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Abstract

In this paper, we combine density forecasts from Bayesian quantile regressions. We
develop a forecast combination scheme that assigns weights to the individual predic-
tive density forecasts based on quantile scores. Compared to standard combination
schemes, our approach has the advantage of assigning a different set of combina-
tion weights to the various quantiles of the predictive distribution. We apply our
approach to US GDP growth forecasts based on quantile regressions using a set of
common leading indicators. The results show that density forecasts from our quan-
tile combination approach outperforms forecasts from commonly used combination
approaches such as Bayesian Model Averaging, optimal combination, combinations
based on recursive logarithmic score weights and equal weights. In particular, our
quantile combination approach provides more accurate forecasts for the lower tail
of the GDP distribution, measuring downside macroeconomic risk.
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1 Introduction

Uncertainty and downside risk plays a prominent role for economic forecasts and policy

decisions. To reflect uncertainty around mean predictions, it has become popular for

economic forecasters’ and policy institutions, particularly for central banks, to provide

probabilistic (density) forecasts, see e.g., monetary policy reports of the Bank of England,

Norges Bank, Swedish Riksbank, and the Federal Reserve Bank. In recent years, policy-

makers have shifted their focus from forecasts uncertainty in general to being particularly

interested in quantifying macroeconomic downside tail risk, often referred to as GDP-at-

risk.1 Motivated by the concept of value-at-risk from the finance literature, Adrian et al.

(2019) study the distribution of macroeconomic risk by estimating a quantile forecast

regression of real GDP growth over the next year for various quantiles. Adrian et al.

(2019) argue that financial conditions are particularly informative above future downside

macroeconomic risk. This has led to a surge of interest in growth-at-risk (e.g. Coe and

Vahey, 2020; Reichlin et al., 2020; Carriero et al., 2020; Clark et al., 2021; Brownlees and

Souza, 2021).2 On the other hand, a vast amount of research has shown that a variety

of economic and financial variables, such as various survey data, labour market variables,

housing related variables, oil prices, stocks prices and the slope of the terms structure,

contain predictive information about future economic recessions and downturns, thus be-

ing informative of downside macroeconomic risk, see e.g. Marcellino (2006) and Liu and

Moench (2016) for an overview.

Concerned with accurate and useful forecasts, forecasters and policymakers routinely

rely on multiple sources, employing multiple models and predictors, to produce forecasts.

This has spurred a recent resurgence in interest in combination of density forecasts in

macroeconomics and econometrics. These new developments range from combining pre-

dictive densities using weighted linear combinations of prediction models, evaluated using

various scoring rules (e.g. Hall and Mitchell, 2007; Amisano and Giacomini, 2007; Jore

et al., 2010; Hoogerheide et al., 2010; Kascha and Ravazzolo, 2010; Geweke and Amisano,

2011, 2012; Gneiting and Ranjan, 2013; Aastveit et al., 2014; Kapetanios et al., 2015a;

Ganics, 2017; Ganics et al., 2020), to more complex combination approaches that allows

for time-varying weights with possibly both learning and model set incompleteness (e.g.

Billio et al., 2013; Casarin et al., 2015; Pettenuzzo and Ravazzolo, 2016; Del Negro et al.,

1In the US, the Federal Open Market Committee (FOMC) commonly discusses downside risks to
growth in FOMC statements, with the relative prominence of this discussion fluctuating with the business
cycle. More generally, macroeconomic downside risk has also been the focus of recent publications and
speeches by policy institutions such as the International Monetary Fund (IMF), Bank of Canada and
Bank of England.

2Note that all these papers uses a current vintage of NFCI in a pseudo out-of-sample framework to
form predictions GDP growth. In a recent paper, Amburgey and McCracken (2022) construct real-time
vintages of the NFCI. They find additional gains in the predictive content of NFCI for quantiles of GDP
growth when using real-time vintages of NFCI, particularly leading up to recessions.
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2016; Aastveit et al., 2018; McAlinn and West, 2019a; McAlinn et al., 2020).3 Common

to all these combination approaches, a single weight is attach to the entire predictive

distribution for each model. This is limiting as it ignores that some models may be good

at forecasting the mean of the distribution but poor in the tails, while other models may

provide accurate forecasts in the tail but put less accurate forecasts for the mean of the

distribution. The need for a coherent methodology that gives policy makers the flexibil-

ity to construct density forecasts that incorporates the heterogeneity in accuracy across

regions of the forecast distribution from multiple sources cannot be understated.

In this paper, we address the issues above, by proposing a new alternative forecast

combination approach, which aims to obtain overall more accurate density forecasts, by

assigning a set of combination weights to the various quantities of the individual density

forecasts. To achieve this goal, we first produce individual density forecasts using Bayesian

quantile regression models as in Kozumi and Kobayashi (2011). Then we combine the

various individual forecasts using a novel quantile combination approach, where each

quantile of the combined density forecast is constructed as a weighted combination of the

individual forecasts for the corresponding quantile. To account for the heterogeneity in

forecast accuracy from the various models across the various parts of the distribution, we

allocate the quantile-specific weights from each model using the quantile score by Gneiting

and Ranjan (2011). As highlighted by Gneiting and Ranjan (2011), the quantile score is a

strictly proper scoring rule, which is a weighted version (decomposition) of the continuous

ranked probability score (CRPS).

In an empirical application, we demonstrate the usefulness of our novel quantile com-

bination approach to forecasting real GDP growth rate for the Unites States for the

period 1993Q1-2020Q1 using a real-time dataset. We combine predictive distributions

from K = 5 quantile regression models. Each quantile regression model consists of lagged

GDP growth and one additional predictor (with lags). Motivated by the recent paper by

Adrian et al. (2019) and the vast literature on predicting economic recessions, we include

the following predictors, the National Financial Condition Index (NFCI), the University of

Michigan Consumer Sentiment Index (ICS), a credit spread that measures the difference

between BAA corporate bond yield and the 10 year treasury yield, residential investments

and the unemployment rate.

