results

using our regression tree code on a single variable without bagging. In the standard model,

the expected value of our target variable, y, is simply the mean of y when the conditions

needed to reach the node are met (x1 > c1, x2 < c2, and so on). The new case similarly limits

observations to those which meet the conditions needed to reach the current node, but allow

for both an intercept and slope term using the cut variable as the (single) RHS variable.

In this example the first split occurs where x <= 20 or x > 20. In the standard case, the

expected value of y when x <= 20 is just the mean of y when x <= 20, or the mean of y

when x > 20 for the alternative case. In the regression case, we estimate the model

yi = ai + bixi + εi, (2.1)

where i indexes a given node. For the case of the first split at c1 = 20 of the single RHS

variable above, {xi=1 ∈ x|x <= c1} and {xi=2 ∈ x|x > c1}. Supposing the next split is on

node 1, {xi=3 ∈ xi=1|xi=1 <= c2} and {xi=4 ∈ xi=1|xi=1 > c2}, and so on.

Thus, the standard model is simply a special case of the regression model where bi =

0. At subsequent split points, we calculate mean square error in terms of the residuals of

equation (2.1). While this would not be necessary for a single RHS variable, it is necessary

with many potential RHS variables. We will now have two parameters to estimate at each

node instead of one. This raises the question of over-fitting the model in-sample but, on the

positive side, we will be able to more efficiently describe data generating processes in which
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there are linear relationships between variables. If the underlying process is closer to the

step function described by the original random forest algorithm, our regression nodes offer

little advantage. Bagging and feature bagging will still help to address over-fitting, but will

be less effective if RHS variables are highly correlated.

The approach is similar to the macro random forest of Coulombe (2020). However, re-

gressions in the macro random forest approach are on a small subset of pre-selected vari-

ables. In contrast, we leave the selection of variables entirely up to the model. This is par-

ticularly important for large data sets where we may not know a priori which variables are

the best (linear) predictors of our target variable.

3 Benchmarking the Algorithm

As with any new algorithm, our first task is to benchmark performance against existing

libraries. Because we are working primarily in R, the obvious benchmarks are the "random-

Forest" and "ranger" packages, both of which estimate random forest models for continuous

or categorical variables. In the following tables, MO-RF refers to our own coding of the ran-

dom forest algorithm allowing for ragged head data, and MO-RFRN is the model allowing

both for ragged head data and linear relationships in the cut variable. The motivation for

including our code which uses the standard random forest model for continuous variables is

simply to verify that there are not large differences between our work and existing random

forest routines. When no variables are missing, MO-RF and existing algorithms should be

very much the same.

Our simulated data comes from a simple linear model

yt = βxt + εt, (3.1)

where yt is a scalar, xt is a vector of standard normal random variables, εt is also standard

normal, and values of β are fixed integers such that

β = vec

{[
1 5 3 0 2 −1 2 −3 0 1
1 0 2 0 3 −1 −2 −1 2 4

]′}
.

Simulations proceed as follows:

1. Draw 200 training observations from the model in equation (3.1).

2. Train random forest models using "ranger," "randomForest," and the algorithms de-

scribed in Section 2.

3. Draw another 200 validation observations from the model in equation (3.1).
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4. Predict yt using each of the four candidate algorithms, using the trees estimated in the

training step (2).

5. For each simulated data set, calculate the mean square difference between estimates

and the true values of yt from step 3. Average the mean square differences across data

sets, and then take the square root to obtain a root mean square error

We begin with the case in which no data are missing for estimation and forecasting. As

the results in Table 1 illustrate, our MO-RF algorithm yields results closer to the "random-

Forest" library, with a nearly identical root mean square error. The regression node approach

outperforms all other models, but perhaps this is not surprising as the data generating pro-

cess is a linear model.

Now consider the case in which the head of the data available for model estimation

contains missing values. In this setting, results for the standard model begin to diverge from

existing libraries. With a ragged head, with existing libraries, there are, following Breiman

(2001), four ways to proceed: one can drop columns with missing observations, drop rows

with missing observations, fill missing observations with the mean for that series, or impute

missing values based on their relationship with other observed series (imputing missing

values via splines or similar time-series approaches is not possible as missing values do not

fall between observations). The latter two approaches in this case are equivalent because the

simulated series in xt are iid.

Table 1: RMSE when the first 100 observations are missing for either a single series or ten of
the twenty simulated series vs no missing observations, linear DGP

M
O

-R
FR

N

M
O

-R
F

ra
nd

om
Fo

re
st

ra
ng

er

No MO 5.80 6.36 6.39 6.60
One series with MO 6.39 6.67 6.76 6.91
Ten series with MO 6.66 6.85 6.94 7.07

Table 1 presents results in which missing observations are replaced by their mean value

for the existing randomForest and ranger libraries, which in every case we look at outper-

forms the alternative of dropping rows or columns with missing data (in results not re-

ported). We consider two possibilities. First, we simulate the case when the first 100 obser-

vations for a single series, in this case series 2 (which has the largest coefficient), are missing.

We then simulate the data and drop the same periods for the first ten series in the training
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set. In both cases, our standard algorithm described in Section 2.4 performs slightly better

than existing libraries. As in the case of no missing observations, the regression node algo-

rithm maintains its substantial lead. This difference in performance is similar in both the

case of missing observations in one series or many series.

We repeat these simulations for a simple non-linear data generating process. For this

exercise, we use a regime switching model in which there is a 1/3 probability of being in

each of the three regimes. Regimes themselves are linear processes. The regime at period t

depends on a variable zt drawn from a uniform distribution. zt <= 1/3 indicates the model

is in regime 1; 1/3 < zt <= 2/3 indicates the model is in regime 2, and zt > 2/3 indicates

the model is in regime 3. The variable zt is observed with error εt ∼ N
(

0, 1/16
)
.

Table 2: RMSE when the first 100 observations are missing for either a single series or ten of
the twenty simulated series vs no missing observations, regime switching DGP

M
O

-R
FR

N

M
O

-R
F

ra
nd

om
Fo

re
st

ra
ng

er
No MO 7.95 7.95 7.85 7.95

One series with MO 7.99 7.99 7.95 8.02
Ten series with MO 8.65 8.56 8.60 8.56

In this case, in simulations with missing data, our MO-RF approach performs at least as

well as the standard RF algorithms adapted in crude ways to accommodate missing obser-

vations. But its advantage is reduced in data from a switching DGP relative to data from a

linear DGP. The MO-RFRN model performs less well. The reasons are two-fold. First, the

DGP is not linear in this case, reducing the advantage of using a linear model at each node.

