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Abstract

We propose a flexible model for nowcasting and forecasting that accounts for slow-
moving trends, stochastic volatility and t-distributed errors in the low-frequency target,
and exploits high frequency information via Bayesian MIDAS. To regularise the multivari-
ate MIDAS component we employ a global-local prior that flexibly imposes three-tiered
shrinkage (overall, between indicators, and within lags of an indicator). We enhance the
prior with a sparsification step motivated by Bayesian decision theory which allows to
communicate importance of predictors via inclusion probabilities over the data release
cycle. We use our model to nowcast GDP growth in the UK over the period 1999 to 2021.
Results show that accounting for a time-varying trend and t-distributed stochastic volatil-
ity substantially improves nowcast performance. Moreover, the shrinkage prior allows to
select a sparse group of the most informative indicators over time, leading to improve-
ments in nowcast performance compared to dense specifications such as a dynamic factor
model. When the Covid-19 pandemic sets in, the model switches to reading stronger sig-
nals from indicators for services, which reflected spending shifts related to lockdowns, and
less from production surveys. This helps to nowcast the initial recovery after the shock,
and to update the nowcast for the pandemic-induced trough sooner.
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1 Introduction

The Covid-19 pandemic has raised new challenges for nowcasting and forecasting. The large

size of the shock caused parameter instabilities in time series methods. Moreover, the shock hit

economic sectors in a strongly heterogeneous way and timely survey indicators provided only

weak signals for economic activity, which further challenged models that rely on co-movement

across many such indicators. More generally, this episode has illustrated the need for more

flexible model features that account for time-variation and regime shifts, large shocks, and

heterogeneous signals. This remains relevant also in aftermath of the pandemic, to account for

further large economic distortions such as those induced by Russia’s invasion of Ukraine and

the high inflation rates observed across advanced economies.

The inclusion of time-varying trends and stochastic volatility into unobserved component

(UC), dynamic factor models (DFM) and vector-autorgressive (VAR) models have been shown

to be beneficial for forecasting (Stock and Watson, 2009; Clark, 2011; D’Agostino et al., 2013;

Berger et al., 2016; Carriero et al., 2016; Antolin-Diaz et al., 2017). Since the pandemic,

methods to deal with extreme observations have ranged from down-weighting them via outlier

components and t-distributed volatilities (Lenza and Primiceri, 2022; Carriero et al., 2021;

Antolin-Diaz et al., 2021) to dropping them altogether (Schorfheide and Song, 2021).1

In this paper, we propose the Trend-SV-t-BMIDAS model. It combines three distinct model

features that to our knowledge have not been exploited jointly so far: 1) an unobserved compo-

nent block that accounts for a time-varying trend and stochastic volatility allowing for extreme

observations in GDP growth, 2) a Mixed Data Sampling (MIDAS) regression that exploits

information from higher frequency indicators and 3) a flexible group-shrinkage prior for reg-

ularisation and variable selection. Our contribution is two-fold. First, we propose a general

setting for nowcasting and forecasting that accounts for shifts over time in the low-frequency

target and that exploits potentially heterogeneous high frequency information via multivari-

ate MIDAS. While our setting nests existing models as special cases when model components

are shut-down, we show that combining such features leads to strong nowcasting performance,

including in and around the Covid-19 pandemic. Second, for regularising the MIDAS compo-

nent we employ the GIGG (Group Inverse-Gamma Gamma) prior. This allows for three-tiered

shrinkage—overall, between indicators, and within lags of an indicator—informed by the cor-

relation structure in the data. We enhance the prior with a new sparsification algorithm for

variable selection that allows to communicate signals from indicators in an intuitive way.

Specifically, the Trend-SV-t-BMIDAS features a time varying trend component (Trend) to

1 Alternatively, various studies have exploited new data sources at a daily or weekly frequency in factor models
(Ng, 2021; Baumeister et al., 2021) or non-parametric predictive regressions (Woloszko, 2020; Huber et al.,
2020; Kapetanios et al., 2022).
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capture low-frequency changes in GDP growth, and stochastic volatility processes that account

for fat tails (SV-t) in the conditional GDP growth distribution and in the trend. These features

capture gradual shifts in long-run GDP growth or its variance, and allow for extreme observa-

tions that, if un-accounted for, could blur signals from the high-frequency indicators. For these

components, we employ normal-type priors on the state variances using non-centred state space

methods (Frühwirth-Schnatter and Wagner, 2010).

Conditionally on the trend, cyclical fluctuations in GDP growth are linked directly to a

set of higher frequency indicators and their lags via parametric functional constraints in a

multivariate MIDAS regression (Ghysels et al., 2007, 2020). This approach is computationally

less demanding compared to models that address the frequency mismatch via a state space

representation (Bai et al., 2013). And since the MIDAS regression does not rely on co-movement

in the data, it can exploit heterogeneous signals from each indicator and its lags, which can be

desirable during a large heterogeneous shock such as Covid-19. However, multivariate MIDAS

models can be highly parameterised, and therefore prone to overfitting (Frühwirth-Schnatter

and Wagner, 2010; Huber et al., 2019), particularly when adding potentially many indicators

and time-varying features (Carriero et al., 2015). We impose Almon-lag polynomial restrictions

which reduce the number of parameters, but the MIDAS component can suffer from multi-

collinearity due to the high degree of serial correlation present in the mixed frequency lags.

The GIGG shrinkage prior takes the grouping between high-frequency lags and the typically

large correlation among them into account. It was initially proposed for group-shrinkage in

a panel data setting in environmental health studies by Boss et al. (2021), but has not been

exploited within a time series context. The prior shrink the impact of indicators in a continuous

manner, without shrinking any to zero, which makes communication of signals from indicators

challenging. We propose to combine the prior with a new sparsification algorithm motivated by

Bayesian decision theory. The algorithm selects high-frequency lag groups that best summarise

the predictions of the model in the spirit of Hahn and Carvalho (2015) and Chakraborty et al.

(2020) and shrinks others to exact zeros. This allows to derive inclusion probabilities for

individual (or groups of) indicators at each point in time.

In an empirical application, we employ the Trend-SV-t-BMIDAS model with GIGG prior

to nowcast quarter-on-quarter GDP growth in the United Kingdom using a set of monthly

macroeconomic indicators. We evaluate nowcasts over the data release cycle in a pseudo-

real-time setting over the sample period 1999 to 2021, distinguishing between a pre-pandemic

sample and the full sample including the Covid-19 shock. We evaluate the model against simpler

specifications that do not include time-varying components, where the prior does not impose

group shrinkage, and against alternative specification of the MIDAS component.

We present three main empirical results. First, the posterior estimates of the time-varying

trend and stochastic volatility components for UK GDP growth conform to economic intuition.
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We document a gradual decline in the trend component in UK GDP growth since the early

2000s. Throughout the Covid-19 pandemic period, trend GDP growth and its volatility remain

largely unchanged, whereas the cyclical component absorbs most of the shock and the volatility

of GDP growth shows a sharp increase. The inclusion of stochastic volatilies with t-distributed

errors helps the model to interpret the extreme movements in GDP growth seen during the

pandemic quarters as transitory in nature, since it helps to discount noisy observations which

otherwise would be interpreted as trend shifts.

Second, the proposed model provides gains against simpler specifications where the time-

varying components are shut down or the MIDAS component is modelled differently. Account-

ing either for a time-varying trend or for SV with t-errors substantially improves nowcasts,

and accounting for both provides further gains, particularly prior to the pandemic. Compared

to alterntive models where high frequency indicators are exploited through a combination of

univariate MIDAS without group-shrinkage, or summarised by a dynamic factor, the proposed

multivariate BMIDAS with group shrinkage performs better in late nowcast periods for which

real activity indicators for the reference quarter are available. The relative improvement is

particularly pronounced once the Covid-19 shock is included in the sample, where our model

detects the initial economic trough earlier and nowcasts the economic recovery more precisely.

Third, we unpack the signals that the Trend-SV-t BMIDAS exploits by presenting inclusion

probabilities of the indicators. We find that the group-shrinkage through the GIGG prior lets

the model draw on a sparse subset of indicators throughout the data release cycle. It reads

signals from survey indicators early in the data release cycle, and then shifts towards signals from

a few real activity indicators, particularly the index of services. When including the pandemic

period into the evaluation, the model concentrates more heavily on service-related surveys

and activity indicators, as well as indicators from the housing sector, both of which reflected

disruption from lockdowns and consumption shifts during the pandemic. Other models, on

the other hand, continue to read dense signals from a wide range of indicators. This finding

contributes to the general debate on the “illusion of sparsity” in macroeconomic forecasting

(Giannone et al., 2021; Fava and Lopes, 2021). We find that our sparse model outperforms

denser alternatives and seems better able to adjust to the heterogeneous nature of the Covid-19

shock. Overall, our analysis suggests that it is important to account for grouping structure

across indicators when analyzing sparsity patterns in applications with macroeconomic data.

We provide sensitivity analysis which shows that our model retains much of its competitive

performance when adopting a U-MIDAS transformation, although the Almon lag restrictions

help later in the data release cycle. On the other hand, we find that holding MIDAS coefficients

fixed at their pre-pandemic levels, in the spirit of Schorfheide and Song (2021), markedly

decreases nowcast precision. This indicates that the model coefficients adjust flexibly once data

signals come in during the pandemic quarters, which helps capturing the large shock.
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The application to nowcasting highlights the ability of the model to exploit timely signals—

which has been of particular interest for predictions during the Covid-19 pandemic, when eco-

nomic conditions deteriorated very fast and the typically heavily relied upon survey indicators

temporarily lost much of their association with GDP growth. However, the model can be applied

to a range of applications. The inclusion of time-varying trends makes it suitable for medium-

term GDP or inflation forecasting, and group-wise shrinkage can be useful for regularising a

range of disaggregated time series data.

Our analysis relates to the literature on multivariate MIDAS models with non-linear com-

ponents. Non-linear and non-parametric MIDAS structures have been used to address non-

linearities in the link between indicators and target (Guérin and Marcellino, 2013; Ghysels

et al., 2020). Instead, we focus on accounting for non-linear features in the target variable via

a time-varying trend and stochastic volatilities that account for extreme observations, as these

features have been found to improve predictive performance in a range of other models.

Our shrinkage approach relates to the literature on global-local priors. These priors are

characterised by two heavy- tailed scale processes that simultaneously shrink globally and on

individual covariate level (Polson and Scott, 2010; Polson et al., 2014), where the horseshoe

prior (Carvalho et al., 2010; Bhadra et al., 2019) is particularly popular. Conventional global-

local shrinkage priors, however, do not feature group-shrinkage and can suffer from random

covariate selection and bad mixing for highly correlated designs (Boss et al., 2021; Piironen

et al., 2020). Carriero et al. (2015) apply shrinkage on individual level with implicit grouping

via a Minnesota type prior instead, which imposes a deterministic degree of penalisation that

increases with the lag-length. We instead employ the GIGG prior that imposes adaptive group-

shrinkage accounting for the grouping and correlation of lags.