Our novel quantile combination approach extends the findings of earlier forecast com-

bination and GDP-at-risk literature in several ways.

First, we show that density forecasts from our quantile combination approach out-

performs forecasts from commonly used combination approaches such as Bayesian Model

Averaging (BMA), the optimal combination of density forecasts (OptComb) suggested by

Hall and Mitchell (2007) and Geweke and Amisano (2011), recursive logarithmic score

weights as in Jore et al. (2010) and equal weights. This holds irrespective of using the

3See Aastveit et al. (2019) for a recent survey on the advances in forecast density combinations.
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CRPS or any threshold or quantile weighted version of the CRPS, that emphasize perfor-

mance in either the centre, left or right tail of the distribution, as a measure of forecast

accuracy. The latter therefore indicates that the relative gains in terms of forecasting

performance from our model is not specific to observations in a certain region of the dis-

tribution or to specific subperiods in our forecasting sample. Instead, we find a steady

improvements over time and in all quantiles of the GDP distribution.

Second, for each individual model, we show that forecasts from a quantile regressions

outperform forecasts from the linear regression. This complements findings in Korobilis

(2017) and Mazzi and Mitchell (2019) that quantile regression methods can be useful for

macroeconomic forecasting.

Third, while Adrian et al. (2019) argue that financial conditions are particularly in-

formative about future downside macroeconomic risk, we show that quantile regressions

that include variables, such as residential investments and stock prices, provide somewhat

more accurate forecasts for the lower left quantile of the GDP distribution than quantile

regressions that include the NFCI. This suggests that also other variables than the NFCI

are informative about future downside macroeconomic risk and supplements findings in

Reichlin et al. (2020) who finds that financial conditions have little predictive content for

quantiles conditional on other macroeconomic information.

Finally, our paper is also related to Opschoor et al. (2017) that assess the merits of

density forecast combination schemes that assign weights to individual density forecasts

based on the censored likelihood scoring rule of Diks et al. (2011) and the CRPS of

Gneiting and Ranjan (2011). While in their paper, they use this approach in the context

of measuring downside risk (Value-at-Risk) in equity markets using recently developed

individual volatility models, our paper differ in three important aspects. First, our com-

bination approach differs as we assign weights to individual density forecasts based on

quantile scores. Second, our goal is different as we aim to obtain density forecasts that are

overall more accurate for all parts of the distribution and not only for the lower tail. Fi-

nally, we focus on forecasting GDP growth, arguably the most important macroeconomic

variable, instead of measuring downside risk in equity markets.

The rest of the paper is organized as follows: Section 2 presents our quantile combina-

tion approach and the individual quantile regression models; Section 3 presents the data

set we use and results from our empirical application. The limitations of our empirical

exercise are relaxed in simulated scenarios in Section (4), showing the performance of

quantile combinations in controlled environments. Finally Section 5 concludes.

2 Econometric framework

In this section we describe our novel quantile forecast combination approach. Our com-

bination approach aims to obtain overall more accurate density forecasts, by assigning a
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set of combination weights to the various quantities of the individual density forecasts.

To achieve this goal, we first produce individual density forecasts using Bayesian quantile

regression models, outlined in section (2.1). Then we combine the various individual fore-

casts using a novel quantile combination approach, where each quantile of the combined

density forecast is constructed as a weighted combination of the individual forecasts for

the corresponding quantile, detailed in section (2.2).

2.1 Quantile regression models

Quantile regression generalizes traditional least squares regression by fitting a distinct re-

gression line for each quantile of the distribution of the variable of interest. Least squares

regression only produces coefficients that allow us to fit the mean of the dependent variable

conditional on some explanatory variables. In that respect, quantile regression is more

appropriate for making inferences about predictive distributions and assessing the forecast

uncertainty. In principle, we would like to know the entire conditional distribution func-

tion that relates the dependent variable with the predictors. However, in practice quantile

regression is based on minimizing sums of asymmetrically weighted absolute residuals.

Consider the quantile regression model given by

yt = xtβq + εt (1)

for t = 1, . . . , T . Here εt is the error term whose distribution (with density, f(q(·)) is

restricted to have the qth quantile equal to zero, that is,
∫ 0

−∞ f(q(t))dt = q. Traditionally,

quantile regression estimation for βq proceeds by minimizing:

T∑
t=1

ρq(yt − x′
tβq), (2)

where ρq(·) is the check (or loss) function defined by

ρq(u) = u{q − I(q < 0)}. (3)

and I(·) denotes the usual indicator function. The set of quantiles provides a more

complete description of the response distribution than the mean, making the quantile

regression an important alternative to classical mean regression.

Since, however, the check function is not differentiable at zero, we cannot derive ex-

plicit solutions to the minimization problem. To solve this issue, we follow Kozumi and

Kobayashi (2011) approach to Bayesian quantile regression models using the asymmetric

Laplace distribution for the error term.
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2.1.1 Predictive quantile function for GDP

For each variable k = 1, . . . , K, a predictive distribution for GDP growth is obtained

using a ARDL model:

yt+h,q,k = x′
t,kβq + σθzt+h + στ

√
zt+hut+h (4)

where x′
t,k is the vector of lagged values of yt (with maximum lag r) and of one of the

K predictors (with maximum lag p). In our empirical application, the number of lags p

and r are selected using BIC selection criterion with a maximum of four lags. Moreover,

q = 1, . . . , 5 denotes the respective quantile, set to 10, 25, 50, 75 and 90 in our empirical

application. The error term takes the form εt+1 = σθzt+h+στ
√
zt+hut+h as in Kozumi and

Kobayashi (2011), where zt+h ∼ Exponential(1), ut+h has a standard normal distribution

and σ ∼ IG(n0/2, s0/2). Finally, we will focus on forecast horizons h = {1, 4} in our

empirical application.