Second, because the MO-RFRN model estimates more parameters than the standard model,

it is more prone to over-fitting. Because we have, on average, only n/3 observations of each

state (as opposed to n observations of the only state in the previous exercise), estimating

additional parameters has a higher cost.

We have established that our standard algorithm for continuous variables is similar in

performance to the randomForest and ranger libraries in R when no data are missing, and

can slightly outperform these libraries for our data generating process when there are miss-

ing observations. Moreover, we have shown that allowing for two parameters — a slope

and intercept term — at each node, as opposed to the standard one parameter giving only

the conditional mean of the target variable, may improve out-of-sample performance. In our

simulations, the performance gains are clear in root mean square errors for a linear process,
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but our missing observation approach underperforms when the DGP is non-linear and we

use only 200 observations to train the model. Because this improvement will depend on the

data generating process, our forecasts when using actual data to predict inflation will use

both the MO-RF and the MO-RFRN models.

4 Nowcasting US inflation with random forest models

In this section we return to the problem that motivated the development of the random for-

est methods in the previous section and investigate whether US consumer price inflation

forecasts may be improved by exploiting daily and weekly mixed-frequency data with re-

spect to models involving only lagged inflation rates. We first describe the data and then

present in-sample and out-of-sample results. The section concludes with some robustness

checks.

4.1 Data

We obtain macroeconomic series on monthly, weekly, and daily frequency, including gaso-

line and commodity prices, from Trading Economics and FRED. The measures of inflation

are the monthly seasonally adjusted urban consumer price index (CPI) and the personal

consumption expenditures index (PCE) together with their core (ex food and energy) mea-

sures. For the inflation measures, we rely on real-time vintages drawn from ALFRED (see

Anderson (2006)). We define inflation as the month-on-month change in the respective price

index, πt = 100 ∗ (Pt/Pt−1 − 1), in which Pt denotes the price index (see Figure 3). We use

data for the target series spanning from 1980:M1 to 2022:M2. The starting point is defined

by data constraints.

Though we only have true vintage data for inflation, each observation of the RHS vari-

ables is tagged with a (daily) publication date; any predictor series published after a forecast-

ing date is dropped when recursively forecasting and evaluating the model performance.

Data will be tagged with the date of the first publication, but actual observations may be

revised. Commodity prices and financial indexes are available in real time; for each series

we use end-of-day closing prices. The CPI is published with an average lag of 12 days,

whereas the PCE price index has an average publication lag of 25 days. This leaves us with

a total of 169 contemporaneous macroeconomic series published at either daily, weekly, or

monthly frequency for nowcasting the CPI and with 211 contemporaneous series for now-

casting PCE. Because PCE is published with a greater lag, we have more variables which

reference the current month, including CPI measures. These numbers exclude data at lags;

as we include three lags of our target variable and one lag of all RHS variables, we have
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Figure 3: Target inflation rates, first release

over 300 features (potential predictors) entering the random forest models. Table 3 provides

a summary of the data used in the application. The majority of predictors are prices on a

daily frequency, starting as early as 1960 (nonetheless, for other data availability reasons our

estimation sample starts in 1980), while some series start in 2016 only. Several indicators

also cover the labor market and business activity, among which some surveys are included.

Table A.1 in the appendix details the list of series used and their categorization.

4.2 In-sample results

In order to shed some light on the workings of the random forest models, in this section

we study its in-sample properties. Note that what we call in-sample are in fact out-of-bag

results. Recall that we fit our random forest model by bagging (i.e. bootstrapping). For each

tree we estimate, we (randomly select and) drop 1/3 of the rows of data. Using this tree

we then create predictions using the 1/3 of observations that were dropped when fitting the

tree. Our final estimates are then the average of these out of bag predictions over 2000 trees.

Confidence intervals also use this process, as for each data point we will have a distribution

of out-of-bag estimates. We nevertheless refer to these results as in-sample as the model is

fitted on observations both before and after the out-of-bag data points.

Figure 4 displays the realized and fitted values of CPI inflation starting from 2013:M10 to

2022:M2 (in line with the out-of-sample evaluation period of Section 4.3). We construct these

estimates using all the data. Before the Covid-19 pandemic of 2020, the fitted values of the
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Table 3: Set of contemporaneous predictors used

Amount of
predictors

Type Frequency Earliest start Latest start CPI PCE

Business Daily 01.03.1960 01.03.1960 5 5
Weekly 02.01.1967 23.03.2012 14 14
Monthly 31.01.1970 30.11.2013 13 29

Consumer Weekly 05.02.2005 05.02.2005 1 1
Monthly 31.01.1970 28.02.2001 8 12

Government Monthly 31.01.1954 31.01.1980 5 5
Housing Weekly 05.01.1990 28.12.2007 2 2

Monthly 31.01.1970 31.01.1985 1 6
Labour Weekly 05.01.1980 05.01.1980 2 2

Monthly 31.01.1950 30.04.2006 19 20
Markets Daily 01.03.1960 02.01.2003 14 14

Weekly 02.01.1967 30.08.1991 6 6
Money Daily 06.09.1994 03.10.1994 2 2

Weekly 02.01.1980 18.12.2002 2 2
Monthly 31.01.1970 31.01.1970 2 4

Prices Daily 01.03.1960 22.01.2016 59 59
Weekly 20.08.1990 20.08.1990 1 1
Monthly 31.01.1956 30.04.2010 13 22

Trade Monthly 31.01.1970 31.03.2013 0 5

Figure 4: CPI inflation, fitted versus true values, 2013:M10 to 2022:M2
Fitted values from random forest random node model
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regression node model are very close to the realized CPI inflation rates. Since the beginning

of 2020, US CPI inflation experienced stronger dynamics, some of which the model was

not able to capture. Table 4 reports the resulting root mean square errors (RMSEs) of the

MO-RF and MO-RFRN models against a simple univariate specification in which inflation

forecasts πt+h are produced by an AR(1) model, πt = ρ0 + ρ1πt−1 + εt, where εt is serially

uncorrelated, with mean zero and variance σ2
ε .4 A first observation, in line with existing

estimates, is that the random forest models perform better for the CPI and PCE than for the

respective core measures. Second, relative to the AR(1) benchmarks, gains are larger for PCE

measures than CPI measures. This is due to the fact that PCE is published with a greater lag;

our PCE estimates include the CPI as a RHS variable, which is of course highly informative.