Our setting nests various existing models from the literature as special cases. When shutting

down the Trend-SV-t component and setting the hyper-parameters that impose group-wise

and within-group shrinkage to zero, we get a multivariate Bayesian MIDAS model with a

horseshoe prior, similar to Kohns and Bhattacharjee (2020). When allowing only for stochastic

volatility, the model is closest to Carriero et al. (2015). When shutting down the Trend and

SV-t component but imposing group-shrinkage, the resulting model is closest to Mogliani and

Simoni (2021) who propose a multivariate BMIDAS model with a group-shrinkage prior that

has a spike-and-slab structure. Finally, when modelling the cyclical fluctuations via a DFM

rather than as MIDAS structure, the model comes close to Antolin-Diaz et al. (2021).

The remainder of the paper is structured as follows. Section 2 presents the Trend-SV-t

Bayesian MIDAS, the GIGG prior and the proposed sparsification step. Section 3 outlines the

data set and setup of our application. Section 4 present the results on the in-sample model

features, nowcast performance and variable inclusion probabilities. Section 5 concludes. Details

on the methodology and additional results can be found in appendices A and B.
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2 Trend-SV-t Bayesian MIDAS with flexible priors

In this section, we discuss our methodological contributions to the BMIDAS framework. Firstly,

we outline the main features of the model. Then, we present the GIGG group-shrinkage prior

which we argue is well suited to regularise the multivariate MIDAS component due to its ability

to take the mixed-frequency grouping and correlation structure into account. Lastly, we detail

the sparsification algorithm that allows to communicate which signals the model reads from

high-frequency variable groups.

2.1 The Trend-SV-t-BMIDAS model

The proposed Trend-SV-t BMIDAS model is a flexible unobserved components model that

includes three main features: (1) a time-varying trend component that captures latent slow-

moving changes in GDP growth, (2) a multivariate MIDAS regression component that captures

cyclical macroeconomic information from a range of higher-frequency (monthly) indicators, and

(3) fat-tailed stochastic volatility processes to model error clustering in GDP growth and in the

trend, where leptokurtic tails discount potential outliers.

The model takes the following state-space form:

yt = τt + θ′Z
(m)
t−h +

√
λte

1
2
(h0+whh̃t)ϵ̃yt ,

ϵ̃yt ∼ N(0, 1), λt ∼ IG(ν/2, ν/2)
(1)

τt = τt−1 + e
1
2
(g0+wg g̃t)ϵ̃τt , ϵ̃

τ
t ∼ N(0, 1) (2)

h̃t = h̃t−1 + ϵ̃ht , ϵ̃
h
t ∼ N(0, 1)

g̃t = g̃t−1 + ϵ̃gt , ϵ̃
g
t ∼ N(0, 1),

(3)

where (1) is the observation equation of quarterly GDP growth and (2)-(3) describe the evolu-

tion of states, the latent trend and stochastic volatilities, respectively.

The trend component τt follows a driftless random walk that captures low frequency changes

in GDP growth. This reflects slow moving shifts in general economic conditions which would

not be captured by high-frequency information alone (Kim and Nelson, 1999; McConnell and

Perez-Quiros, 2000; Antolin-Diaz et al., 2017).2

Conditionally on the trend, the component Z
(m)
t captures cyclical fluctuations in GDP

growth. Z
(m)
t = (z

(m)
1,t , · · · , z(m)

K,t )
′ is observed for each of the K high-frequency indicators at

m, potentially non equidistant, intervals between t − 1 and t. In our application, we consider

macroeconomic indicators which are observed at monthly frequency, so that m = 3. The pa-

2 A different non-stochastic approach to disciplining models to account for long-run growth features is pre-
sented in Giannone et al. (2019). Here, the authors enforce iterative forecasts to return to long-run
cointegrating equilibria.
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rameters θ = (θ′1, · · · , θ′K)′ measure the response to changes in theK macroeconomic indicators,

each with Lk = 6 monthly observations.3 θk features pk + 1 parameters that act as a linking

function between higher frequency and lower frequency observations. The functional form of

these parameters further depend on the type of MIDAS employed (see for an overview of MI-

DAS methods Ghysels and Marcellino (2018)). Due to its parsimony, we use the linear Almon

lag polynomial in the spirit of Almon (1965) that has been recently popularised for high dimen-

sional mixed frequency forecasting applications by Mogliani and Simoni (2021).4 Parsimony is

induced in linear Almon-MIDAS by assuming a pk << Lk polynomial process of the coefficients

across high-frequency observations, which can be further improved with economically relevant

end-point restrictions (Smith and Giles, 1976). For our application below, we assume 5 monthly

lags (s.t pk + 1 spans 6 months in total), a third degree polynomial (pk = 3) as proposed by

Mogliani and Simoni (2021) and two end-point restrictions to ensure that the weight profile

peters out smoothly to 0 (see Appendix A for details). Although Almon lags partially address

over-parametrisation, the MIDAS component can still suffer from multi-collinearity due to the

high degree of serial correlation present in the mixed frequency lags Z
(m)
t . This will be addressed

with our shrinkage prior in section 2.2.2.

Finally, we allow for stochastic volatility processes h̃t, g̃t for GDP growth yt and the latent

trend τt, respectively. The volatility processes follow driftless random walks (3), and are non-

centred after Frühwirth-Schnatter and Wagner (2010). This exerts stronger shrinkage on the

state standard deviations, wh and wg so as to control the variability of the state process.5

The more commonly employed centred SV process ht, can be exactly recovered by noticing

that ht = h0 + whh̃t (likewise for gt). Despite the stronger shrinkage of the state variation,

random walk behaviour might be inappropriate to capture the recent unprecedented size and

short-lived nature of the Covid-19 shock. We therefore allow the observation equation to have

fat-tails via λt which enforces t-distributed errors with ν degrees of freedom. This discounts

large contemporaneous movements in yt and thus limits the propagation of outliers to the

posteriors of the model components.

3 Three observations correspond to leads and three are lags in relation to the quarterly time-steps, t.
4 Foroni and Marcellino (2014) show that linear MIDAS methods are competitive with non-linear MIDAS

weighting schemes such as the non-linear Almon and beta functions Ghysels et al. (2007), but have the
advantage of being compatible with off the shelf shrinkage methods.

5 Since wg and wh, directly appear in the observation and state equation, which control the overall state
smoothness, one can apply conjugate normal priors which exert stronger shrinkage than inverse-gamma
priors. This approach has been used in many large time-varying parameter models (Huber et al., 2019;
Chan, 2017b; Koop and Onorante, 2019).
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2.2 Bayesian Setup

To regularise parameter estimation variance, we make use of Bayesian priors. We first present

the general prior framework that gives rise to the conditional posteriors, before detailing in

2.2.2 the form and intuition of the GIGG prior.

We consider priors of the form:

π(ζ) = π(θ)π(τ )π(h̃)π(g̃)π(ϕ)π(λ|ν)π(ν), (4)

where ζ stacks all unknown parameters into one vector, bold-faced letters refer to time ordered

vectors ( e.g., τ = (τ1, · · · , τT )′) and ϕ collects any remaining state parameters (τ0, h0, g0, wh, wg)
′.

The priors, except for those for λ, ν, are independent which allows for convenient Gibbs sam-

pling of the conditional posteriors.

2.2.1 Priors for the cyclical component

We consider normal priors for the MIDAS parameters θ:

π(θ) ∼ N(0∑K
k=1(pk+1),Λ∗), (5)

where a prior mean vector of zero implies shrinkage toward sparsity and the prior variance

parameters along the diagonal of Λ∗ control the amount of shrinkage toward zero. These will

be populated with parameters of the GIGG prior, as discussed in the next sub-section. But

the structure of the prior allows for any independent shrinkage prior, see for example Polson

and Scott (2010) for an overview of common shrinkage priors. Conditional on the other model

parameters, the posterior is normal:

θ|y, • ∼ N(θ,Λ
−1

∗ )

Λ∗ = (Z(m)′Λ−1
t Λ−1

h Z(m)+Λ−1
∗ ), θ = Λ

−1

∗ (Z(m)′Λ−1
t Λ−1

h ỹ),
(6)

where ỹ = y−τ , Λt = diag(λ1, · · · , λT ), Λh = diag(eh1 , · · · , ehT ), andZ(m) = (Z
(m)
1 , · · · , Z(m)

T )′.

6 highlights the effects of the stochastic volatility and fat-tail imposed in the model. Both h̃

and λ act to effectively discount variation in the covariance matrix as well as the fit with ỹ.

The scales in Λt move inversely with irregular shocks in conditional GDP growth, while Λh

account for slow moving error variance.

Due to the availability of known conditional distributions, we make use of Gibbs sampling to

draw inference on the parameters (see A.2), where we use 5000 draws as burn-in and retain 5000

for inference. *** PLEASE ADJUST:*** In situations where Λ∗ is very high-dimensional, par-
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ticularly when
∑K

k=1 pk +1 >> T , we make use of the fast sampling algorithm of Bhattacharya

et al. (2016) which reduces computational complexity for the regression parameter sampling

step from O((
∑K

k=1 pk +1)3) (Cholesky based sampling algorithms) to O(T 2× (
∑K

k=1 pk +1)).6

2.2.2 Group-shrinkage prior (GIGG) on the multivariate MIDAS structure

The multivariate MIDAS framework is highly parameterised since it involves K indicators, and

for each indicator k, a group of Lk lower frequency (quarterly) vectors are created correspond-

ing to each available observation at higher (monthly) frequency. This gives two potentially

interdependent dimensions relevant for efficient shrinkage. First, not all of the K groups are

equally relevant for prediction, which calls for adaptive shrinkage across groups. Second, the

fact that consecutive higher frequency observations enter the model via the implied data trans-

formations induces correlation within the lag group. Such correlation can be high for time-series

applications, even with U-MIDAS sampled data (Ghysels et al., 2007), and more so when Almon

lag polynomials impose a structure on the lags. This can cause mixing issues with aggressive

shrinkage priors which typically seek to shrink individual covariates aggressively to zero or not

at all. Finally, the two dimensions can be interdependent, since the degree of correlation across

lags can matter for the relative impact that the lag group has for predicting the target.

We therefore use a three-tiered shrinkage prior that addresses these issues jointly, as it

adaptively shrinks groups to zero, and simultaneously accounts for the degree of correlation

within the group. The prior, named the group inverse-Gamma Gamma (GIGG) prior (Boss

et al., 2021), is specified as

θk,j ∼ N(0, ϑ2γ2
kφ

2
k,j), ∀j ∈ {0, · · · , pk + 1}

ϑ ∼ C+(0, 1), γ2
k|ak ∼ G(ak, 1), , φ2

k,j ∼ IG(bk, 1),
(7)

where G(•, •), IG(•, •) and C+(•, •) refer to the Gamma, inverse-Gamma, and half Cauchy

distribution with positive support, respectively.

The parameters ϑ, γk and φk,j govern the three-tiered shrinkage. While ϑ2 controls the

overall level of sparsity, γ2
k acts as a shrinkage factor that enables pushing the impact of group

k jointly close to zero, and φ2
k,j controls how correlated group member j is within k. The

hyper-parameters ak and bk summarise our prior guess on the relative importance of group-level

shrinkage relative to shrinkage of within-group correlation (see Appendix A for a visualisation of

the a-priori behaviour). The lower ak is set relative to bk, the stronger the group-level shrinkage,

and the larger the prior correlation among the group’s regression parameters. Such a choice

favors group-sparse posteriors, where groups are shrunk jointly to zero, but the relevant groups

6 Details of the sampling algorithm can be found in A.1
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feature a high degree of correlation among individual lags, instead of a heterogeneous shrinkage

within group. This can be an appropriate choice for models that use Almon transformed lags,

and even in unrestricted MIDAS applications where lags are highly correlated, as suggested by

Boss et al. (2021). In our application, we follow this intuition and we set ak = 1/T, bk = 0.5 ∀k.
In appendix B.3 we report nowcast results for different hyper-parameter choices. In situations

in which prior knowledge exists that only selected lags are important, a relatively small bk helps

to shrink individual lags within a group.