2.1.2 Bayesian Inference

We consider the linear model given by:

yt = x′
tβp + εt (5)

where p denotes the quantile and assume that εt has the asymmetric Laplace distribution

with density:

fp(εt) = p(1− p)exp{−ρp(εt)} (6)

where ρp(εt) = εt{p − I(εt < 0)}. The mean and variance of the asymmetric Laplace

distribution are given by:

E(εt) =
1− 2p

p(1− p)
V ar(εt) =

1− 2p+ 2p2

p2(1− p)2
(7)

To develop a Gibbs sampling algorithm for the quantile regression model, we use a mix-

ture representation based on exponential and normal distribution by Kotz et al. (2012).

Following Kozumi and Kobayashi (2011) we can present the error term εt as:

εt = σθzt + στ
√
ztut (8)

where σ is the scale parameter, zt ∼ Exponential(1) and ut ∼ N(0, 1) are mutually

independent, and:

θ =
1− 2p

p(1− p)
τ 2 =

2

p(1− p)
(9)
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From this we can rewrite yt as:

yt = x′
tβp + σθzt + στ

√
ztut (10)

To facilitate the inference, we adopt the reparametrization by Kozumi and Kobayashi

(2011):

yt = x′
tβp + θυt + τ

√
υσut (11)

where υt = σzt. We assume that βp ∼ N (βp0,Bp0 and σ ∼ IG(n072, s0/2), where

IG(a, b) denotes an inverse Gamma distribution with parameters a and b. The conditional

distribution of yt given zt is normal with mean x′
tβp + θυt and variance τ 2υt. The joint

density of y = (y1, . . . , yT )
′ is given by:

f(y|βp, z, σ) ∝
( T∏

t=1

υ
−1/2
t

)
exp

{
−

T∑
t=1

(yt − x′
tβp − θυt)

2

2τ 2υt

}
, (12)

We need to sample βp, v = (υ1, . . . , υt)
′ and σ from their conditionals distributions: The

full conditional density of βp is given by:

βp|y,x,v, σ ∼ N (β̄p, V̄β), (13)

where:

V̄ −1
β =

( T∑
t=1

x′
txt

τ 2συt
+B−1

p0

)
β̄p = V̄β

[ T∑
t=1

xt(yt − θυt)

τ 2συt
+B−1

p0 βp0

]
(14)

and assuming a normal prior

βp ∼ N (βp0 ,Bp0) (15)

where βp0 and Bp0 are the prior mean and variance covariance matrix of βp. Priors for

the quantile betas have been chosen to have mean zero and variance 1000.

The full conditional distribution of υt is proportional to:

υt|yt,xtβpσ ∼ GIG(1/2, δt, γt) (16)

where:

δt = (yt − x′
tβ)

2/τ 2σ γ2
t = 2/σ + θ2/τ 2σ (17)

and where GIG denotes the Generalized Inverse Gaussian distribution which pdf for the

general case GIG(v, a, b) is:

f(x|v, a, b) = (b/a)v

2Kv(ab)
xv−1exp

{
−1/2(a2x−1+b2x)

}
, x > 0, −∞ < v < ∞, a, b ≤ 0

(18)
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and Kv is a modified Bessel function of the third kind. By noting that υt ∼ E(σ), the full
conditional density of σ is proportional to:

σ|yt,xtβpv ∼ IG(n/2, s/2) (19)

where n = n0 + 3n and s = s0 + 2
∑T

t=1 υt + (yt + x′
tβp + θυt)‘

2/τ 2υt

The posterior distribution is calculated using 8000 replications after a burn-in period

of 4000 replications. For each replication, a quantile predictive function is calculated for

the following:

p(yt+h|yt,ϑ) =

∫
p(yt+h|ϑ,yt)p(ϑ|yt)dϑ (20)

where p(ϑ|yt) corresponds to the posterior distributions of the parameters’ set ϑ =

{βp, θ, τ, υt}, and p(yt+h|ϑ) corresponds to:

p(yp,t+h|ϑ) =
∫

N (yt+1|x′
Tβp + θzTυT , τ

2zTυT )dβpdυt (21)

2.2 Quantile Combination of Density Forecasts

Combining density forecasts has recently become a well-known practice for macroeconomic

forecasting, see Aastveit et al. (2019) for a recent survey of the literature. The most com-

mon approach for combining predictive densities is to use weighted linear combinations

of prediction models, evaluated using a type of scoring rule (e.g. Hall and Mitchell, 2007;

Amisano and Giacomini, 2007; Jore et al., 2010; Hoogerheide et al., 2010; Kascha and

Ravazzolo, 2010; Geweke and Amisano, 2011, 2012; Gneiting and Ranjan, 2013; Aastveit

et al., 2014; Kapetanios et al., 2015b). However, recent advances also include more com-

plex combination approaches that allows for time-varying weights with possibly both

learning and model set incompleteness (e.g. Billio et al., 2013; Casarin et al., 2015; Pet-

tenuzzo and Ravazzolo, 2016; Del Negro et al., 2016; Aastveit et al., 2018; McAlinn and

West, 2019b; McAlinn et al., 2020).

Common to all the aforementioned approaches is that a single weight is attached

to the entire predictive distribution for each model, assuming the predictive ability is

constant across the various regions of the distribution. Suppose that a set of k = 1, . . . , K

predictive distributions ft+h,k for the same variable of interest yt at horizon h are available.

Standard combination methods apply a unique combination weight to the entire predictive

distribution, i.e.:

yt+h
1×Q

= wk
1×K

ft+h,k,q
K×Q

(22)

where q = 1, . . . , Q indicates the quantiles or bins of the density distribution. However,

this procedure implicitly overlooks superior forecast accuracy of some ft+h,k over a specific

region of the distribution. In this case, it would be ideal to use a more flexible approach to
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combination. Suppose indeed that a subset of this set is more accurate in predicting the

mean (tails) of the distribution, while they perform poorly in the tails (mean); It would

be desirable then to consider this heterogeneity when constructing the combined density

i.e.:

yt+h
1×Q

= diag

(
wq,k
Q,K

ft+h,k,q
K×Q

)
(23)

Since here weights are quantile-specific, density forecasts are now multiplied by a vector

of combination weights instead of a scalar as in equation (22).