Figure 5: Feature contributions to CPI estimate, 2013:M10 to 2022:M2

One explanation for the discrepancy in performance between overall and core inflation

rates is the dominant role of energy prices in the overall indices. In a linear model, parameter

estimates describe the marginal impact of each RHS variable. In our case, the impact of

each variable is potentially conditional on all the other variables in the model. Following

Palczewska et al. (2014), we therefore use feature contributions to measure variable impact

on estimated results at a specific point in time. The feature contribution of a variable xk,t at

point t is simply the total change in the target variable yt each time the model splits on xk,t

to construct a prediction at period t. For this reason, for a given tree in our model, feature

4We also examined other common parsimonious univariate models, including the random walk forecast or
an integrated moving average as in Modugno (2013). We report results for the AR(1) model since it exhibited
better forecasting performance in our sample.
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contributions will sum to our estimate of yt from that tree, less the mean of y (which is not

attributed to any RHS variable).

Figure 5 illustrates this metric for the five most influential variables in our model. As

is evident in the figure, weekly gasoline prices contribute most to our estimates. Knotek

and Zaman (2017) similarly find high-frequency energy prices to be important in their now-

casting models of headline inflation. The service prices index from the ISM survey, the CPI

lagged by one month, the CRB commodity price index, and 10y inflation expectations are

the other variables which make the largest contribution to estimated results. Notably, since

mid-2021, service prices were able to capture a lot of the movement in the surge of CPI

inflation.

Regarding the different sub-components of the CPI index, the importance of gasoline

prices in accounting for price changes is further accentuated. As reported in Table 5, while

our models perform between 27 and 37 percent better than an AR(1) benchmark for the

commodities (goods) component of CPI inflation, stripping out food and energy increases

the ratio of RMSEs to around 0.96, constituting about a 4 percent improvement on the AR(1)

model. In the case of services, stripping out the energy component also reduces the gains in

RMSE accuracy of nowcasts from random forest models: For example, in the full sample, the

RMSE ratios of our MO-RF nowcasts are 0.958 for the services component of CPI inflation

and 0.998 for the services ex energy component.

Table 4: Relative RMSE, Inflation Measures

Full sample 2013:M10 to 2019:M12

MO-RF MO-RFRN MO-RF MO-RFRN

CPI 0.733 0.723 0.701 0.658
CPI core 0.971 1.032 0.979 0.981
PCE 0.619 0.545 0.629 0.544
PCE core 0.848 0.824 0.938 0.884

Out of bag RMSE relative to the (in-sample) RMSE
of estimates from an AR(1) model

Table 5: Relative RMSE, CPI Components

Full sample 2013:M10 to 2019:M12

MO-RF MO-RFRN MO-RF MO-RFRN

CPI commodities 0.729 0.733 0.675 0.632
CPI commodities less food energy 0.966 0.989 0.992 0.960
CPI nondurable goods 0.686 0.686 0.686 0.659
CPI durable goods 0.976 0.994 0.997 0.987
CPI food 0.978 0.971 0.974 0.952
CPI services 0.958 0.977 0.954 0.952
CPI services less food energy 0.998 1.082 0.991 1.010

Relative RMSE comparing random forest models to an AR(1) fit.

18



4.3 Out-of-Sample performance

In the following, we determine whether our random forest models can improve inflation

forecast accuracy. We compare the resulting predictions against the nowcasts from the

Cleveland Fed, which as noted above are as good as or better than many alternative forecast

sources.5 Those nowcasts are available for both CPI and PCE rates (including core inflation)

and start in 2013:M10. As in the previous section, we compare our predictions with those of

an AR(1) model. We implement a recursive estimation scheme, which for the first forecast

in the evaluation sample covers the period 1980:M1 to 2013:M10. According to the avail-

ability of nowcasts from the Cleveland Fed, our evaluation sample spans from 2013:M10 to

2022:M2. We perform one nowcast per week, giving a total of 102 months to forecast and a

total of 408 weekly forecasts made. The nowcasts are evaluated at horizons of 1, 2, 3, and 4

weeks ahead of the series publication date.

Estimating new parameters at each forecasting date allows us to appropriately account

for the data observed for the current month up to the estimation date. The number of RHS

variables will depend on the horizon. For estimation dates closer to the publication date, we

will have more contemporaneous variables; for earlier estimation dates we will have fewer.

At most, we will have a total of about 300 RHS variables (contemporaneous and lagged)

entering the model.

In the case of US data, series are either already seasonally adjusted (e.g., initial jobless

claims) or do not need seasonal adjustment (e.g., financial data).

Forecasting with the model involves the additional step of identifying which series were

realized at a given forecast origin date. We drop observations published after the current

forecast date, and then aggregate and process data following steps 1 through 5 outlined in

Section 2.2. Because the resulting processed data is uniform frequency, one can use it with

most standard regression tools. Moreover, the tail of the data is square. If we have a con-

temporaneous series with no observations at the current forecast origin, it is dropped from

the analysis, so that all series entering the model are observed in the last period. However,

the head of the data may contain missing observations.

We evaluate the accuracy of our nowcasts by means of root mean square forecast errors

(RMSEs) relative to RMSEs from the AR(1) benchmark. Forecast errors are calculated using

the final inflation vintage as the measure of actual inflation.6 We apply the modified version

of the Diebold-Mariano test (Diebold and Mariano, 1995) developed in Harvey et al. (1997).

The results are reported in Table 6. The relative RMSEs are shown together with significance

5The latest data and vintages are available at https://www.clevelandfed.org/en/our-research/
indicators-and-data/inflation-nowcasting.aspx. The nowcasts are based on the work of Knotek and
Zaman (2017).