The GIGG prior belongs to the general global-local prior framework, in which two heavy-

tailed scale processes simultaneously shrink globally and on individual covariate level (see Polson

and Scott (2010) and Polson et al. (2014)). Among these, the horseshoe prior of Carvalho et al.

(2010) is particularly popular due to its excellent empirical and theoretical properties (Bhadra

et al., 2019; Van Der Pas et al., 2014). Conventional global-local shrinkage priors such as the

horseshoe, however, do not feature group shrinkage via γ2
k and can suffer from random covariate

selection and bad mixing for highly correlated designs (Boss et al., 2021; Piironen et al., 2020;

Giannone et al., 2021), which is typically the case in mixed-frequency regressions. Previous

BMIDAS priors such as in Carriero et al. (2015) apply shrinkage on individual level with

implicit grouping via a Minnesota type prior to address this, but the Minnesota prior does not

impose adaptive shrinkage across covariates k and imposes a deterministic level of penalisation

that increases with the lag-length. Closest to our prior setup for MIDAS regression is Kohns

and Bhattacharjee (2020) who use simple horseshoe prior regularisation. We will use this prior

as a benchmark for the group-prior model.

A special trait of the GIGG prior is that it nests the exact group-horseshoe prior when agk =

bgk = 0.5, for a group-size of one and for other combinations of the hyper-parameters, follows a

correlated normal beta prime distribution akin to Armagan et al. (2013), γ2
kφ

2
k,j ∼ β′(ak, bk).

7

It therefore inherits the characteristics of the β′ distribution in that it can allow for aggressive

shrinkage due to large prior mass on zero, but also allows groups to be virtually unregulated

when the effect on the target is large due to it’s heavier than exponential tails, which makes the

prior appropriate for group selection tasks (Piironen et al., 2017).8. The shrinkage properties

of the prior are further elucidated in Appendix (A.1).

In contrast to the proposed GIGG prior, other group-prior implementations such as the

group-lasso suggested in the literature (Casella et al., 2010; Xu and Ghosh, 2015), are known

for over-regularising signals due to their exponential tails and under-regularising noise due to

less mass on zero compared to horseshoe type priors. Xu and Ghosh (2015) remedy the latter

7 This represents a departure from the group-horseshoe prior of Xu and Ghosh (2015), which does not reduce
to a simple horseshoe for a group size of one.

8 Unregulated groups with large effects on the target is a trait that is shared on an individual covariate level
with the horseshoe prior Carvalho et al. (2010)
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behaviour of the group-lasso by including group-spike-and-slab variable selection. However,

these priors assume a uniform level of shrinkage within group, hence, don’t allow for inference

on the correlation via a covariate level scale. Further, the spike-and-slab with point-mass on

zero is well known to mix poorly in high dimensions and with correlated groups (Ishwaran

et al., 2005; Piironen et al., 2017). For these reasons, we do not consider lasso priors, but refer

to Boss et al. (2021) for further prior comparisons to the GIGG prior.

2.2.3 Priors for the latent states & fat-tails

The other priors we employ are standard. For the latent states (τ , h̃, g̃) we consider a joint

normal prior derived using methods proposed in Chan and Jeliazkov (2009); McCausland et al.

(2011) that allow representing the entire conditional state posterior as a tractable normal dis-

tribution. This increases sampling efficiency compared to Kalman filter based techniques such

as Carter and Kohn (1994); Frühwirth-Schnatter (1994), and allows use of computationally effi-

cient sparse matrix operations (see A.1 for a more detailed exposition). To derive the posteriors

of (h̃, g̃) we use the approximate sampler of Kim et al. (1998). Since latent states are prone to

overfitting in heavily parameterised models Frühwirth-Schnatter and Wagner (2010) we put nor-

mal priors on the state variances to control their variation. These exert stronger shrinkage than

commonly employed inverse-Gamma priors for variance parameters (see Frühwirth-Schnatter

and Wagner (2010) for more discussion on state variance priors). The conditional posteriors

are further exposed in A.1. Lastly, for the degrees of freedom hyper-parameter ν of the Inverse-

Gamma distribution of λt we assume a relatively non-informative uniform prior which results

in a non-standard distribution detailed in appendix A.1. To draw from that posterior, we make

use of a Metropolis-within-Gibbs step.

2.3 Sparsification step for the GIGG prior

With continuous shrinkage priors such as the GIGG the posteriors of lag groups remain non-zero

with probability one (Hahn and Carvalho, 2015). This hampers the understanding of which

indicators impact the cyclical component and thus the interpretability of results. Thresholding

to exactly zero those lag groups that have little effect on yt, i.e. essentially eliminating them

from the model, makes it easier to interpret and communicate model outcomes. And it allows to

draw inference about model uncertainty which can be pervasive in macroeconomic applications

(Giannone et al., 2021; Huber et al., 2019; Cross et al., 2020; Kohns and Bhattacharjee, 2020).

Recently, Mogliani and Simoni (2021) extend the adaptive group-lasso prior applied to Almon-

lag MIDAS regressions to spike-and-slab variable selection for that purpose. Instead, we propose

the use of a sparsification algorithm that is motivated by the perspective of a Bayesian decision

maker who seeks the smallest subset of groups that best summarise the forecasts of the model
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(1)-(3), inspired by Hahn and Carvalho (2015) and Woo and Owen (2019).9 This can be

achieved by minimising a utility function over the Euclidean distance between a linear model

that penalises group-size akin to Zou (2006) and our model’s prediction:

L(Ỹ , α) =
1

2
||Z(m)α− Ỹ ||22 +

K∑
k=1

ϕk||αk||2, (8)

where Ỹ refers to a realisation from the posterior predictive distribution

p(Ỹ |y) =
∫
p(Ỹ |y,Z(m), θ, •)p(θ|y,Z(m), •)dθ, and || • ||p refers to the ℓp-norm.10 Similar

to the logic of adaptive group-lasso (Wang and Leng, 2008), the penalisation term induces

non-differentiability at zero, which creates a soft-thresholding effect between [−ϕk, ϕk], thereby

forcing the coefficients on all group members to zero. The Bayes optimal solution for α is

obtained by integrating out the posterior uncertainty from the predictive distribution, as well

as in the parameters θ (Lindley, 1968) (see Appendix A.3).

In the following, we first show the analytical solution we derive for (8), and then discuss

the assumptions needed to derive it. For a full derivation, see appendix A.3. The sparsified

estimate α
∗(s)
k for each Gibbs-sampling step s = 1, · · · , S, is given by:

α
∗(s)
k =

(
||θ(s)k ||2 − ϕ

(s)
k

)
+

θ
(s)
k

||θ(s)k ||2
, (9)

where (x)+ = max(x, 0). (9) implies that when θ
(s)
k are close to 0, then α

∗(s)
k = 0, whereas,

when θ
(s)
k are large, then α

∗(s)
k = (1− ϕ

(s)
k

||θ(s)k ||22
)θ

(s)
k , in which case the first term will be very close

to 1, thus imposing close to no further shrinkage.

Two assumptions are needed to derive (9). Firstly, it requires orthonormalisation of the data

for each k such that T−1Z̃
(m)
k

′Z̃
(m)
k = I. This serves to simplify the solution, and as shown

in (Simon and Tibshirani, 2012), not orthonormalising groups ignores the cross-correlation of

group members in k such that the algorithm implicitly prefers to not threshold groups whose

covariance is large, and also ignores that Z
(m)
k might be on different scales.11 Secondly, we make

use of the work by Ray and Bhattacharya (2018); Chakraborty et al. (2020) who show that,

when setting ϕ
(s)
k = 1

θ
(s)
k

, iterative solution methods such as the coordinate descent (Friedman

et al., 2010), converge already after the first cycle. This gives us the analytical solution 9.

The relative frequency of high-frequency lag-group k selected in α∗(s) over all Gibbs draws

9 Note that using the unsparsified posterior estimates of θ for prediction is already optimal in terms of
empirical risk (Chakraborty et al., 2020), so that the main goal of sparsification is communication.

10 Note that for simplicity we define the predictive distribution over in-sample values of Z(m), but in principle
any data can be used for the analysis.

11 It can be further shown that orthonormalising the objective, establishes connection to best subset selection
and uniformly most powerful invariant testing (Simon and Tibshirani, 2012)
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will be used to report inclusion probabilities that inform on the relative impact of an indicator.

See Woody et al. (2021) and Chakraborty et al. (2020) for formal justification of the model

selection uncertainty and the asymptotic risk properties, respectively.

3 Data set and Empirical Setup

For our application, we nowcast real quarter-on-quarter GDP growth in the United Kingdom

based on a set of monthly macroeconomic indicators following a stylised publication calendar.

In the following, we outline the data set, the stylised publication calendar we follow, and the

set-up of our nowcasting exercise and evaluation.

3.1 Data set

The set of monthly macroeconomic indicators has been compiled to reflect information on the

UK economy that policymakers actively monitor to gauge economic activity in real time, and is

comparable to data sets employed in previous studies (Antolin-Diaz et al., 2017; Anesti et al.,

2018). We include a range of real activity and survey indicators, including indices of production

and services, exports and imports, a range of labour market series, as well as timely business and

consumer surveys (CBI survey, PMIs, GFK). In order to capture lending conditions that can

affect economic conditions via financial conditions we also include mortgage lending approvals

and VISA credit card consumer spending. These series also tracked consumer spending during

the pandemic, reflecting shut-downs of business and housing activity. We do not add asset prices

or other financial indicators which have been found to contribute little to nowcast updates once

information from monthly survey and real activity data is accounted for (Bańbura et al., 2013;

Anesti et al., 2018). Also, during the Covid-19 period financial markets were detached from

real activity in the UK—asset prices initially collapsed, then stabilised early on in the pandemic

in response to monetary policy interventions, and subsequently exhibited a boom that was not

in line with the weakness of the real economy. The series are transformed to be approximately

stationary prior to estimation.12

We consider the sample period from 1999Q1 to 2021Q3. The start of the sample is pinned

down by data availability since many of the monthly indicators are not available for earlier

years.13 To mimic incoming information over the data release cycle that a nowcaster would face

in reality, we produce nowcasts based on a pseudo real time data calendar, as outlined below.

12 See Table B1 in the appendix for an overview of the data and their respective transformations.
13 Some of the series have missing values at the beginning of the sample period. We interpolate these based on

a principal component (PCA) model that accounts for missing information via the alternating least square
algorithm. Alternatively, we also employed the commonly used EM algorithm (Bańbura and Modugno,
2014) for interpolation, and we found that there is little difference in the sample under investigation.
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However, for ease of analysis we use final vintages of the data, downloaded in December 2021.

Since our focus here lies in understanding the proposed model, we leave an account for real

time data releases and revisions for future research.14

3.2 Nowcast exercise

Macroeconomic data are published asynchronously at different points in time and with delays

ranging from various weeks (survey data) to up to various months (labour market data) after

the reference month. To simulate the information set available to the nowcaster over the data

release cycle, we follow a stylised pseudo real-time data release calendar (see Table 1).