2.2.1 Evaluation of quantiles’ forecast accuracy: the quantile scores

From equation (4) we obtain K (set to 6 in our empirical application) density forecasts for

yt+h, distributed over Q (set to 5 in our empirical application) quantiles. The purpose of

this is paper is to combine them taking into consideration the forecast accuracy at a quan-

tile level. In order to do so, we need an evaluation method that helps us discriminating

not only the accuracy of the kth forecast but also its accuracy at specific quantiles.

A common scoring rule for evaluating density forecasts is the Continuous Ranked

Probability Score (CRPS). According to a loss function, the density forecast is evaluated

by computing the distance at each point of the distribution to the realisation. It is defined

by:

CRPS(ft+h,k, yt+h) = −
∫ ∞

−∞
(Ft+h,k − I(Ft+h,k ≥ yt+h))

2dy (24)

where Ft+h,k represents the cdf of forecast ft+h,k and yt+h the corresponding realization.

The CRPS corresponds to the integral of the Brier scores for the probability forecasts

at all real-valued thresholds (Matheson and Winkler (1976), Hersbach (2000), Gneiting

and Raftery (2007)). While this score is the average “error” across the domain of the

distribution, Gneiting and Ranjan (2011) propose a quantile decomposition of the CRPS

(24). It is represented by:

CRPSt+h,k =

∫ 1

0

QSt+h,k(q)dq (25)

where QSt+h,k(q) is called Quantile Score:

QSt+h,k(q) =
1

n− h+ 1

m+n−h∑
t=m

QSq(F
−1
t+h,k(q), yt+h)

QSq(F
−1
t+h,k(q), yt+h) = 2

(
I{yt+h ≤ F−1

t+h,k(q)} − q

)
(F−1

t+h,k(q)− yt+h)

(26)

where n and m are defined by the in-sample and out-of-sample periods, F−1
t+h,k(q) is the

value the inverse of the cdf of ft+h,k taken at quantile q. We suggest to use this decompo-

sition, (QSq(F
−1
t+h(q), yt+h)), to evaluate the accuracy of predictive distributions at each
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quantile.

We would like to highlight a couple of properties of function QSq in equation (26).

First, notice that the closer q is to zero, the lower are the probabilities that F−1
t+h(q) will

have a value lower than yt+h; at the same time, the closer q is to one, the lower are the

probabilities that F−1
t+h(q) will have a value greater than yt+h (Laio and Tamea (2007).

The quantile score based on equation (26) therefore has a concave shape. Second, since

QS is a measure of loss accuracy, the density forecast k that obtains the lowest QS curve

is preferred to the other alternatives. The CRPS-quantile decomposition QS is a proper

scoring rule as proven by Friederichs and Hense (2008).

2.2.2 Quantile-specific combination weights

We propose to use the quantile scores as loss function to build quantile-specific combina-

tion weights:

wt+h
K×Q

(k, q) =

∑m+n−h
t=m 1/QSt,k,q∑K

k=1

∑m+n−h
t=m 1/QSt,k,q

(27)

where k = 1, . . . , K = denotes the individual forecasts, q the quantiles and t = m, . . . ,m+

n− h the forecast origins. w(t+ h, k, q) is the matrix K ×Q of combination weights for

forecast ϕ∗. The recursive weights are then a function of past performance of each model

k known at the time the forecast is made (t). We need to impose the following constrain

on the combination weight w(k, q):

K∑
k=1

w(t, k, q) = 1

The combined density forecast yct+h is obtained by multiplying the matrix of combi-

nation weights computed according to (27) with the matrix of quantile forecasts:

yct+h = diag(wt+h,k,q × ft+h,q,k) (28)

The diagonal of this matrix corresponds to the match between the vector of weights and

the corresponding model k.

2.2.3 Forecast evaluation

We measure forecasts accuracy using the CRPS. In addition, we also compare the forecast-

ing performance of the various individual models and alternative combination approaches

with versions of the score that penalizes the loss in accuracy at certain regions (centre,

left tail, right tail and so on) of the target distribution. Gneiting and Ranjan (2011) uses

the quantile scores decomposition to have weighted versions of the continuous ranked
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probability score (6) that emphasize regions of interest and retain propriety.

emphCRPSt+h,k

∫ 1

0

QSq(F
−1
t+h,k(q), yt+h)ν(q)dq (29)

where ν is a nonnegative weight function on the unit interval. For a constant weight

function, equation (29) reduces to the unweighted score (25).

2.3 Alternative combination approaches

In the empirical application, we will compare our quantile combination approach with

three alternative combination approaches.

2.3.1 Equal Weights

The first combination approach we considered is to apply a linear pooling scheme to

the K predictive distributions obtained from the kernel smoothing over the quantiles

and summing them applying a combination weight wk = 1/K to each predictive. The

combined predictive distribution is the following:

f(yt+h) =
K∑
k=1

wkft+h,k (30)

Combination weights ωn = 1/N assure that the combined distribution is still a distribution

since 0 ≤ ωn ≤ 1 and
∑N

n=1 ωn = 1.

2.3.2 Optimal Weights

The second combination approach is the so called ”Optimal Weights” proposed by Hall

and Mitchell (2007) and Geweke and Amisano (2011), held from the idea of determin-

ing combination weights based on some objective criterion or cost function, such as the

logarithmic score. Combination weights are obtained by maximizing a logarithmic score

function:

wk =
1

T − h

T−h∑
t=1

ln(ft+1,k) s.t. wk > 0,
K∑
k=1

wk = 1 (31)

which is known as the log predictive score. Given the size of K, the inference algorithm

for wk in Conflitti et al. (2015) is used.