6Our results are robust when using the first release instead for calculating forecast errors, see Table A.3.
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Table 6: Forecasting performance, relative RMSE

Full sample 2013:M10 to 2019:M12

Forecasting horizon in weeks 1 2 3 4 1 2 3 4

CPI
AR(1) Benchmark 2.101 2.101 2.101 2.101 1.520 1.520 1.520 1.520
Cleveland Fed Nowcast 0.662*** 0.678** 0.742** 0.799** 0.523*** 0.532*** 0.641*** 0.687**
MO-RF 0.455*** 0.487*** 0.544*** 0.564*** 0.357*** 0.418*** 0.506*** 0.499***
MO-RFRN 0.434*** 0.454*** 0.458*** 0.492*** 0.335*** 0.384*** 0.421*** 0.436***

CPI Core
AR(1) Benchmark 1.326 1.326 1.326 1.326 0.482 0.482 0.482 0.482
Cleveland Fed Nowcast 1.135 1.135 1.148 1.179 1.046 1.051 1.155 1.163
MO-RF 0.972 0.996 0.998 1.008 0.812*** 0.995 1.007 0.986
MO-RFRN 0.961 0.992 1.044 1.051 0.797*** 1.118 1.091 1.088

PCE
AR(1) Benchmark 1.857 1.857 1.857 1.857 1.191 1.191 1.191 1.191
Cleveland Fed Nowcast 0.438*** 0.462*** 0.596*** 0.626*** 0.567*** 0.571** 0.612** 0.630**
MO-RF 0.349*** 0.355*** 0.485*** 0.482*** 0.423*** 0.439*** 0.527** 0.522**
MO-RFRN 0.352*** 0.355*** 0.420*** 0.415*** 0.377*** 0.375*** 0.455*** 0.447**

PCE Core
AR(1) Benchmark 1.156 1.156 1.156 1.156 0.687 0.687 0.687 0.687
Cleveland Fed Nowcast 0.797*** 0.905 1.091 1.129 0.692 0.889 0.975 0.988
MO-RF 0.708*** 0.740*** 0.938 0.957 0.682*** 0.739*** 0.793** 0.840
MO-RFRN 0.839 0.882 0.874** 0.881 0.641*** 0.702*** 0.770** 0.807

RMSE of nowcasting models relative to the benchmark AR(1) model.
Significance levels: p-value: *** < 0.01, ** < 0.05, * < 0.1 of the modified Diebold-Mariano test (Harvey
et al., 1997).
Modified Diebold-Mariano tests: the alternative hypothesis states that (i) the nowcasts are significantly
more accurate than the benchmark and (ii) the random forest models are significantly better than the
Cleveland Fed nowcasts (in bold).

levels from the modified Diebold-Mariano tests, in asterisks for the hypothesis that the ran-

dom forest forecasts significantly improve upon the univariate AR(1) benchmark model and

in bold if they significantly outperform the Cleveland Fed nowcasts.

For the full evaluation sample, several results emerge: (1) Forecast accuracy improves

in most cases as our forecast horizon shrinks; (2) except for core CPI inflation, predictions

from the random forest models exhibit lower root mean square errors than the benchmark

at all horizons; (3) for CPI and PCE inflation, the nowcasts are significantly better than the

univariate benchmark at all horizons, whereas for the core inflation measures they are sig-

nificantly better between one and three weeks ahead; (4) the random forest models provide

significantly better CPI nowcasts than the Cleveland Fed at the one and two week horizons

for the full sample; for the limited sample at all horizons; (5) the random forest, random

node model exhibits somewhat lower forecast errors in most cases than the simple random

forest model.7

Interestingly, when excluding the period of the Covid-19 pandemic and the economic

7Table A.1 reports results for using the latest vintage of inflation to estimate models and form nowcasts.
Our findings are broadly qualitatively robust.
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recovery in its aftermath with surging inflation rates, the random forest models also outper-

form the benchmark and the Cleveland Fed nowcasts for the core inflation rates. Moreover,

as reported in the right half of Table 6, for the subsample 2013:M10 to 2019:M12, the ran-

dom forest models provide significantly more accurate inflation nowcasts at least up to four

weeks ahead for any target. As our data set captures at least partially price dynamics in the

service sector or pressures in the global value chains, this explains why our models were

able to capture slightly more accurately the increase in core inflation rates in 2021 than the

Cleveland Fed.

In summary, nowcasts from our proposed random forest methodology provide a valu-

able early signal on inflation developments in the US. Overall, our random forest-based

forecasts using a large set of indicators can be seen as at least matching the accuracy of the

Cleveland Fed nowcasts based on the methodology of Knotek and Zaman (2017) that fo-

cuses on a small set of indicators. In some cases, although not a majority, our nowcasts

improve on the accuracy of the Cleveland Fed nowcasts. Accordingly, our forecasts may be

seen as a useful complement to familiar nowcasts such as the Cleveland Fed’s. That a simple

model using only energy prices and historical inflation is competitive with a large data set

is explained by the results from feature contributions in Section (4). Though we incorporate

over 300 RHS variables in our model, gasoline prices still dominate the analysis of headline

inflation measures.

4.4 Robustness

We now conduct a few additional exercises to assess the robustness of our results reported in

Table 6.8 First, we exclude gasoline prices from our data set; second, we estimate a MIDAS

model featuring gasoline prices only; finally, we test our random forest models against a

basic random forest specification in which no missing data is allowed.

Table 7 presents the results for the first part of the robustness exercise. In the first row

we report the RMSE of the random forest random node model, which exhibited the lowest

RMSE in Table 6. The remaining rows display the RMSEs resulting from alternative speci-

fications together with significance levels from Diebold-Mariano tests (so, all entries in the

table are levels of RMSEs and not ratios). Overall, the forecasts from our proposed random

forest model significantly outperforms the alternative specifications in most considered ex-

ercises, at all horizons.
8We also tested our results against the estimation with a fixed, rolling window length of 20 years; and

against a bottom-up CPI prediction using the nowcasts for commodities and services inflation. Further, the
results reported here for headline CPI inflation extend to PCE and core inflation rates. For brevity, the results
are not reported here but available from the authors upon request. Our results are qualitatively robust against
these alternative approaches and specifications.
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Table 7: Robustness of CPI forecasting performance, RMSE