Table 1: Stylised pseudo real-time data release calendar.

Nowcast Quarter Days to GDP Month Timing within month Release Publication Lag

1 135 1 1st of month PMIs m-1
2 125 1 End of 2nd week IoP, IoS, Ex, Im m-2
3 120 1 3rd week Labour market data m-2
4 115 1 3rd Friday of month Mortgage & Visa m-1
5 110 1 End of 3rd week CBIs & GfK m
6 Reference 105 2 1st of month PMIs m-1
7 quarter 97 2 Mid of 2nd week Quarterly GDP q-1
8 (nowcast) 95 2 End of 2nd week IoP, IoS, Ex, Im m-2
9 90 2 3rd week Labour market data m-2
10 85 2 3rd Friday of month Mortgage & Visa m-1
11 80 2 End of 3rd week CBIs & GfK m
12 75 3 1st of month PMIs m-1
13 65 3 End of 2nd week IoP, IoS, Ex, Im m-2
14 60 3 3rd week Labour market data m-2
15 55 3 3rd Friday of month Mortgage & Visa m-1
16 50 3 End of 3rd week CBIs & GfK m
17 45 1 1st of month PMIs m-1
18 Subsequent 35 1 End of 2nd week IoP, IoS, Ex, Im m-2
19 quarter 30 1 3rd week Labour market data m-2
20 (backcast) 25 1 3rd Friday of month Mortgage & Visa m-1

Notes: “Timing” refers to typical data release times as of December 2021, abstaining from changes in the publication calendar
over the sample period. “Release” refers to the data series updated at a given nowcast, see also Table B1 in the appendix for
a list of data series included. “Publication lag” represents the delay relative to the reference quarter (i.e. publication at any
point in the subsequent month considered to be one month lag, m-1).

As is common with MIDAS approaches, we start the nowcast exercise for each quarter anew.

We start predicting with all available information on the first of the month of the reference

quarter. Following the stylised release calendar in Table 1, we generate overall 20 nowcasts

that are being produced at each date in the quarter when new data series are typically released,

until the release of quarterly GDP six weeks after the end of the reference quarter.15 For

14 See Anesti et al. (2018) for and analysis of UK data on the forecastability of different vintages and how to
incorporate that information for nowcast updates.

15 We refer to the first GDP publication, available about 40 days after the reference quarter. We abstain from
accounting for a less accurate preliminary GDP estimate that was available 25 days after the reference
quarter prior to Sir Charles Bean’s 2018 review of UK economic statistics (Scruton et al., 2018).
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each new data release over the data release cycle, we generate nowcasts from the predictive

distribution p(yt+1|Ων
T ), where v = 1, · · · , 20 refers to the nowcast periods and Ωv

T represents

the information set that expands with each data release. Since the MIDAS framework belongs

to the class of reduced-form mixed frequency models, each information set Ωv
T results in a

different model, depending on which data are observable over the data release cycle (Carriero

et al., 2015).16 To draw samples from the predictive distribution, we integrate over all parameter

uncertainties which is easily implemented via Monte Carlo integration (Cogley et al., 2005).

We start the nowcast exercise with an in-sample period of 1999Q1-2011Q1, and iteratively

expand it until the end of the forecast sample, Tend = 2021Q3. Since the Covid-19 pandemic

represents a historic shock to the macroeconomy, we separately evaluate nowcasts over a sample

that ends in 2019Q4 and one that cover the full sample period including the Covid-19 shock.

Point nowcasts are computed as the mean of the posterior predictive distribution and are

compared via real time root-mean-squared-forecast-error (RMSFE) which are calculated for

each nowcast period as:

RMSFE =

√√√√ 1

Tend

Tend∑
t=1

(yT+t − ŷvT+t|Ωv
T+t−1

)2, (10)

where ŷvT+t|Ωv
T+t−1

is the mean of the posterior prediction for nowcast period v using information

until T + t − 1 and T is the initial in-sample length. Forecast density fit is measured by the

mean real-time continuous rank probability score (CRPS):

CRPS =
1

Tend

Tend∑
t=1

1

2

∣∣∣yT+t − yvT+t|Ων
T+t−1

∣∣∣− 1

2

∣∣∣yv,AT+t|Ωv
T+t−1

− yv,BT+t|Ωv
T+t−1

∣∣∣ . (11)

Note that in (11), yv,A,B
T+j|Ωv

T+j−1
are independently drawn from the posterior predictive density

p(yvT+1|Ωv
T+j−1

|yT ). The CRPS belongs to the class of strictly proper scoring rules (Gneiting and

Raftery, 2007), and can be thought of as the probabilistic generalisation of the mean-absolute-

forecast-error. To facilitate the discussion below, the objective in terms of predictive precision

is to minimise both evaluation metrics.

4 Empirical Results

In section 4.1, we first develop intuition on the trend and cyclical components in UK GDP

growth by focusing on posterior estimates of the various model components (1)-(3). Section

16 This is in contrast to full system mixed frequency methods which represent missing low- and high-frequency
information as unobervable state variables (Bańbura et al., 2013).
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4.2, evaluates nowcast performance of the Trend-SV-t-BMIDAS model against alternative model

specifications without the Trend and SV-t model features, or with alternative specifications

for the BMIDAS component. Section 4.3 then unpacks the signals from the high-frequency

indicators via inclusion probabilities derived via the sparsification algorithm.

4.1 Analysing UK GDP growth via the Trend-SV-t-BMIDAS

Figure 1 shows the posterior estimates of the cyclical (blue) and trend (orange) components

(upper panels, separating the pre-pandemic period and the Covid-19 period) as well as the

stochastic volatility components of GDP growth (lower left panel) and the trend equation (lower

right panel) from the Trend-SV-t-BMIDAS model with GIGG prior. The cyclical component

captures high frequency movements in GDP growth. It tracks the quarter-to-quarter movements

in GDP growth (black dashed-dotted lines) well, including over the Covid-19 pandemic where

the cyclical component captures the bulk of the 20% drop in GDP growth and most of the

recovery. On the other hand, the trend captures low frequency changes in GDP growth and

can be interpreted as a time-varying long-run growth estimate. We observe a gradual slowdown

in UK GDP growth since the early 2000s, with an additional temporary decrease in the trend

during the Great Financial Crisis (GFC). Throughout the Covid-19 pandemic, the trend remains

largely unchanged, hence the model interprets the extreme movements in GDP growth seen

during the pandemic as transitory in nature.

Further, the t-distributed volatility estimate of the observation equation (lower left panel)

shows a sharp and strong increase during the pandemic, by far exceeding the increase observed

during the GFC. The model attributes the bulk in the increase in variance to be related to GDP

growth itself and not to its long-run trend. However, trend volatility does gradually increase

during the pandemic, even though credible intervals are wide, pointing to the possibility of a

more persistent increase in the variance of long-run GDP growth. Although it remains an open

question whether the Covid-19 pandemic has induced scarring in terms of repercussions to the

long-run UK GDP growth trend, initial findings from our model suggest that the shock affected

cyclical variation more than long-run trends.

The fat-tailedness of error distributions in the stochastic volatility process proves to be an

inherent model feature, as suggested by the posterior distribution of the degrees of freedom

parameter showing large mass around small values (see Figure B2 in the appendix). But

even prior to the pandemic, the inclusion of fat-tailed error variance is important to separate

the slow-moving trend from cyclical movement. To elucidate this point, Figure 2 shows the

posterior trend and cyclical component over the period until 2019Q4, from the baseline model

that includes SV and t-distributed errors (blue lines and shaded areas), the model with SV but
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Figure 1: Posterior estimates for trend, cyclical component and stochastic volatilities.
Notes: Results from the T-SV-t-BMIDAS model with GIGG prior. The components are estimated
over the full sample - pre-pandemic and pandemic cycle and trend are shown separately for readability. Orange
lines and areas show the posterior means for the trends in GDP growth. Blue lines and areas show posterior
medians of the cyclical components in GDP growth (upper panel) and stochastic volatilities in GDP growth
(lower panel, left) and trend (lower panel, right). Shaded areas show 95% credible intervals.

no t-distr. errors (orange), as well as for constant variance only (green).17 The model with

SV shows the least intuitive results since it assigns most of the cyclical variation to the trend

component, whereas the cycle remains very stable throughout the sample including during the

GFC. Adding SV without t-distr. errors in a sample that contains both quieter periods and

larger shocks such as the GFC likely results in overly discounting variation available to the

cyclical component and instead over-fitting the trend. On the other hand, the baseline model

achieves a sensible trend-cycle decomposition since it is able to separate large transitory shocks,

that are handled by the fat tails, from smaller but more pervasive ones that are captured by

the SVs in GDP growth and its trend. Both the cyclical and trend components are estimated

with high precision in the baseline model. By contrast, in the constant variance model credible

intervals are much larger, since the uncertainty of shocks permeates fully into the cyclical

and trend components. While this model does assign short-term fluctuations to the cyclical

17 The posterior estimates are based on the information set at the first nowcast period of 2019Q4. As section
4.2 will show, early nowcasts over the data release cycle are those benefiting the most from the inclusion
of a time-varying trend with SV-t errors during the pre-pandemic period.
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Figure 2: Posterior trend estimates from different BMIDAS specifications, pre-pandemic.
Notes: Posterior means of the trend up until 2019Q4 from the Trend-SV-t BMIDAS model (blue), the
Trend-SV model (orange), and the Trend-Const.Var model (green). Estimation at the 1st nowcast period.
Black dashed line shows realisation of real UK GDP growth. Shaded areas represent 95% credible intervals.

component, this goes at the expense of an almost unresponsive trend.

4.2 Nowcast evaluation and the role of model features

Having provided intuition for the posterior of the model components, we now evaluate the

nowcast performance of the Trend-SV-t-BMIDAS model. First, we focus on the role of model

features. Then, we evaluate the preferred Trend-SV-t model against a range of benchmarks,

with a focus on performance during the pandemic.

4.2.1 Role of model features

Figure 3 assesses the role of model components by comparing the nowcast performance of the

baseline model with versions where the new features, i.e. the time-varying trend, the stochastic

volatilies, and their t-distributed errors, are shut off one by one or jointly. The figure shows

root mean square forecast errors (RMSFE, upper panel) and continuous rank probability scores

(CRPS, lower panel) over the data release cycle (days ahead of GDP release) on the x-axis.

Over the pre-pandemic period (left panel), the Trend-SV-t BMIDAS (blue solid line) clearly
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Figure 3: Nowcast performance for different BMIDAS model components.
Notes: Absolute root mean square forecast errors (RMSFE) and continuous rank probability scores
(CRPS) over nowcast periods (days before GDP release on x-axis), for different specifications of BMIDAS with
GIGG prior. Solid lines: models including a time-varying trend (T-). Dashed lines: models without trend.
Blue lines: models with stochastic volatility with t-distr. errors (SV-t). Orange lines: models with stochastic
volatility (SV). Yellow lines: models with constant variance. Results for pre-pandemic period evaluate nowcasts
over 2011Q2-2019Q4, results including the pandemic evaluate nowcasts until 2021Q3.

outperforms the alternative model specifications in terms of point and density nowcasts for most

of the nowcast periods (135-35 days prior to GDP release). The model’s nowcast performance

nearly continuously improves as new data come in, whereas some of the other models exhibit

ups and downs in the nowcast performance. Sizeable improvements in nowcast performance

are observed 105, 65 and 35 days prior to GDP release, which coincides with the releases

of PMIs and of the production and service indicators for the first and second month of the

reference quarter, respectively. Adding the time-varying trend component to the model (solid

lines) provides benefits for point and density nowcasts prior the pandemic, independently of

the specification of volatilities, in line with existing evidence for the United States by Antolin-

Diaz et al. (2017). Also adding stochastic volatility combined with t-distr. errors improves

the nowcast performance further and stabilises it over the data release cycle. As such, the

nowcast performance of models with a trend but no t-distr. errors (orange and yellow solid

lines) temporarily deteriorates when survey data for the first month of the reference quarter get

released (110 days to GDP), whereas the performance of the baseline model improves with that
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release. The model with constant variance and no trend (yellow dashed lines) clearly performs

worst, which underlines the importance of incorporating at least one of the proposed features

into BMIDAS models—even over samples that exclude the Covid-19 pandemic.