2.3.3 Log score weights

The third combination approach, proposed by Jore et al. (2010), is to choose recursive

combination weights for each model based on their logartitmic score. The weights are
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then constructed as follow:

wt+h(k) =

∑m+n−h
t=m LSt,k∑K

k=1

∑m+n−h
t=m LSt,k

(32)

2.3.4 CRPS weights

An alternative to the linear pooling scheme with log-score weights, is to use CRPS instead

as the scoring rule. The weights will then take the following form:

wt+h(k) =

∑m+n−h
t=m 1/CRPSt,k∑K

k=1

∑m+n−h
t=m 1/CRPSt,k

(33)

2.3.5 Bayesian Model Averaging

For Bayesian Model Averaging (BMA, henceforth) the individual predictive densities are

combined into a composite-weighted predictive distribution p(yt+h|IK), given by

p(yt+h|IK) =
K∑
k=1

P (Mk) p(ỹt+h|k) (34)

where P (Mk) is the posterior probability of model k, based on the predictive likelihood

for model k. Mitchell and Hall (2005) discuss the analogy of the log score in a frequentistic

framework to the log predictive likelihood in a Bayesian framework, and how it relates

to the Kullback-Leibler divergence. See also Hall and Mitchell (2007), Jore et al. (2010),

and Geweke and Amisano (2010) for a discussion on the use of the log score as a ranking

device for the forecast ability of different models and Hoeting et al. (1999) for a review

on BMA.

3 Empirical Application

In this section, we analyse the performance of our quantile combination approach for

forecasting US real GDP growth using real time data. The main goal of the exercise is to

examine the nowcasting performance of our quantile combination approach, to compare

its performance to commonly used alternative combination approaches and to analyse

what are the most informative predictors for the various parts of the predictive GDP

growth distribution.

3.1 Data

We consider in total K = 5 different predictors. These are leading indicators that cover

a broad range of the macroeconomy and that earlier studies have found to be useful for
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predicting GDP growth and recessions. A vast amount of research has shown that a

variety of economic and financial variables contain predictive information about future

economic recessions and downturns. While Estrella and Hardouvelis (1991) and Estrella

and Mishkin (1998) have documented that the slope of the term structure has strong

predictive power for US recessions, a recent study by Adrian et al. (2019) argue that

financial conditions are particularly informative above future downside macroeconomic

risk. In addition to these studies, several other variables have also been regarded as leading

recession indicators for GDP growth and recessions, including stock prices (Estrella and

Mishkin (1998) and Stock and WWatson (2003)), the index of leading economic indicators

(Berge and Jordà (2011) and Stock and Watson (1989)), oil prices (Hamilton (1983, 1996)

and Ravazzolo and Rothman (2013, 2016)), survey data (Hansson et al. (2005), Claveria

et al. (2007)); and residential investments (Aastveit et al. (2019)).

We include the following 5 variables: the National Financial Condition Index (NFCI),

the University of Michigan Consumer Sentiment Index (ICS), a credit spread that mea-

sures the difference between BAA corporate bond yield and the 10 year treasury yield,

residential investments, building permits, the unemployment rate. Detailed information

about the various series, including data source and data transformation, is provided in

the online appendix, Table (A.1). Our data sample covers the period 1973Q1-2020Q2.

3.2 In-sample quantile coefficient estimates

To highlight the advantage of using quantile regressions in our setting, Figures A.1 - A.5

in the online appendix show the change in βq estimates across quantiles from various

specifications of equation (4). Each model specification consists of lagged GDP growth

and one additional predictor (with lags). The figures provide estimation results for the full

sample, 1973Q-2020Q2. For each figure, the Q = 5 βq estimates (one for each quantile)

are plotted against the OLS estimate of β (dashed blue line). The red solid line shows

the median estimates of βq and the shaded areas show the 68 and 84 percent probability

bands, respectively. There are two interesting observations from the figures.

First, for many model specifications, such as those including NFCI and ICS, the βq

estimates across quantiles are very different. For instance in the model with NFCI, the

βq estimates for the lower quantiles are strongly negative, but are positive for the upper

quantiles. This indicates that the informativeness of various predictors varies for the

different parts of the predictive GDP growth distribution, favouring the use of quantile

regressions.

Second, while for some of the model specifications, such as those credit spreads the

probability bands of the various βq estimates includes the OLS estimate, for others, such

as those including NFCI and ICS, the probability bands of the βq estimates for some of

the quantiles do not include the OLS estimate. This indicates potential benefits from
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using quantile regressions.

3.3 Out-of-sample density forecasts for US GDP growth

Our out-of-sample forecasting evaluation period runs from 1993Q1-2020Q2. Predictions

are updated recursively for forecast horizons H = 1 (one quarter ahead) and H = 4 (one

year ahead) based on models that are estimated using an expanding window.

Table 1: Average CRPS values with emphasis on specific regions of the distribution,
one-quarter-ahead forecasts.

Emphasis ν(q) EQ OPT BMA Log Score CRPS Q-comb
Uniform ν0(q) = 1 0.604*** 0.923 0.903 0.952 0.988 0.336
Centre ν1(q) = q(1− q) 0.602*** 0.919 0.906 0.957 1 0.068
Tails ν2(q) = (2q − 1)2 0.604*** 0.927 0.888 0.941 0.955 0.064
Right Tail ν3(q) = q2 0.489*** 0.834 0.873 0.881 0.923 0.096
Left Tail ν4(q) = (1− q)2 0.776 1.029 0.937 1.019 1.04 0.104
Heavy Tails ν5(q) = (2q − 1)4 0.617 0.913 0.913 0.954 0.954 0.021

Note: The table reports average CRPS values, with emphasis on specific regions of the
distribution, for various forecast combination approaches. The alternative combination
models EQ, OPT, BMA, Log Score, CRPS combines linear models, while Q-comb com-
bines quantile models. For the alternative models, we report the relative performance
compared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quan-
tile combination. Stars indicate significance levels for Diebold-Mariano Test of Q-Comb
versus alternative approaches combinations.