Full sample 2013:M10 to 2019:M12

Forecasting horizon in weeks 1 2 3 4 1 2 3 4

CPI real-time
MO-RFRN 0.910 0.949 0.957 1.034 0.506 0.577 0.633 0.662

Excluding gasoline prices
MO-RF 1.232*** 1.400*** 1.458*** 1.423*** 0.776*** 0.997*** 1.086*** 1.034***
MO-RFRN 1.286*** 1.459*** 1.419*** 1.330*** 0.757*** 1.010*** 1.086*** 1.084***

MIDAS
1.653*** 1.746*** 1.770*** 1.851*** 1.063*** 1.144*** 1.156*** 1.201***

randomForest
2.534*** 2.485*** 2.470*** 2.521*** 1.645*** 1.665*** 1.654*** 1.624***

Significance levels: p-value: *** < 0.01, ** < 0.05, * < 0.1 of the modified Diebold-Mariano test (Harvey
et al., 1997).
Modified Diebold-Mariano tests: the alternative hypothesis states that the alternative nowcasts are
significantly less accurate than the CPI nowcasts from the random forest random node model.

Diving into the details of our robustness analysis, we first report results when gasoline

prices are excluded from the data set. As shown in Table 4, gasoline prices are a dominant

source of information for predicting overall CPI inflation. Hence, an exclusion of the most

important indicator consequently leads to a substantial deterioration of nowcasting perfor-

mance at both horizons, in both samples. The RMSEs of the nowcasts from the MO-RF and

MO-RFRN specifications without gasoline prices (rows 2 and 3) are well above the RMSEs

achieved by the MO-RFRN specification with gasoline prices (row 1).

Next, we challenge and assess the robustness of our results by specifying an additional

model of the MIDAS form, along the lines of Ghysels et al. (2006), using weekly gasoline

prices as explanatory variable, a key indicator based on our previous analysis. We include

two lags for the dependent monthly variable, and we parameterize the MIDAS polynomial

with an Exponential Almon lag. The model is estimated by nonlinear least squares.9

Our proposed random forest random node model exhibits much lower RMSE than the

MIDAS model at all horizons considered, both for the full sample and for the restricted

sample. The nowcasts are significantly more accurate at all horizons considered. The results

suggest that a single regressor model with gasoline prices as explanatory variable is not

sufficient to predict CPI inflation, not even when using a flexible MIDAS specification. The

random forest models allow the inclusion of a set of other variables, capturing inflation

better and providing better predictions.

Finally, we contrast our enhanced random forest model results against the traditional

random forest model without missing data. We estimate the traditional random forest model

using the "randomForest"-package in R. In such a model specification, the data has to be

9See for instance Breitung and Roling (2015), Knotek and Zaman (2017), and Monteforte and Moretti (2013)
for MIDAS models to nowcast inflation.
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square; i.e., it cannot have missing values either at the beginning of the series or at the end.

For estimation, we assume that data series span at least ten years. Evidently, the nowcasts

from our enhanced random forest models significantly outperform the predictions of the tra-

ditional RF model, in line with the results we obtained with simulated data and confirming

the practical usefulness of our extensions.

5 Conclusions

In this article we present a novel approach to use mixed-frequency data with random forest

models. Further, we generalize the models to allow for missing observations and for the

expected value of the target variable at each node of the regression tree to be based on a

linear relationship between target and predictors. We test these enhanced models both with

simulated data and in an empirical application focused on predicting various measures of

US inflation. We find that our new random forest models significantly outperform standard

random forests when data are missing, and are competitive with if not significantly better

than established benchmarks for inflation, such as those of the Cleveland Fed.
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A Appendix

A.1 Further results

Table A.1: Forecasting performance, relative RMSE, nowcasts from models estimated with
final vintage inflation data

Full sample 2013:M10 to 2019:M12

Forecasting horizon in weeks 1 2 3 4 1 2 3 4

CPI
AR(1) Benchmark 2.093 2.093 2.093 2.093 1.520 1.520 1.520 1.520
Cleveland Fed Nowcast 0.689*** 0.693** 0.712** 0.766* 0.529*** 0.529*** 0.547** 0.581**
MO-RF 0.626*** 0.623*** 0.686*** 0.642*** 0.462*** 0.456*** 0.567** 0.544***
MO-RFRN 0.609*** 0.636*** 0.669*** 0.669*** 0.425*** 0.421*** 0.51*** 0.526**

CPI Core
AR(1) Benchmark 1.331 1.331 1.331 1.331 0.536 0.536 0.536 0.536
Cleveland Fed Nowcast 1.163 1.163 1.153 1.154 0.962 0.962 0.962 0.963
MO-RF 1.040 1.032 1.024 1.033 0.897** 0.918** 0.93*** 0.928***
MO-RFRN 1.111 1.056 1.047 1.108 0.897** 0.908*** 0.927*** 0.932**

PCE
AR(1) Benchmark 1.823 1.823 1.823 1.823 1.196 1.196 1.196 1.196
Cleveland Fed Nowcast 0.379*** 0.383*** 0.609*** 0.616*** 0.479*** 0.488** 0.562** 0.547**
MO-RF 0.406*** 0.423*** 0.578*** 0.592*** 0.453*** 0.474*** 0.55** 0.558**
MO-RFRN 0.365*** 0.380*** 0.542*** 0.588*** 0.401*** 0.420*** 0.499** 0.512**

PCE Core
AR(1) Benchmark 1.077 1.077 1.077 1.077 0.633 0.633 0.633 0.633
Cleveland Fed Nowcast 0.788** 0.772* 1.100 1.151 0.883 0.843* 0.92 0.969
MO-RF 0.859** 0.882* 0.973 0.957 0.786* 0.826* 0.869* 0.910
MO-RFRN 0.707*** 0.734** 0.955 0.931 0.739** 0.757** 0.82** 0.880

RMSE of nowcasting models relative to the benchmark AR(1) model.
Significance levels: p-value: *** < 0.01, ** < 0.05, * < 0.1 of the modified Diebold-Mariano test (Harvey
et al., 1997).
Modified Diebold-Mariano tests: the alternative hypothesis states that (i) the nowcasts are significantly
more accurate than the benchmark and (ii) the random forest models are significantly better than the
Cleveland Fed nowcasts (in bold).