When including the Covid-19 pandemic (right panel), not surprisingly, nowcast errors are

much higher for all models, particularly early on in the data release cycle, where the episode

of the initial downturn generated by lockdowns and the health crisis inflates nowcast errors.

Differences across model variants are relatively small over most nowcast periods. Nowcasts

gradually improve in the early parts of the data release cycle until the release of PMIs for the

second month of the reference quarter (75 days prior to GDP), followed by a strong improvement

in performance with the release of “hard” indicators pertaining to the first month (65 days prior

to GDP). The nowcast performance of all models strongly improves at this point, but more so

for models with stochastic volatility and t-distr. errors with and without trend (blue lines).

Whether the time-varying trend is added or not makes less of a difference once the pandemic

period is included, in line with the findings from Figure 2 that models that do not account

for outliers struggle to identify the Covid-19 pandemic related downturn as temporary and

instead over-fit the trend. Finally, the simple model without trend and with constant variance

fares comparatively well early on in the data release cycle, but then loses out against the other

models, particularly in terms of density nowcasts. Such a model is not able to capture the large

shift in the data neither via increased uncertainty nor through trend shifts.

Overall, we find that adding a time-varying trend to the BMIDAS model helps nowcast

performance during the pre-pandemic period and does not detriment performance once the

Covid-19 shock is included. We also find that adding stochastic volatilities is only useful when

it is also combined with t-distributed errors—otherwise, the model over-fits the trend and shows

a weaker and more volatile performance. Based on these results, for the rest of the paper, we

choose the Trend-SV-t BMIDAS model as our preferred specification.

4.2.2 Evaluation against alternatives to the BMIDAS component

Next, we assess the nowcasting performance of the proposed Trend-SV-t-BMIDAS model with

GIGG prior against the following benchmark models.

• AR(2): represents a purely auto-regressive benchmark, does not include trends, stochas-

tic volatility or t-errors.

• Combination: Univariate MIDAS regressions for each of the K high frequency macroe-

conomic indicators, estimated with a normal prior and combined according to their dis-

counted RMSFE and CRPS performance akin to Stock and Watson (2004). We follow

Carriero et al. (2019) by setting the discount factor δ = 0.95. For comparability with our

model, we estimate the univariate MIDAS regressions with Trend-SV-t components.
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• MF-DFM: Similar to Antolin-Diaz et al. (2021), this dynamic factor model also includes

Trend-SV-t components, but it captures the cyclical information via a dynamic factor that

exploits co-movement across the K indicators contamporaneously and at up to two lags.

The priors on the latent state components are similar to the ones outlined in section 2.2.3.

• Trend-SV-t-BMIDAS-HS: model 1-3 with the horseshoe prior, thus another flexible

shrinkage prior, but without group-shrinkage. This represents a benchmark in terms of

the prior for the Trend-SV-t BMIDAS.18

Figure 4 plots RMSFE and CRPS over the data release cycle, and Table 2 shows the

evaluation metrics of the proposed model and benchmarks relative to the AR model, on average

across all nowcast periods and for selected periods that correspond to releases of PMIs and real

activity indicators. Stars indicate significantly different point and density nowcasts as per

Diebold et al. (1998). Three main findings emerge. First, similarly to many other studies (e.g.

Foroni et al. (2015); Carriero et al. (2015, 2019)), models that exploit monthly macroeconomic

indicators outperform the autoregressive model, with relative RMSFE and CRPS against the

AR(2) lying clearly and significantly below 1 for most models throughout the nowcast cycle. The

relative advantage against the AR(2) model becomes even more pronounced when including the

pandemic quarters into the evaluation, albeit the differences become insignificant for individual

nowcast quarters due to the large uncertainty during that shock.

Second, the proposed Trend-SV-t model with GIGG prior is among the strongest models

prior to the pandemic and outperforms all other models once pandemic quarters are included

in the evaluation. Prior to the pandemic, the MIDAS Combination (dashed lines) and DFM

(dashed-dotted lines) show the strongest performance in terms of density nowcasts, but the

Trend-SVt-BMIDAS with GIGG prior performs similarly to these in terms of point forecasts.

The Combination displays the least variation over nowcast periods given that it averages out

nowcast errors, but it is outperformed by the DFM and Trend-SVt-BMIDAS with GIGG for

later nowcast periods. Whereas the nowcast performance of the other models stagnates during

later nowcast cycles when moving closer to GDP release, the proposed model shows continuous

improvements, indicating that it can exploit real activity data releases particularly well. Indeed,

once real activity indicators for the first month are published 35 days prior to GDP release,

the relative RMSE (CRPS) of the proposed model significantly improves against the AR(2) by

50% (40%). The relative advantage of the proposed Trend-SVt-BMIDAS is even stronger when

including Covid-19 observations into the evaluation sample: it considerably outperforms the

18 We also compared nowcasting performance to BMIDAS models with other frontier prior choices such as
the adaptive group-lasso with spike and slab prior model for Almon lag transformed data as proposed
by Mogliani and Simoni (2021). We find that our models are again competitive or outperform these
benchmarks. These results are available on request.
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Figure 4: Nowcast performance of Trend-SV-t-BMIDAS with GIGG compared to benchmarks.
Notes: Absolute RMSFE and CRPS over nowcast periods (days before GDP release on x-axis) for
Trend-SV-t-BMIDAS with GIGG prior (blue lines), Trend-SV-t-BMIDAS with HS prior (orange), Combined
U-BMIDAS (black dashed), MF-DFM (black dotted-dashed), and AR(2) (yellow). Results for pre-pandemic
period evaluate nowcasts over 2011Q2-2019Q4, results including the pandemic evaluate nowcasts until 2021Q3.

Table 2: Relative Evaluation Metrics

Nowcast Periods Average 6 13 18 Average 6 13 18

RMSFE Pre-Pandemic RMSFE Including Pandemic
AR 0.42 0.42 0.42 0.42 11.45 11.4 11.47 11.48
MF-DFM 0.67*** 0.75 0.67** 0.63** 0.32*** 0.33 0.32 0.34
Combination 0.68*** 0.68** 0.67** 0.67** 0.36*** 0.37 0.34 0.33
Trend-SV-t-HS 0.81*** 0.87 0.73 0.74 0.28*** 0.28 0.23 0.24
Trend-SV-t-GIGG 0.66*** 0.68** 0.60* 0.51** 0.21*** 0.27 0.11 0.10

CRPS Pre-Pandemic CRPS Including Pandemic
AR 0.23 0.23 0.22 0.22 2.76 2.83 2.72 2.73
MF-DFM 0.63*** 0.60** 0.64** 0.60** 0.36*** 0.36 0.36 0.36
Combination 0.68*** 0.66** 0.68* 0.66** 0.41*** 0.43 0.39 0.37
Trend-SV-t-HS 0.75*** 0.79 0.67* 0.70 0.32*** 0.31 0.26 0.26
Trend-SV-t-GIGG 0.73*** 0.76 0.68* 0.60* 0.26*** 0.36 0.16 0.13

Notes: The table shows the average RMSFE and CRPS values for the AR model in the first row of each panel
across all 20 nowcast periods (“Average”), and for selected nowcast periods (6,13,18). RSMFE and CRPS
values for the other models are in relative terms to the AR model and stars indicate significance as per the
Diebold-Mariano test Diebold et al. (1998) (∗ = 10% significance,**=5% significance,***=1% significance)
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Combination and DFM approach throughout the data release cycle, but again the relative gain

is strongest for later nowcast periods.

Third, regarding the role of the shrinkage prior, exerting group-level shrinkage and taking

into account the high-frequency correlation structure via the GIGG prior (blue line) has prefer-

able performance compared to the horseshoe (HS) prior (yellow line). Prior to the pandemic,

the model with GIGG prior has lower point nowcast errors throughout and almost always better

density fit. When including the pandemic quarters, it is strongest for the first nowcast periods

and again starting from 75 days ahead of GDP publication. As we illustrate via variable inclu-

sion probabilities in section 4.3, this nowcast gain is achieved because the GIGG prior shrinks

the information set towards a more sparse selection of indicators, and because it shifts its signal

extractions towards indicators related to the service sector when the pandemic hits.

4.2.3 Nowcasts during the Covid-19 pandemic

At which point during the pandemic and the data release cycle does the proposed Trend-SVt

BMIDAS model with GIGG prior achieve its forecast gains? Figure 5 visualises the nowcasts

over time for the proposed model compared to the sets of models discussed in section 4.2.2, for

selected nowcast periods. Pre-pandemic, nowcasts are fairly close to each other. The Trend-

SV-t BMIDAS nowcasts show somewhat more volatility, which can explain their slightly weaker

performance compared to Combined MIDAS and DFM. For the Covid-19 pandemic quarters,

unsurprisingly, all models miss the large unprecedented trough early in the data release cycle.

However, the Trend-SV-t BMIDAS with GIGG prior is the quickest to update nowcasts to the

trough and subsequent rebound in activity, and its nowcasts in later nowcast periods are closest

to the actual realisation. In early nowcast periods, it is the only model to indicate the large

rebound in activity for Q3-2020. And once the real activity indicators for the first reference

month have been published, it shows the largest downward adjustment for Q2-2020. The other

models are less responsive, or belatedly nowcast a trough without capturing the recovery.19

For our proposed model, 95% credible intervals illustrate the role of the SV-t feature for

the uncertainty around nowcasts during the Covid-19 pandemic. The initially wide credible

intervals show the expected increase in nowcast uncertainty around the trough and recovery of

GDP growth, but also that uncertainty decreases substantially after Q3-2020 for later nowcast

periods. Hence, with more “hard” macroeconomic information, the model indicates a return

toward reduced uncertainty after the Covid-19 shock.

19 A likely explanation for the weaker performance of the MIDAS Combination model is that the combination
weights are slow to adapt in the standard discounted weights approach, and allocate the increased GDP
growth variation to the outlier component. Similarly, the DFM may struggle due to fixed loadings which
in normal times load heavily on production surveys, but these were less informative during the pandemic.
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Figure 5: Posterior mean and density nowcasts, selected nowcast periods.
Notes: Upper panel shows nowcasts over time for the period 2011Q1 to 2019Q4 (x-axis) at different
points in the data release cycle (columns), lower panel shows nowcasts over the pandemic quarters on the
x-axis. Models are the same as in Figure 4. Shaded areas refer to Trend-SV-t-GIGG model and show 95%
credible interval. Black solid lines show quarterly GDP growth realisations.