Table 2: Average CRPS values with emphasis on specific regions of the distribution,
one-year ahead forecasts.

Emphasis ν(q) EQ OPT BMA Log Score CRPS Q-comb
Uniform ν0(q) = 1 0.561*** 0.793*** 1.000 0.996 0.846 0.319
Centre ν1(q) = q(1− q) 0.579*** 0.795*** 1.000 1.000 0.833 0.066
Tails ν2(q) = (2q − 1)2 0.504*** 0.778*** 1.018 0.833 0.857 0.056
Right Tail ν3(q) = q2 0.452*** 0.833*** 1.021 0.989 0.842 0.095
Left Tail ν4(q) = (1− q)2 0.707*** 0.748*** 0.978 0.989 0.858 0.092
Heavy Tails ν5(q) = (2q − 1)4 0.500*** 0.783*** 1.200 1.000 0.833 0.018

Note: The table reports average CRPS values, with emphasis on specific regions of the
distribution, for various forecast combination approaches. The alternative combination
models EQ, OPT, BMA, Log Score, CRPS combines linear models, while Q-comb com-
bines quantile models. For the alternative models, we report the relative performance
compared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quan-
tile combination. Stars indicate significance levels for Diebold-Mariano Test of Q-Comb
versus alternative approaches combinations.

We compare the forecasting performance from our quantile combination approach with

commonly used alternative combination approaches. Tables 1) and (2 compare density
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forecasting accuracy from our quantile combination approach (labelled Q-comb) with

equal weighting combination of linear forecasts (EQ), optimal weighting combination of

linear forecasts (OPT), Bayesian model averaging (BMA), combination of linear forecasts

using CRPS weights (CRPS) and combinations of linear forecasts using log score weights

(Log Score). We report density forecasting accuracy, measured by standard CRPS and

various CRPS versions that penalizes the loss accuracy of at certain regions (centre, left

tail, right tail and so on) of the target distribution. The tables report averages over the

evaluation periods.

The tables reveal that our quantile combination approach outperforms the other al-

ternative combination approaches for both forecasting horizons (H = 1 and H = 4).

This holds irrespective of using the CRPS or any quantile weighted version of the CRPS,

that emphasize performance in either the centre, left or right tail of the distribution, as

forecast accuracy measure. This indicates that the relative gains in terms of forecasting

performance from our combination approach is not specific to observations in a certain

region of the distribution. Stars in the tables represent the significance level of Diebold-

Mariano Test for superior forecast ability of quantile combination versus the alternative

linear combination approaches.

To address whether our improved out-of-sample forecast performance is limited to

a certain time period or driven by some outliers, we report in Figures 1) and (2 the

cumulative CRPS of the alternative combination approaches relative to our quantile com-

bination. While the various individual models show considerable instabilities in predictive

performance over time, the performance from our quantile combination approach, is far

more robust, yielding a steady improvement over the various alternative combination

approaches over the different time periods.

Tables 3 and 4 report the forecasting performance for all the individual quantile regres-

sion models. First, the tables show that our quantile combination performs well compared

to the individual models. In fact, for forecast horizon H = 4 forecast from our quantile

combination approach outperforms all of the individual models, both for the tails and

the centre of the distribution. Second, the table reveal that the quantile regression model

that includes credit spread as a predictor is the best performing model for forecasting

horizon H = 1, both in terms of average performance as well as in the tails. On the other

hand, for forecasting horizon H = 4 the model that includes the residential investment

as a predictor is the best performing model both in terms of average performances as

well as for the tails. While earlier studies, such as Aastveit et al. (2019) and Estrella and

Hardouvelis (1991) and Estrella and Mishkin (1998), have found residential investments

and the credit spread, respectively, to be informative about future economic recessions,

a recent study by Adrian et al. (2019) argue that financial conditions are particularly in-

formative about future downside macroeconomic risk. Although the model that includes

financial conditions also is among the best performing models, particularly for the left
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Figure 1: Cumulative CRPS for alternative approaches to forecast and combination for
one-quarter ahead.
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Note: Combination weights used are: equal weight (EQ), optimal weight (Opt), BMA,
weights proportional to Log Scores and CRPS. QQ denotes the quantile combination of
quantile forecasts.

Figure 2: Cumulative CRPS for alternative approaches to forecast and combination for
one-year ahead.
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weights proportional to Log Scores and CRPS. QQ denotes the quantile combination of
quantile forecasts.

tail, our results suggests that also other variables than the NFCI are informative about

future downside macroeconomic risk.
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Table 3: Average CRPS values with emphasis on specific regions of the distribution, one-
quarter ahead forecasts.

Emphasis Uniform Centre Tails Right Tail Left Tail Heavy Tails
ν(q) ν0 = 1 ν1 = q(1− q) ν2 = (2q − 1)2 ν3 = q2 ν4 = (1− q)2 ν5 = (2q − 1)4

Q comb 0.336 0.068 0.064 0.096 0.104 0.021
GDP 0.342 0.07 0.063 0.098 0.104 0.02
NFCI 0.361 0.073 0.067 0.099 0.115 0.022
ICS 0.334 0.068 0.063 0.095 0.103 0.02
U 0.367 0.075 0.069 0.104 0.114 0.022
CR Spread 0.317 0.065 0.059 0.093 0.095 0.019
ResInv 0.343 0.07 0.064 0.103 0.1 0.021

Note: The table reports average CRPS values, with emphasis on specific regions of the
distribution, for quantile combination and all individual models.

Table 4: Average CRPS values with emphasis on specific regions of the distribution. four-
quarter ahead forecasts.