Table A.2: Robustness of CPI forecasting performance, relative RMSE, final vintage

Full sample 2013:M10 to 2019:M12

Forecasting horizon in weeks 1 2 3 4 1 2 3 4

Excluding gasoline prices
MO-RF 0.780*** 0.804** 0.819* 0.774** 0.691*** 0.732*** 0.729*** 0.736***
MO-RFRN 0.883 0.881** 0.850** 0.753** 0.704*** 0.746*** 0.740*** 0.727***

Fixed estimation window of 20 years
MO-RF 0.615*** 0.623*** 0.686*** 0.646*** 0.451*** 0.455*** 0.567*** 0.551***
MO-RFRN 0.660*** 0.673*** 0.680*** 0.655*** 0.423*** 0.426*** 0.511*** 0.511***

Bottom-Up with commodities and services
MO-RF 0.618*** 0.647*** 0.681** 0.669*** 0.476*** 0.461*** 0.562*** 0.536***
MO-RFRN 0.657*** 0.662*** 0.729** 0.669*** 0.434*** 0.444*** 0.517*** 0.523***

RMSE of nowcasting models relative to the benchmark AR(1) model.
Significance levels: p-value: *** < 0.01, ** < 0.05, * < 0.1 of the modified Diebold-Mariano test (Harvey
et al., 1997).
Modified Diebold-Mariano tests: the alternative hypothesis states that (i) the nowcasts are significantly
more accurate than the benchmark and (ii) the random forest models are significantly better than the
Cleveland Fed nowcasts (in bold).

Table A.3: Forecasting performance, relative RMSE, real-time inflation data, evaluated with
first release

Full sample 2013:M10 to 2019:M12

Forecasting horizon in weeks 1 2 3 4 1 2 3 4

CPI
AR(1) Benchmark 2.354 2.354 2.354 2.354 1.760 1.760 1.760 1.760
Cleveland Fed Nowcast 0.616*** 0.633*** 0.673*** 0.731** 0.433*** 0.444*** 0.501*** 0.560***
MO-RF 0.534*** 0.572*** 0.626*** 0.636*** 0.527*** 0.582*** 0.660*** 0.634***
MO-RFRN 0.503*** 0.539*** 0.584*** 0.597*** 0.496*** 0.555*** 0.631*** 0.607***

CPI Core
AR(1) Benchmark 1.497 1.497 1.497 1.497 0.667 0.667 0.667 0.667
Cleveland Fed Nowcast 1.123 1.122 1.143 1.167 1.043 1.044 1.151 1.156
MO-RF 0.983 1.008 1.007 1.015 0.931** 1.021 1.026 1.011
MO-RFRN 0.962 0.990 1.023 1.032 0.924** 1.105 1.083 1.082

PCE
AR(1) Benchmark 1.871 1.871 1.871 1.870 1.269 1.269 1.269 1.269
Cleveland Fed Nowcast 0.325*** 0.391*** 0.566*** 0.602*** 0.335*** 0.434*** 0.542** 0.569**
MO-RF 0.418*** 0.418*** 0.545*** 0.541*** 0.518*** 0.521*** 0.629** 0.626*
MO-RFRN 0.426*** 0.415*** 0.492*** 0.487*** 0.487*** 0.468*** 0.558** 0.559**

PCE Core
AR(1) Benchmark 1.058 1.058 1.058 1.058 0.676 0.676 0.676 0.676
Cleveland Fed Nowcast 0.700*** 0.858* 1.109 1.159 0.731** 0.783* 0.979 0.996
MO-RF 0.719*** 0.739*** 0.958 0.983 0.714** 0.743*** 0.812** 0.844
MO-RFRN 0.894 0.913 0.933 0.946 0.705** 0.729*** 0.823** 0.863

RMSE of nowcasting models relative to the benchmark AR(1) model.
Significance levels: p-value: *** < 0.01, ** < 0.05, * < 0.1 of the modified Diebold-Mariano test (Harvey
et al., 1997).
Modified Diebold-Mariano tests: the alternative hypothesis states that (i) the nowcasts are significantly
more accurate than the benchmark and (ii) the random forest models are significantly better than the
Cleveland Fed nowcasts (in bold).
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Table A.4: Detailed data list

series_name start pub_lag obs take_logs take_diffs frequency type

cattle feeder 1980-01-01 2 15401 1 1 daily prices
news sentiment 1980-01-01 2 15401 0 0 daily business
aruoba diebold scotti 1980-01-01 10 15393 0 0 daily business
daily news index 1985-01-01 1 13575 1 1 daily business
equity market uncertainty 1985-01-01 1 13575 1 1 daily business

t bill spread 10y 2y 1980-01-02 1 10541 0 1 daily markets
t bill spread 10y 3m 1982-01-04 1 10042 0 0 daily markets
commodity tot 1996-01-02 1 9557 0 1 daily prices
corporate bond spread 1986-01-02 2 9068 0 0 daily markets
corporate 10y t bill spread 1986-01-02 2 9043 0 0 daily markets

ted spread 1986-01-02 8 8853 0 0 daily markets
Brent 1990-01-01 1 8512 1 1 daily prices
Gold 1990-01-01 1 8409 1 1 daily prices
Palladium 1990-01-01 1 8401 1 1 daily prices
Platinum 1990-01-02 1 8390 1 1 daily prices

Silver 1990-01-02 1 8390 1 1 daily prices
LME Index 1990-01-01 1 8385 1 1 daily prices
S&P GSCI 1990-01-01 1 8385 1 1 daily prices
Wool 1990-01-01 1 8385 1 1 daily prices
Oat 1990-01-01 1 8356 1 1 daily prices

Wheat 1990-01-01 1 8351 1 1 daily prices
Rice 1990-01-01 1 8349 1 1 daily prices
Corn 1990-01-01 1 8348 1 1 daily prices
Zinc 1990-01-01 1 8330 1 1 daily prices
Tin 1990-01-01 1 8325 1 1 daily prices

Natural gas 1990-04-03 1 8283 1 1 daily prices
Crude Oil 1990-01-02 1 8237 1 1 daily prices
Cocoa 1990-01-01 1 8193 1 1 daily prices
Soybeans 1990-01-01 1 8129 1 1 daily prices
Feeder Cattle 1990-01-02 1 8124 1 1 daily prices