4.3 Interpreting Signals via Variable Inclusion Probabilities

The group-variable selection achieved via the sparsification algorithm (9) equips us with an

intuitive way to communicate signals within a Bayesian, decision theoretically based setting.

Variable selection is communicated as the inclusion probability of high-frequency lag group k,

i.e. a macroeconomic indicator and its lags, into the linear model (8) over posterior samples.

The higher the inclusion probability of lag group k, the larger its impact onto the predictions

of the model. Inclusion probabilities turn out rather stable over the sample period before the

Covid-19 pandemic, so that we focus on averages over sub-samples.

Figure 6 presents heatmaps for inclusion probabilities for each indicator (x-axis) over now-

cast periods (y-axis). The lower sub-plots in each panel shows corresponding results using the

horseshoe prior without group-shrinkage. Pre-pandemic (panel a), the model with GIGG prior

(upper sub-plot) selects a sparse specification, as indicated by only a few indicators shaded in

red. The model uses signals from one to three indicators at a time, shifting to signals from

other indicators as they get released. Early in the data release cycle, the model mostly exploits
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a few survey variables: Manufacturing and Construction PMIs for very early nowcasts and then

GfK consumer confidence for the first month of the reference quarter, once it gets released in

nowcast period 5. Labour market data also plays a role when released in period 9. However,

once the Once, however, “hard” real economic information get published 65 days prior to GDP

release (period 13), the model loads almost exclusively on the index of services. This agrees

with earlier findings that survey indicators provide the main early signals for quarterly GDP,

but that incoming hard information becomes more important for nowcasts later in the data

release cycle (Bańbura et al., 2013; Carriero et al., 2015; Anesti et al., 2017).

When the pandemic is included into the sample (panel b), both prior specifications make the

model read a wider range of signals as indicated by the overall darker colours. Nonetheless, the

model with GIGG prior remains much more sparse, with a clear pattern of exploiting different

signals over the data release cycle. It keeps exploiting survey indicators in the early part of

the sample, but interestingly the most informative indicator now becomes the Service PMI,

followed by Construction PMI. Over nowcast periods 5 to 12, signal from mortgage lending are

relevant too. Little focus is put on the GFK and labour market data. Once hard economic

data become available, very strong signals are read from the index of services, and additional

signals ahead of GDP release come from the Service PMI and index of production. In this, the

model efficiently exploits that during the pandemic most of the disruption to the economy was

stemming from lockdowns affecting the service sector as well as initially a shut-down of the

housing and construction sectors, whereas consumer confidence and manufacturing remained

much less affected and labour market data were distorted by the furlough scheme. This likely

helps the model with GIGG prior to capture the recovery from the Covid-19 induced trough

early in the data release cycle and to update its nowcast of the initial trough in GDP earlier

compared to other models, as discussed in section 4.2.3.

On the other hand, the model with horseshoe prior (lower sub-plots) shows dense inclusion

pattern both pre-pandemic and particularly once the pandemic is include. It draws on signals

from surveys, real, labour and personal finance indicators in a diffused way over the data release

cycle. The denser signal extraction with the horseshoe prior could stem from increased cross-

sectional correlation in the face of large macroeconomic shocks, documented in studies such as

Rockova and McAlinn (2021); McAlinn et al. (2018); Frühwirth-Schnatter and Lopes (2018).

However, given that the Covid-19 shock affected specific sectors more than others, a dense

solution can represent a disadvantage. And the heavy reliance of the model with horseshoe

prior on surveys even when hard economic information is available can explain the relatively

weak performance of the model discussed in section 4.2.2.

Overall, this illustrates how group shrinkage helps exploit sparse signals from highly cor-

related macroeconomic data. In this, our findings provide new impetus to the debate on the

“illusion of sparsity”, where models with a dense cyclical component have been found to fore-
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Figure 6: Average posterior inclusion probabilities over high frequency lags for each indicator.
Notes: Heatmaps show nowcast periods on the y-axis, darker colour indicates higher cumulative poste-
rior inclusion probabilities of all high frequency lags of an indicator. Upper panel a) shows results for
evaluation sample prior to the pandemic, lower panel b) including the pandemic. Sub-plots show different prior
specifications of the Trend-SV-t BMIDAS model: GIGG with Almon lag restrictions (GIGG-AL), GIGG with
U-MIDAS lags (GIGG-UM), and horseshoe prior with Almon lag restrictions (HS-AL).
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cast better in applications with macroeconomic data than models that prefer sparse model

solutions (Giannone et al., 2021; Fava and Lopes, 2021; Kohns and Bhattacharjee, 2020; Cross

et al., 2021). We find, however, that denser specifications, as the horseshoe prior model, or the

MF-DFM, do not necessarily forecast better than the group-sparse model with GIGG prior,

particularly in presence of the Covid-19 shock affecting the economy heterogeneously. Similar

results for forecasting applications have been found for comparable aggressive shrinkage priors

to the horseshoe in Fava and Lopes (2021) who show elevated variable selection uncertainty

with strongly correlated data (Piironen et al., 2020).

4.4 Sensitivity Analyses

We conduct two sensitivity analyses, one with respect to the stability of nowcast performance

of our preferred model when holding coefficient fixed over the Covid-19 pandemic, and the

other using an unrestricted MIDAS specification instead of Almon lag polynomials. Evaluation

results in comparison to the baseline specification are presented in Figure (7).
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Figure 7: Nowcast performance of alternative specifications of the Trend-SV-t-BMIDAS.
Notes: The Trend-SV-t-GIGG-UMIDAS uses U-MIDAS sampled data (Foroni et al., 2015) instead of
Almon restricted lags. The Trend-SV-t-GIGG pre-Cov.coeff nowcasts Q1-2020 onwards with coefficients based
on the sample that ends with Q4-2019, and nowcasts evaluated over four quarters, Q3-2020 to Q2-2021.

Holding model coefficients fixed over the Covid-19 pandemic is motivated by Schorfheide

and Song (2021) who show that MF-VAR models without flexible error components can achieve

similar nowcast performance (after the trough) by simply omitting the problematic first two
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quarters of 2020 in the estimation sample, which is similar to using scale processes that inversely

move with periods of large volatility, thereby downweighting their effect. We nowcast with our

model starting Q1-2020 with parameter coefficients based on the sample ending with Q4-2019.

If the GDP dynamics during the Covid-19 shock truly were only outliers in the UK, the nowcast

performance for Q3-2020 to Q2-2021 should be similar to those with the original Trend-SV-

t-GIGG model. However, we find that using pre-pandemic coefficients, the model performs

significantly worse both in point as well as density nowcasts up until about 40 days until GDP

release, and then shows similar performance. As discussed in section 4.3, with onset of the

pandemic, the baseline model with GIGG prior shifts variable selection towards indicators

reflecting sectors that were hit strongly by the shock. These dynamics are not picked up when

the Covid-19 period is omitted from the estimation.

In a second sensitivity exercise, we relax the assumption of a restricted MIDAS structure via

Almon-polynomial distributed lags. The Trend-SV-t-BMIDAS with unrestricted MIDAS (U-

MIDAS) structure has comparable performance, but does somewhat worse during later nowcast

periods. This indicates that the additional regularisation via Almon-polynomials helps nowcast

performance when the dimension of the information set increases, but also that the GIGG prior

adapts well enough to the U-MIDAS data to produce comparable performance to the baseline

model. Results for inclusion probabilities using a U-MIDAS structure are comparable to the

baseline (available upon request), indicating that the sparse specification stems from imposing

the GIGG group-shrinkage prior and not from Almon-polynomial restrictions.

5 Conclusion

In this paper, we have proposed a new Bayesian MIDAS framework, the T-SV-t-BMIDAS model

combined with a flexible group-shrinkage prior and a sparsification step for variable selection

motivated by Bayesian decision theory. In an application of the model to nowcasting UK GDP

growth, we have shown that our model is able to capture sharp changes in GDP growth as

seen during the Covid-19 pandemic in a relatively timely manner, and works well also in more

tranquil times, particularly at a later stage of the data release cycle, when it largely draws

signals from “hard” indicators rather then survey data.

Two important insights regarding the role of model features and prior choice emerge. First,

adding a long-run trend or t-distributed stochastic volatility into a multivariate BMIDAS model

substantially improves predictive performance. Second, the GIGG shrinkage prior enhances per-

formance by inducing group-wise sparsity while enabling the model to flexibly shift between

signals. In our application, this feature proves particularly relevant once the Covid-19 pan-

demic is included into the analysis, since flexibly shifting across signals from sparse groups of
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indicators, rather than relying on dense signals due to aggregate macroeconomic co-movement,

can be advantageous in presence of a large heterogeneous shock.

The proposed framework is flexible, as it combines model features and nests various models

as special cases. The account for time-varying long-run trends allows to detect trend shifts

quickly. Results are interpretable since variable inclusion probabilities can be communicated

over time and over forecast horizons. All this makes an attractive tool not only for nowcasting

GDP growth, but also for instance for medium-term GDP or inflation forecasting. The group-

shrinkage prior has potential to efficiently regularise information towards a sparse set of signals

from a range of other data sets, such as disaggregated price or labour market data, where we

can expect groupings both among lags of observations as well as across sectors. We leave the

exploration of such alternative applications for future research.
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A Additional Model Descriptions

A.1 Posteriors

A.1.1 Further Insight into the GIGG Posterior

In order to highlight the effect of of different choices on ak and bk, we re-write the posterior in

(6) in terms of its shrinkage coefficient representation:

θk,j = Λ∗((X
′Λ−1

t,hz
(m)
k )−1 + Λ)θ̂k,j

= (1− κk,j)θ̂k,j,
(12)

where we define zk = (z′k,1, · · · , z′k,T )′, Λt,h = diag(λ2
1e

h1 , · · · , λ2
T e

hT ) and

θ̂k,j = (z
(m)
k

′Λ−1
t,hz

(m)
k )−1)z

(m)
k

′Λ−1
t,hỹ can be viewed as a conditional maximum likelihood esti-

mate for θk,j. We suppress the indication of monthly frequency (m) for convenience here. Note

that for this representation, we have assumed that the maximum likelihood estimate for group

k exists and that the pk + 1 lags within zk have been orthogonalised. Since the group-size is

likely to be much smaller than the sample size, and given that we will group-orthogonalise the

the data anyway (see section 2.3), these only represent very mild assumptions. Under these

assumptions, it is easy to verify that the shrinkage coefficient κk,j|• =
1

1+s̃2k,jϑ
2γ2

kφ
2
k,j

is bounded

between 0 and 1 and thus dictates how far away the prior shrinks the coefficients from the max-

imum likelihood solution. It is easy to see that ϑ2γ2
kφ

2
k,j → ∞, θk,j → θ̂k,j. The distribution

π(κk,j) which is implicitly defined via the priors on γ2
k and φ2

k,j determine the a-priori shrinkage

behaviour we can expect. By assuming γ2
kφ

2
k,j ∼ β′(ak, bk), the joint distribution for κk can be

factored as:

π(κk|•) =
Γ(ak + (pk + 1)bk)

Γ(ak)Γ(bk)k+1

pk∏
j=1

s̃bkk,j

(
1 +

pk∑
j=1

s̃k,j
κk,j

(1− κk,j)

)−(ak+(1+pk)bk)

×

( pk∏
j=1

κbk−1
k,j (1− κk,j)

−(bk+1)

)
,

(13)

where s̃k,j = sk,j
∑T

t=1
1
λt
e−ht and sk,j is the jth lag’s variance. This joint distribution factors

into a dependent part, influenced by ak, and an independent part, determined by bg. Plot (B1)

further elucidates this behaviour, which shoes the joint-shrinkage distribution for a group-size

of 2.