Emphasis Uniform Centre Tails Right Tail Left Tail Heavy Tails
ν(q) ν0 = 1 ν1 = q(1− q) ν2 = (2q − 1)2 ν3 = q2 ν4 = (1− q)2 ν5 = (2q − 1)4

Q comb 0.319 0.066 0.056 0.095 0.092 0.018
GDP 0.393 0.079 0.076 0.117 0.118 0.025
NFCI 0.35 0.071 0.066 0.095 0.113 0.021
ICS 0.344 0.07 0.065 0.096 0.108 0.021
U 0.393 0.08 0.074 0.112 0.121 0.024
CR Spread 0.352 0.072 0.066 0.099 0.109 0.021
ResInv 0.329 0.067 0.062 0.097 0.099 0.02

Note: The table reports average CRPS values, with emphasis on specific regions of the
distribution, for quantile combination and all individual models.

Figures (3-4) report the average quantile score for each of the individual quantile

regression models. The figures reveal a substantial heterogeneity in relative score per-

formance, where for instance some of the models have a relative low score for the lower

quantiles, but a relative high score for the higher quantiles. This indicates that the relative

model performance varies over the forecast distribution.
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Figure 3: Average quantile Scores for all K = 6 forecasting models for one-quarter ahead
over forecasts. Average score over the last 1000 MC replications.
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Figure 4: Average quantile Scores for all K = 6 forecasting models for one-year ahead
over forecasts. Average score over the last 1000 MC replications.
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4 Simulation Experiments with Data

In this section, a set of simulation exercises have been run to explore the validity of our

results and the characteristics of quantile combination in controlled environments. First,

we assessed the impact of sample size on forecast accuracy for quantile combination. As

discussed at the end of previous section, a lower sample size corresponds to a small number

of tail events which undermines the accuracy of our forecast evaluation. For this reason,

we draw 1,000 realisations from data-driven distributions and compare the combination

approaches (Section 4.1). Second, we use the larger sample size generated in (4.1) to relax

the constrain of Q = 5 we assumed in application. In the second exercise in Section (4.2),

we estimate Q = 10 quantiles in the quantile regression. Third, in Section (4.3), we add

to the previous setup further complication of increasing the number of individual models

to be combined.

In all those simulation, the accuracy gained from using quantile combination forecast

increases further compared to other traditional combinations.

4.1 Simulation Setup: higher sample size

The first simulation aims to increase simple size in our application exercise by simulating

realisations. We consider two foresting models: an AR model and an ARDL model with

NFCI and past values of GDP growth as predictor. The sample size is increased to

T = 1000. The realisations are drawn from the empirical distributions of GDP and NFCI

using the dataset presented in Section . In particular simulated realisations are drawn

from:

yhs ∼ p(yt|yhs−r, NFCIhs−v,θ)

NFCIhs ∼ p(NFCIhs|NFCIhs−p,θ)
(35)

where yt=hs identifies GDP growth simulated for t = hs, yhs−r the GDP growth lagged by

r and NFCIhs−v the values lagged by v of simulated data; θ are a vector of parameters

estimated from quantile regression using ”real data” for hs = 1, . . . , T and simulated from

for the remaining part of the sample (i.e. hs = T + 1, . . . , 1000). Predictive distributions

using simulated data for GDP and NFCI are then estimated and combined as in the

previous application. From Table (5) we can see that, on average, quantile combination is

more accurate compared to linear combinations when the sample size is larger. This result

is quite encouraging: under the scenario that the researcher has access to a large dataset,

the quantile combination delivers a much more accurate density forecast. However, quite

rarely macroeconomic time-series have such a big size. The plot of cumulative CRPS

scores in Figure (5), shows the marginal gain in accuracy with the increase in sample size.

From its inspection we can infer that the accuracy increases from a sample size as big
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as 200 observations; after which the quantile combination produces a exponentially more

accurate density forecast than the linear combinations. This result is consistent with our

empirical exercise, where the sample size is around 190 observations, and the gain of using

quantile combination is quite marginal. However, this results is quite promising since it

displays that the quantile combination method performs increasingly better even at a

realistic sample size.

Table 5: Simulation (1) with T=1000 forecast origins. CRPS scores for Quantile combi-
nation (Q-comb) and relative performance of alternative models compared to Q-comb.

Uniform Centre Tails Right Tail Left Tail Heavy Tails

Q comb 0.584 0.118 0.11 0.185 0.162 0.036
EQ 0.996 0.204 0.182 0.235 0.354 0.058
BMA 0.996 0.204 0.182 0.235 0.354 0.058
Opt 0.994 0.203 0.182 0.235 0.353 0.058
LS 0.996 0.204 0.182 0.235 0.354 0.058
CRPS 0.996 0.204 0.182 0.235 0.354 0.058

Figure 5: Simulation (1) with T=1000 forecast origins: Cumulative Scores for Linear and
Quantile Combinations
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Log Score and CRPS. QQ denotes the quantile combination of quantile forecasts.
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4.2 Simulation Setup: Higher number of quantiles

The higher sample size allows as to increase the number of quantiles to Q = 10. The

number of individual models to be combined is K = 2 as in the previous exercise. In the

empirical application we had to impose a quite small number of quantiles to estimate, not

enough (or none) observations for GDP growth was falling into the specific bins of quantile

forecasts, making impossible to evaluate the forecast accuracy at specific quantiles (i.e.

computing the quantile score). However, with simulated data in the previous exercise,

we can relax this assumption and estimate Q=10 quantiles. Once again, we can see from

Table (6) that, on average, quantile combination is more accurate compared to linear

combinations. However, the quantile combination needs a larger sample size than before

to be more accurate than the linear combinations, i.e. at more than 350.

Table 6: Simulation (2) with T=1000 forecast origins and Q=10 quantiles. CRPS scores
for Quantile combination (Q-comb) and relative performance of alternative models com-
pared to Q-comb.