Live Cattle 1990-01-02 1 8118 1 1 daily prices
Lumber 1990-01-02 1 8111 1 1 daily prices
Sugar 1990-01-02 1 8105 1 1 daily prices
ofr financial stress 2000-01-03 1 8095 0 1 daily markets
Lean Hogs 1990-01-02 1 8094 1 1 daily prices

Baltic Dry 1990-01-02 1 8078 1 1 daily prices
Coffee 1990-01-02 1 8057 1 1 daily prices
Heating oil 1990-01-02 1 8025 1 1 daily prices
Canola 1990-01-02 1 7939 1 1 daily prices
Cotton 1990-01-01 1 7870 1 1 daily prices

Orange Juice 1990-01-02 1 7741 1 1 daily prices
Copper 1990-01-04 1 7553 1 1 daily prices
Lead 1993-07-05 1 7470 1 1 daily prices
Nickel 1993-07-20 1 7459 1 1 daily prices
stock market 1993-09-02 1 7428 1 1 daily markets

Palm Oil 1990-01-02 1 7422 1 1 daily prices
government bond 10y 1993-10-28 0 7420 1 1 daily markets
Aluminum 1991-01-23 1 7413 1 1 daily prices
CRB Index 1994-01-03 1 7284 1 1 daily prices
interbank rate 1994-09-06 1 7173 1 1 daily money

economic surprise 2003-01-01 0 7002 0 0 daily business
currency 1997-02-28 0 6795 1 1 daily markets
Beef 2001-01-25 1 5497 1 1 daily prices
ovx oil volatility etf 2007-05-10 0 5412 1 1 daily markets
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(continued)
series_name start pub_lag obs take_logs take_diffs frequency type

T10YIE 2003-01-02 0 4797 0 0 daily markets

T5YIE 2003-01-02 0 4797 0 0 daily markets
forward inflation expectations 5y 2003-01-02 1 4794 0 0 daily markets
inflation expectations 10y 2003-01-02 1 4794 1 1 daily markets
Ethanol 2005-04-11 1 4508 1 1 daily prices
Molybdenum 2005-09-13 1 4289 1 1 daily prices

Gasoline 2005-10-03 1 4183 1 1 daily prices
Milk 2006-06-02 1 3855 1 1 daily prices
Uranium 1990-01-01 1 3792 1 1 daily prices
Iron Ore 2007-09-18 1 3764 1 1 daily prices
Steel 2008-04-28 1 3593 1 1 daily prices

Coal 2008-12-05 1 3441 1 1 daily prices
Poultry 2009-09-04 1 3251 1 1 daily prices
Tea 2009-09-04 1 3251 1 1 daily prices
Cobalt 2010-02-22 1 3130 1 1 daily prices
Propane 2009-10-27 1 3091 1 1 daily prices

Lithium 2010-07-16 1 3026 1 1 daily prices
Cheese 2010-06-21 1 2847 1 1 daily prices
Iron Ore 62% fe 2010-10-22 1 2838 1 1 daily prices
Neodymium 2012-06-01 1 2536 1 1 daily prices
Manganese 2012-09-28 1 2451 1 1 daily prices

Rhodium 2012-10-03 1 2441 1 1 daily prices
Rubber 2010-11-19 1 1844 1 1 daily prices
Soda Ash 2016-01-01 1 1542 1 1 daily prices
Bitumen 2016-01-22 1 1455 1 1 daily prices
interest rate 1994-10-03 0 380 1 1 daily money

initial jobless claims 1980-01-05 5 2200 0 0 weekly labour
national financial conditions 1980-01-07 1 2200 0 1 weekly markets
mortgage 30y 1980-01-04 0 2200 1 1 weekly markets
continuing jobless claims 1980-01-05 12 2199 0 0 weekly labour
fiber leading index 1980-01-07 10 2199 1 1 weekly business

banks balance sheet 1980-01-02 14 2197 1 1 weekly money
crude oil stocks change sa 1982-10-08 6 2053 0 0 weekly business
raw steel estimate 1984-12-31 7 1935 1 1 weekly business
bull bear spread 1987-07-20 4 1806 0 0 weekly markets
crude oil rigs 1987-07-17 0 1804 1 1 weekly business

carloads originated 1988-01-04 9 1782 1 1 weekly business
gasoline stocks change sa 1990-01-12 6 1677 0 0 weekly business
mortgage rate 1990-01-05 5 1675 1 1 weekly housing
gasoline prices weekly sa 1990-08-20 1 1640 1 1 weekly prices
mortgage 15y 1991-08-30 0 1592 1 1 weekly markets

mortgage spread 30y 15y 1991-08-30 0 1591 0 0 weekly markets
financial stress index 1993-12-27 4 1470 0 1 weekly markets
natural gas stocks change sa 1994-01-07 7 1469 0 0 weekly business
harper petersen shipping 2001-01-01 4 1104 1 0 weekly business
central bank balance sheet 2002-12-18 7 1002 1 1 weekly money

business applications 2004-06-21 1 920 1 1 weekly business
redbook index sa 2005-02-05 4 889 0 0 weekly consumer
weekly economic index 2007-12-31 9 739 0 0 weekly business
mortgage applications 2007-12-28 5 734 0 0 weekly housing
total rig count 2011-01-31 4 578 1 1 weekly business

api crude oil stock change sa 2012-03-23 5 509 0 0 weekly business
ism manu empl 1980-01-01 1 507 0 0 monthly business
ism manu no 1980-01-01 1 507 0 0 monthly business
ism manu pmi tot 1980-01-01 1 507 0 0 monthly business
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(continued)
series_name start pub_lag obs take_logs take_diffs frequency type

ism manu prices 1980-01-01 1 507 0 0 monthly business

ism manu prod 1980-01-01 1 507 0 0 monthly business
ism manu supplier del times 1980-01-01 1 507 0 0 monthly business
business confidence 1980-01-31 1 506 0 0 monthly business
chicago pmi 1980-01-31 0 506 0 0 monthly business
philadelphia fed manufacturing index 1980-01-31 -12 506 0 0 monthly business

consumer confidence 1980-01-31 -17 506 0 0 monthly consumer
median new home price 1980-01-31 25 505 1 1 monthly housing
new home sales 1980-01-31 24 505 0 0 monthly housing
chicago fed national activity index 1980-01-31 23 505 0 0 monthly business
existing home sales 1980-01-31 22 505 1 1 monthly housing