As expected, when bg is relatively small compared to ag, then the sparsity level enforced by

ag dominates: lower left hand panel showcases a situation in which relatively little shrinkage is

exerted because ag is relatively large compared to bg, while the upper right hand panel’s joint

distribution is characterised by a independently distributed, very extreme horseshoe behaviour
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Figure B1: Bi-variate shrinkage coefficient plots for various hyper-parameter values. ag controls
group-level sparsitym while bg controls the degree of correlation with the overall sparsity level.

(the U shape is much narrower than that implied by the standard horseshoe). When bg instead

is relatively large compared to ag, then the shrinkage behaviour will tend to be symmetric.

The exact group-horseshoe case (ag = bg), for example, resembles a joint U-shape. Hence, for

the exact group-horseshoe, a-priori either the entire group will be shrunk to zero, or all coef-

ficients are left relatively un-perturbed. This exposition will help understand which behaviour

to expect given the choice of the hyper-parameters for the nowcast application in the empirical

application.

A.1.2 Posteriors of Hyper-parameters

The deviations of the conditional posteriors for ϑ, γ2
k, φkj for k = 1, · · · , K and j = 1, · · · , pk+1

immediately follow from the presentation in Boss et al. (2021). Following Boss et al. (2021),

we employ a mixture representation of the β′ prior via an inverse-gamma distributed auxiliary

variable νp. The conditional posteriors ϑ, γ2
k, φ

2
kj, νp are thus proportional to:

(ϑ|y, •) ∼ IG(

∑K
k=1(pk + 1) + 1

2
, θ′Λ−1

p θ/2 +
1

νp
) (14)
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(γ−2
k |y, •) ∼ GIG(

pk + 1

2
− ak,

1

ϑ2

pk+1∑
j=1

θ2kj
φ2
kj

) (15)

(φkj|y, •) ∼ IG(bk +
1

2
, 1 +

θ2kj
2ϑ2γ2

k

) (16)

(νp|y, •) ∼ IG(1,
1

ϑ
), (17)

where GIG refers to the generalised inverse Gaussian distribution (Hörmann and Leydold, 2014)

which we generate from using the efficient algorithm of (Devroye, 2014).

A.1.3 Posteriors of the State Space

In this section, we will detail the conditional posteriors of each of the remaining parameters of

model which will be used to construct the Gibbs sampler in. For convenience, we reproduce

the main Trend-SV-t model of section 2.1 here again:

yt = τt + θ′Z
(m)
t−h +

√
λte

1
2
(h0+whh̃t)ϵ̃yt ,

ϵ̃yt ∼ N(0, 1), λt ∼ IG(ν/2, ν/2)
(18)

τt = τt−1 + e
1
2
(g0+wg g̃t), ϵ̃gt ∼ N(0, 1)

h̃t = h̃t−1 + ϵ̃ht , ϵ̃
h
t ∼ N(0, 1), h̃0 = 0

g̃t = g̃t−1 + ϵ̃gt , ϵ̃
g
t ∼ N(0, 1), g̃0 = 0

(19)

wg ∼ N(0, Vwg), wh ∼ N(0, Vwh
)

h0 ∼ N(a0,h, b0,h), g0 ∼ N(a0,g, b0,g)

τ0 ∼ N(a0,τ , b0,τ )

(20)

As mentioned in the main body of the text, the state space components (h, g) are written in

their non-centred form. The non-centred form of a state space allows to dissect the latent pro-

cesses into a time-varying part (whh̃, wgg̃) and a constant part (h0, g0), and this apply different

amounts of shrinkage to each part. In doing so, one is also able to model the state standard

deviations (wh, wg) as part of the conditional mean of the state equations. This allows to exert

more shrinkage than with tranditional variance priors such as the inverse-gamma Frühwirth-

Schnatter and Wagner (2010); Chan (2017a). The centred state space can be recovered by

replacing:
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ht = h0 + whh̃t

gt = g0 + wgg̃t
(21)

Posterior of τ

To derive the joint posterior of τ , we make use of the methods proposed by Chan and

Jeliazkov (2009); McCausland et al. (2011) as they enable sampling of all states (τ1, · · · , τT )
simultaneously. Compared to more traditional forward-sampling-backwards-smoothing algo-

rithms of Carter and Kohn (1994); Durbin and Koopman (2002) which sample states one

time-step at a time, this represents an improvement in statistical efficiency as well as compu-

tational efficiency. The computational efficiency comes from the special band-matrix form of

the resultant state posterior which allows for the use of very efficient sparse matrix operations

(Chan and Jeliazkov, 2009).

Since we only need the conditional posterior π(τ |τ0, wτ , •), we proceed similar to the expo-

sition in 6, by defining the relevant conditional likelihood based on y∗ = y − θZ(m), hence the

observations of the target, accounted for the cyclical component. It follows from 18 that then:

y|τ , • ∼ N(τ ,ΛhΛ
1/2
t ). (22)

To derive the implicit prior on τ , start by vectorising the state process τ in 19:

Hτ = α̃τ + ητ , (23)

where τ = (τ1, · · · , τT )′, α̃τ = (τ0, 0, · · · , 0)′, ητ ∼ N(0,Λg), Λg = diag(eg1 , · · · , egT ) and H is

the first difference matrix. From 23, one can write the joint prior of τ as:

τ |τ0, • ∼ N(τ1T , (H
′Λ−1

g H)−1), (24)

where 1T is a column of ones with dimension T ×1. Since the all priors in the model are a-priori

independent, the conditional posterior is found by standard calculations:

τ |y, τ0, • ∼ N(τ̂ , K−1
τ ), (25)

where Kτ = H ′Λ−1
g H + Λ−1

h Λ
−1/2
t , τ̂ = K−1

τ (HΛ−1
g Hτ01T + Λ−1

h Λ
−1/2
t y∗). Due to the special

band matrix structure on the posterior, we can significantly speed up computation time by

using sparse matrix computations.

To sample τ0, recall that it only appears in τ1 = τ0 + e
1
2
(g0+wg∗g̃1)ϵ̃τ1. Hence, assuming with

the independent prior in 20, the posterior is:

τ0|y, • ∼ N(τ̂0, K
−1
τ0

), (26)

Kτ0 =
1

b0,τ
+ 1

eg1
, τ̂0 = K−1

τ0
(a0,τ
b0,τ

+ τ1
eg1

).
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Posterior of h

To derive the posterior of h, we use the commonly employed approximate discrete mixture

sampler of Kim et al. (1998). Define y+t = log((yt − τt − θ′Z
(m)
t−h)/

√
λt)

2, ϵ̃yt = log(ϵ̃yt )
2, then the

relevant conditional likelihood for h reduces to:

y+ = h01T + whh̃+ ϵ̃y
+

. (27)

Since the error distribution ϵ̃y
+

now lives on the log-scale, the standard normal regression

results cannot be directly applied to this conditional likelihood. The distribution now follows

a logχ2
1 distribution. Instead, we follow Kim et al. (1998) by introducing component indicators

s = (s1, · · · , sT ) such that given these, (ϵ̃y
+|s) ∼ N(ds,Ωs) where ds and Ωs are obtained from

a 7-point Gaussian mixture approximation to the logχ2
1. See Kim et al. (1998) for definitions

of ds and Ωs. Conditional on ds and Ωs, the likelihood and prior for h̃ become normal again,

so that the logic for deriving the posterior of τ from above can be re-applied. The prior for h̃

becomes N(0, (H ′H)−1), so that the posterior is rendered:

h̃|y, • ∼ N(ˆ̃h, K−1

h̃
), (28)

Kh̃ = H ′H + w2
hΩ

−1
s , ˆ̃h = K−1

h̃
(whΩ

−1
s (y+ − h01T − ds)).

The remaining conditional posteriors associated with h are those of h0 and wh. Notice from

27, conditional on h̃, ds and Ωs, the joint posterior of h0 and wh can be found using simple

regression results. Define Xh = (1′T , h̃
′)′, ζh = (h0, wh), a0,ζh = (a0,h, 0), b0,ζh = diag(b0,h, Vwh

),

then ζh ∼ N(a0,ζh , b0,ζh). The joint posterior is:

ζh|y, • ∼ N(ζ̂h, K
−1
ζ,h), (29)

Kζh = (b−1
0,ζh

+X ′
hΩ

−1
s Xh) and ζh = K−1

ζh
(b−1

0,ζh
a0,ζh +X ′

hΩ
−1
s (y+ − ds)). We set the rather unin-

formative hyper-priors a0,h = 0, b0,h = 10, Vwh
= 0.1.

Posterior of g

The posterior of g is similarly derived to that of h by replacing: y+ = log(Hτ )2, ϵ̃y
+
=

log(ϵ̃τ ), a0,h = a0,g, b0,h = b0,g, Vwh
= Vwg . We set a0,g = 0, b0,g = 10, Vwg = 0.1.

Posterior of λ and ν

To derive the posterior p(λ|•), notice that each λt is univariate and independently dis-

tributed. Hence:

p(λ|•) ∝
T∏
t=1

λ
− ν+1

2
+1

t e
− 1

2λt
(ν+

(yt−τt−θ′Z(m)
t−h

)2

exp(ht)
)
. (30)

Notice that these are kernels of the inverse-Gamma distribution:
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λt ∼ G−1(
ν + 1

2
,
1

2

(yt − τt − θ′Z
(m)
t−h)

2

exp(ht)
) (31)

Finally, regarding the unknown ν, we specify a uniform prior ν ∼ U [2, 50]. The lower limit

ensures that the variance σ2
y exists, and 50 is chosen to be reasonably large such that the upper

limit generates an error variance close to a normal. The conditional posterior boils down to:

p(ν|•) ∝ p(λp(ν))

∝
T∏
t=1

(ν/2)
ν
2

Γ(ν/2)
λ
−( ν

2
+1)

t e
− ν

2λt

=
(ν/2)

T
2

Γ(ν/2)T
(

T∏
t=1

)−( ν
2
+1)e

ν
2

∑T
t=1 λ

−1
t

(32)

where the first definition follow from the fact that the priors are independent. This distribution

is non-standard. To sample from this distribution, we make use of an independent Metrolpolis-

Hastings within Gibbs sampling step.

By slight abuse of notation, define the target density as f, the current state of the Markov

chain as X and the proposal state as Y, then the proposal Y is accepted with probability

α(X, Y ) = min

{
f(Y )g(X)

f(X)g(Y )
, 1

}
, (33)

where g(.) is the proposal density. In order for the Metropolis-Hastings sampler to quickly

explore the typical set of ν|•, g should be close to f. To ensure this, we define g as a normal

with mean equal to the mode of f and covariance equal to the negative Hessian evaluated at

the mode. To find the mode, we use the Newton-Raphson method. The Hessian is analytically

available (Chan, 2017a).