Uniform Centre Tails Right Tail Left Tail Heavy Tails

Q comb 0.563 0.108 0.132 0.183 0.164 0.058
EQ 0.972 0.191 0.206 0.24 0.348 0.088
BMA 0.971 0.191 0.206 0.24 0.348 0.088
Opt 0.987 0.195 0.207 0.244 0.353 0.088
LS 0.971 0.191 0.206 0.24 0.348 0.088
CRPS 0.973 0.192 0.206 0.241 0.348 0.088

4.3 Simulation Setup: Higher number of individual models to

be combined

In this exercise we increase the number of combined models, from K = 5 to K = 10. The

additional 5 models are obtaining using as predictors the following variables:

� CFNAI: Chicago Fed National Activity Index (source:Chicago Fed), period: 1967:M3-

2020M3

� S&P500: Stock Market Index (source: FRED), period 1959Q1-2020Q1

� OIL: Spot Crude Oil Price WTI (source: FRED), period 1946:Q12020Q1

� PERMSA: New Private Housing Units Permits (source: FRED), period 1960:M1-

2020M3

� BANKCRg:Total Credit to Private non-fin sector (source: FRED), period 1970Q1-

2020M3
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Figure 6: Simulation (2) with T=1000 forecast origins and Q=10 quantiles: Cumulative
Scores for Linear and Quantile Combinations
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Note: Combination weights used are: equal weight (EQ), optimal weight (Opt), BMA,
Log Score and CRPS. QQ denotes the quantile combination of quantile forecasts.

Data are simulated from these variables in the same way as in the first simulation set

up. With this set up we want to explore the impact of higher number of components to

combine on our combination approach. It is well known that some combination approaches

loose accuracy when combining a high number of components. Here we see similar results

as in the previous simulation: quantile combination is the most accurate approach when

the sample size is big enough to compensate for the estimation error.

Table 7: Simulation (3): T=1000 forecast origins, Q=10 quantiles and K=10 models.
CRPS scores for Quantile combination (Q-comb) and relative performance of alternative
models compared to Q-comb.

Uniform Centre Tails Right Tail Left Tail Heavy Tails

Q comb 0.532 0.102 0.124 0.173 0.155 0.055
EQ 1.059 0.212 0.21 0.263 0.371 0.088
BMA 1.059 0.212 0.21 0.263 0.371 0.088
Opt 0.946 0.187 0.196 0.233 0.337 0.083
LS 1.086 0.218 0.214 0.271 0.379 0.089
CRPS 1.027 0.205 0.206 0.255 0.362 0.086
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Figure 7: Simulation (3) with T=1000 forecast origins Q=10 quantiles and K=10 models:
Cumulative Scores for Linear and Quantile Combinations
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Note: Combination weights used are: equal weight (EQ), optimal weight (Opt), BMA,
Log Score and CRPS. QQ denotes the quantile combination of quantile forecasts.

5 Conclusions

In this paper, we propose a new forecast combination approach, which aims to obtain

overall more accurate density forecasts, by assigning a set of combination weights to the

various quantities of the individual density forecasts. To achieve this goal, we first produce

individual density forecasts using Bayesian quantile regression models as in Kozumi and

Kobayashi (2011). Then we combine the various individual forecasts using a novel quantile

combination approach, where each quantile of the combined density forecast is constructed

as a weighted combination of the individual forecasts for the corresponding quantile. To

account for the heterogeneity in forecast accuracy from the various models across the

various parts of the distribution, we allocate the quantile-specific weights from each model

using the quantile score by Gneiting and Ranjan (2011).

In an empirical application, we demonstrate the usefulness of our novel quantile com-

bination approach to forecasting real GDP growth rate for the Unites States for the period

1993Q1-2020Q2, combining predictive distributions from K = 5 quantile regression mod-

els.

As a main result, we show that density forecasts from our quantile combination

approach outperforms forecasts from commonly used combination approaches such as

Bayesian Model Averaging (BMA), the optimal combination of density forecasts (Opt-
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Comb) suggested by Hall and Mitchell (2007) and Geweke and Amisano (2011), recursive

logarithmic score weights as in Jore et al. (2010) and equal weights. This holds irre-

spective of using the CRPS or any threshold or quantile weighted version of the CRPS,

that emphasizes performance in either the centre, left or right tail of the distribution, as

a measure of forecast accuracy. The latter indicates that the relative gain in terms of

forecasting performance from our model is not specific to observations in a certain region

of the distribution or to specific subperiods in our forecasting sample. Instead, we find a

steady improvements over time and in all quantiles of the GDP distribution.

Furthermore, while Adrian et al. (2019) argue that financial conditions are particularly

informative about future downside macroeconomic risk, we show that quantile regressions

that include variables, such as residential investments and stock prices, provide somewhat

more accurate forecasts for the lower left quantile of the GDP distribution than quantile

regressions that include the NFCI. This suggests that also other variables than the NFCI

are informative about future downside macroeconomic risk.
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A.2 In-sample quantile regression coefficient

GDP,H=1

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

(
)

Median

OLS

NFCI,H=1

1 2 3 4 5 6 7 8 9

-2

-1.5

-1

-0.5

0

0.5

1

(
)

Median

OLS

GDP,H=4

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(
)

Median

OLS

NFCI,H=4

1 2 3 4 5 6 7 8 9

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(
)

Median

OLS

Figure A.1: Coefficients estimates from quantile ARDL model using GDP growth and
NFCI as regressors. H = 1 denotes one-quarter ahead horizon, H = 4 one-year ahead.
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Figure A.2: Coefficients estimates from quantile ARDL model using GDP growth and
ICS as regressors. H = 1 denotes one-quarter ahead horizon, H = 4 one-year ahead.
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Figure A.3: Coefficients estimates from quantile ARDL model using GDP growth and
Credit Spread as regressors. H = 1 denotes one-quarter ahead horizon, H = 4 one-year
ahead.
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Figure A.4: Coefficients estimates from quantile ARDL model using GDP growth and
Unemployment rate as regressors.H = 1 denotes one-quarter ahead horizon, H = 4 one-
year ahead.
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Figure A.5: Coefficients estimates from quantile ARDL model using GDP growth and
Resident Investment growth rate as regressors. H = 1 denotes one-quarter ahead horizon,
H = 4 one-year ahead.
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