car production 1980-01-31 20 505 0 0 monthly business
money supply m1 1980-01-31 19 505 1 1 monthly money
money supply m2 1980-01-31 19 505 1 1 monthly money
building permits 1980-01-31 18 505 0 0 monthly housing
housing starts 1980-01-31 18 505 0 0 monthly housing

mining production 1980-01-31 17 505 0 0 monthly business
money supply m0 1980-01-31 17 505 1 1 monthly money
industrial production 1980-01-31 16 505 0 0 monthly business
industrial production mom 1980-01-31 16 505 0 0 monthly business
manufacturing production 1980-01-31 16 505 0 0 monthly business

core inflation rate 1980-01-31 14 505 1 1 monthly prices
loans to private sector 1980-01-31 14 505 1 1 monthly money
private sector credit 1980-01-31 14 505 1 1 monthly consumer
consumer price index cpi 1980-01-31 13 505 1 1 monthly prices
core consumer prices 1980-01-31 13 505 1 1 monthly prices

cpi com 1980-01-31 13 505 1 1 monthly prices
cpi com less food energy 1980-01-31 13 505 1 1 monthly prices
cpi durables 1980-01-31 13 505 1 1 monthly prices
cpi food 1980-01-31 13 505 1 1 monthly prices
cpi nondurables 1980-01-31 13 505 1 1 monthly prices

cpi serv 1980-01-31 13 505 1 1 monthly prices
cpi serv less food energy 1980-01-31 13 505 1 1 monthly prices
fiscal expenditure sa 1980-01-31 13 505 1 1 monthly government
government revenues sa 1980-01-31 13 505 1 1 monthly government
producer prices change 1980-01-31 13 505 0 0 monthly prices

government budget value sa 1980-01-31 12 505 0 1 monthly government
government debt 1980-01-31 9 505 1 1 monthly government
long term unemployment rate sa 1980-01-31 7 505 0 0 monthly labour
bank lending rate 1980-01-31 6 505 0 0 monthly consumer
employed persons 1980-01-31 6 505 1 1 monthly labour

employment rate 1980-01-31 6 505 1 1 monthly labour
government payrolls 1980-01-31 5 505 0 0 monthly labour
manufacturing payrolls 1980-01-31 5 505 0 0 monthly labour
non farm payrolls 1980-01-31 5 505 0 0 monthly labour
nfib business optimism index 1980-01-31 11 457 0 0 monthly business

nahb housing market index 1985-01-31 -14 446 1 1 monthly housing
import prices 1982-09-30 14 423 1 1 monthly prices
export prices 1983-09-30 14 419 1 1 monthly prices
gasoline prices sa 1991-02-28 0 372 1 1 monthly consumer
zew inflation balance 1991-12-01 -20 364 0 0 monthly business

advance retail sales 1992-01-31 17 361 1 1 monthly business
retail sales mom 1992-02-29 14 360 0 0 monthly consumer
retail sales ex autos 1992-02-29 13 360 0 0 monthly consumer
retail sales yoy 1993-01-31 14 349 0 0 monthly consumer
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(continued)
series_name start pub_lag obs take_logs take_diffs frequency type

wages 1993-09-30 7 341 1 1 monthly labour

wages in manufacturing 1993-09-30 7 341 1 1 monthly labour
unemployed persons 1993-09-30 6 341 0 0 monthly labour
unemployment rate 1993-09-30 5 341 0 0 monthly labour
total vehicle sales 1993-09-30 3 341 0 0 monthly business
food inflation 1993-10-31 13 340 0 0 monthly prices

full time employment 1993-10-31 7 340 1 1 monthly labour
youth unemployment rate 1993-09-30 7 340 0 0 monthly labour
richmond fed manufacturing index 1993-11-30 -5 340 0 0 monthly business
challenger job cuts sa 1994-01-31 4 337 0 0 monthly labour
inflation rate 1994-09-30 14 329 0 1 monthly prices

inflation rate mom 1994-09-30 14 329 0 0 monthly prices
labor force participation rate 1994-09-30 5 329 1 1 monthly labour
creighton midamerican pmi prices 1994-10-01 3 329 0 0 monthly business
ism new york index 1994-09-30 2 319 0 0 monthly business
cpi housing utilities 1997-02-28 13 300 1 1 monthly prices

cpi transportation 1997-02-28 13 300 1 1 monthly prices
ism serv ba 1997-07-01 1 297 0 0 monthly business
ism serv no 1997-07-01 1 297 0 0 monthly business
ism serv pmi tot 1997-07-01 1 297 0 0 monthly business
ism serv prices 1997-07-01 1 297 0 0 monthly business

ism serv supplier del times 1997-07-01 1 297 0 0 monthly business
non manufacturing pmi 1997-07-31 5 296 0 0 monthly business
global supply chain pressures 1997-09-01 4 294 1 0 monthly business
labor market conditions index 1994-09-30 8 274 0 1 monthly labour
economic optimism index 2001-02-28 -24 253 0 0 monthly consumer

adp employment change 2001-04-30 3 251 0 1 monthly labour
empire state manu curr price paid 2001-07-01 -14 249 0 0 monthly business
empire state manu curr price rece 2001-07-01 -14 249 0 0 monthly business
empire state manu fut price paid 2001-07-01 -14 249 0 0 monthly business
empire state manu fut price rece 2001-07-01 -14 249 0 0 monthly business

ny empire state manufacturing index 2001-07-31 -15 248 0 0 monthly business
dallas fed manufacturing index 2004-06-30 -3 213 0 0 monthly business
average weekly hours sa 2006-03-31 5 191 0 0 monthly labour
average hourly earnings 2006-04-30 5 190 0 0 monthly labour
cs cfa inflation balance 2006-06-01 -5 190 0 0 monthly business

producer prices 2009-11-30 13 147 1 1 monthly prices
core producer prices 2010-04-30 12 142 1 1 monthly prices
philly fed bos non-manu price paid 2011-03-01 -6 133 0 0 monthly business
manufacturing pmi 2012-06-30 -8 117 0 0 monthly business
inflation expectations 2013-06-30 11 104 0 0 monthly prices

services pmi 2013-10-31 -7 101 1 1 monthly business
composite pmi 2013-11-30 -7 100 0 0 monthly business
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