A.2 Sampling Algorithm

In order to estimate the Trend-SV-t-BMIDAS model with GIGG prior, we make use of a

Metropolis-within-Gibbs sampler. With the posterior distributions described in sections A.1.2,A.1,6,

in hand, we sequentially sample from the following posterior distributions:

1. Sample θ|• ∼ p(θ|y, •)

2. Sample hyper-parameters ϑ, γ2
k, φ

2
kj, νp in one block

(a) ϑ2 ∼ p(ϑ2|y, •)

(b) γ2
k ∼ 1/p(γ−2

k |y, •)

(c) φ2
kj ∼ p(φ2

kj|y, •)
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(d) νp ∼ p(νp|y, •)

3. sample τ̃ ∼ p(τ̃ |y, •) and τ0 ∼ p(τ0|y, •)

4. sample h̃ ∼ p(h̃|y, •), h0 ∼ p(h0|y, •) and wh ∼ p(wh|y, •)

5. sample g̃ ∼ p(g̃|y, •), g0 ∼ p(h0|y, •) and ∼ p(wg|y, •)

6. Sample {λt}Tt=1 ∼ p(λt|y, •)

7. Sample νp ∼ p(νp|y, •) with a Metropolis step as described after equation 32

We iterate sampling steps 1.-7. initially for 5000 times for burn-in and retain further 5000

samples for our analysis. To speed up the computations, we make use of the state sampling

techniques of Chan and Jeliazkov (2009) and Bhattacharya et al. (2016). The former allows

drawing steps 3.-5. in a non-recursive fashion which increases efficiency and can be sped up

substantially using sparse-matrix operations. The latter speeds up computation and aids mixing

when
∑K

k=1(pk+1) >> T , which is the case when using U-MIDAS samples data for the empirical

application. For a discussion of this algorithm, see Bhattacharya et al. (2016).

A.3 Group-Selection Algorithm

This section gives further details on the derivation of group-variable selection algorithm in 8.

For convenience, we replicate the objective function here again, omitting notation involving m

for clarity:

L(Ỹ , α) =
1

2
||Zα− Ỹ ||22 +

K∑
k=1

ϕk||αk||2, (34)

For simplicity, assume that the predictions Ỹ can be decomposed as Ỹ = Zθ+ ϵ̃y, ϵ̃ ∼ N(0,Σ).

Intuitively, objective function 8 pushes those αk to zero which have little influence on the

predictions of our model, Ỹ .

We take the expectation with respect to 1) the expected risk and 2) θ|y to account for all

sources of uncertainty of the modelB1:

L(Ỹ , α) = EỸ |•[Ỹ , α|•]

=
K∑
k=1

ϕk||αk||2 +
1

2
||Zα−Zθ||22 +

1

2
tr(Σ)

(35)

Then, taking the expectation with respect to θ|y:
B1 Since α is independent of Σ, the integration of posterior uncertainty of Σ results in a constant and thus

does not further influence the optimisation problem
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L(θ, α) = Eθ|y[L(Ỹ , α)]

=
1

2
||Zα−Zθ||22 +

1

2
tr(Z ′ZΣθ) +

K∑
k=1

ϕk||αk||2,
(36)

where Σθ = cov(θ) and θ = E(θ). Dropping all constant terms, the objective function reduces

to:

L(θ, α) = 1

2
||Zα−Zθ||+

K∑
k=1

ϕk||αk||2. (37)

Notice, that we follow Chakraborty et al. (2020); Huber et al. (2019) by solving 36 on a Gibbs

iteration bases (instead over the average of the posterior). Traditional solution methods such

as the coordinate descent (Friedman et al., 2010) iteratively solve the sub-gradients L times for

each group k until convergence:

αl
k = (||r(l−1)

k ||22 − ϕk)+
r
(l−1)
k

||r(l−1)
k ||22

, l = 1, · · · , L, (38)

where rk is the partial residual based on the previous iteration, r(l) = Z ′
k(y−Z−kα

(l−1)
−k ) and

−k refers to all but the kth group. Orthonormalising Zk via its SVD decomposition (which can

conveniently be adapted as in (Breheny and Huang, 2015) when pk + 1 >> T ), and stopping

the coordinate descent after one iteration as per Ray and Bhattacharya (2018); Chakraborty

et al. (2020) such that ||rk|| = ||θk||22 results immediately in 9.

A.4 Almon-Lags Restricted MIDAS

This section gives further details on the restrictioned entailed by the restrictions proposed in

Almon (1965) and Smith and Giles (1976).

Define Xk,t, for k ∈ {1, · · · , K} as the (L + 1 × 1) vector of high frequency lags which

span the months of the reference quarter and any further lags. In the empirical application we

consider months 0 to 5, such that L+ 1 = 6.

Assume for simplicity that yt =
∑K

k=1 β
′
kXk,t+ ϵt, ϵtN(0, σ2)B2. Now, any linear restrictions

on the βk processes can equivalently be represented as linear transformations on the Xk,t, via

a (pk + 1× L) weighting matrix, Ξk. The notation in the main text can therefore be recovered

as: zk,t = ΞkXk,t. When the weights are left unrestricted, as in U-MIDAS (Foroni et al., 2015)

estimation, Ξk = ILk
. In this case θk = βk.

Almon lag polynomial restrictions, proposed for economic prediction models by Almon

(1965), confine the regression problem to βk,l = θk,il
i for lags l = (1, · · · , Lk) and param-

B2 Notice that we suppress the notation indicating that the covariate set is in monthly frequency for readability
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eters of the polynomial i = (0, · · · , pk). For a third degree polynomial and Lk + 1 = 6,

βk = (θ0,
∑pk

i=0 θi,
∑pk

i=0 θi2
i,
∑pk

i=0 θi3
i,
∑pk

i=0 θi4
i,
∑pk

i=0 θi5
i)′. With this, the free parameters are

reduced from Lk to pk for each k, which when pk << Lk induces parsimony. This, however,

comes a the cost of bias, that may be non-vanishing with increasing sample size Andreou et al.

(2010). These restrictions imply the (i+ 1)th row of Ξk equal to [0i, · · · , Li
k].

For many time-series forecasting applications, it makes intuitive economic sense to assume

that the effect of far lags on the target are 0, and that the weights peter out to 0 on a smooth

fashion across lags. Dubbed “end-point” restrictions, these are again linear restrictions and,

thus, lead to straightforward manipulations of Ξk, see Smith and Giles (1976). Say, there

ω restrictions (in the empirical application ω = 2) then this reduces the free parameters to

1 + pk − ω for each k.

B Additional results

B.1 Further Detail on Data

Table B1: Further Details on Macro Data

Name Acronym Frequency Transformation Source

CBI: Volume of exp. Trades CBI-ES m 0 FAME
CBI: Volume of rep. Sales CBI-S m 0 FAME
CBI: Volume of exp. Output CBI-EO m 0 FAME
PMI: Manufacturing PMI-M m 0 FAME
PMI: Services PMI-S m 0 FAME
PMI: Construction PMI-C m 0 FAME
GfK Cons. Confidence GfK m 0 FAME
Index of Production IoP m 3 FAME
Index of Services IoS m 3 FAME
Exports Exp m 3 FAME
Imports Imp m 3 FAME
Unemployment Rate UR m 0 FAME
Employment Emp m 3 FAME
Job Vacancies Vacancies m 3 FAME
Hours Worked Hours m 3 FAME
Mortgage Approvals Mortgage m 3 FAME
VISA consumer spending VISA m 3 FAME
Real quarterly GDP growth (qoq) GDP q 3 FAME

Notes: The table shows the data used for the empirical application along with respective sampling frequencies (m = monthly, q
= quarterly), tranformation applied (0 = no transformation, 1 = logs , 2 = first difference, 3 = growth rates) and data source.
All data are downloaded from the UK data provider FAME. Please see the FAME website for further details on the data.
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B.2 In-Sample Description
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Figure B2: Posterior Degrees of Freedom of the t-distribution, based on the entire in-sample
and last nowcast period.

Figure B2 has large mass over small posterior degrees of freedom for the t-distribution assumed

for the errors of the observation equation of model [reference of equation 1]. The smaller the de-

grees of freedom, the more leptokurtic the tails of the observation equation’s error distribution.

Figure B2 shows strong identification of fat-tails.
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B.3 Nowcast Performance GIGG Models
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Figure B3: RSMFE and CRPS pre-pandemic and including pandemic for the Trend-SV-t-GIGG
model with different hyper-parameter combinations. 1/T is adjusted to the in-sample length
at each quarter the nowcasts are conducted. The GIGG prior implemented in the empirical
application has ak = 1/T, bk = 0.5.
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B.4 Inclusion Probabilities
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Figure B4: Combination weights of the Combination model of high-frequency variables.
Weights pre-pandemic don’t change much quarter to quarter, so are averages across quarters
until Q4-2019. Each subsequent panel shows the weights for each quarter separately. Vertical
axis in each panel represents a nowcast period, according to the pseudo-publication table.
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B.5 Further Simulation Results

Table B2: Monte Carlo Simulations: DGP 2

Prior K σk σ RMSFE RMSE(A) RMSE(AC) MCC TPR FPR RMSFE CRPS

Sparse

HS 30 0.5 0.551 0.012 0.027 0.001 0.394 0.456 0.096 0.776 0.955
0.9 0.480 0.012 0.027 0.002 0.312 0.417 0.127 0.640 0.805

50 0.5 0.548 0.011 0.030 0.004 0.292 0.439 0.129 1.027 0.910
0.9 0.468 0.019 0.040 0.012 0.231 0.445 0.213 0.885 0.908

100 0.5 0.531 0.009 0.031 0.004 0.212 0.425 0.116 0.773 0.633
0.9 0.434 0.015 0.036 0.012 0.102 0.375 0.214 0.978 0.775

GAL-SS 30 0.5 0.551 0.36 0.36 0.57 1.51 1.73 1.38 0.76 0.32
0.9 0.48 0.69 0.70 0.70 1.61 1.49 0.86 0.76 0.29

50 0.5 0.548 0.31 0.34 0.16 2.15 1.88 0.67 0.61 0.36
0.9 0.468 0.35 0.49 0.15 2.25 1.44 0.37 0.37 0.22

100 0.5 0.531 0.29 0.34 0.12 2.93 1.86 0.37 0.73 0.49
0.9 0.434 0.27 0.50 0.05 5.27 1.55 0.14 0.43 0.29

GIGG 30 0.5 0.551 0.35 0.36 0.52 1.88 1.71 0.51 0.78 0.33
0.9 0.480 0.60 0.62 0.44 1.95 1.49 0.43 0.76 0.29

50 0.5 0.548 0.33 0.36 0.19 2.49 1.82 0.32 0.62 0.36
0.9 0.468 0.30 0.44 0.08 2.78 1.48 0.17 0.36 0.21

100 0.5 0.531 0.29 0.34 0.12 3.32 1.86 0.22 0.71 0.48
0.9 0.434 0.23 0.42 0.04 6.28 1.60 0.07 0.42 0.29

Dense

HS 30 0.5 1.131 0.028 0.032 0.008 0.127 0.516 0.381 1.870 1.127
0.9 1.151 0.035 0.040 0.017 0.084 0.511 0.422 2.347 1.429

50 0.5 1.417 0.031 0.036 0.011 0.122 0.498 0.367 1.701 1.178
0.9 1.406 0.042 0.047 0.022 0.073 0.468 0.390 1.976 1.170

HS 100 0.5 2.050 0.038 0.043 0.015 0.071 0.443 0.367 3.280 2.009
0.9 2.033 0.044 0.051 0.019 0.045 0.402 0.355 3.028 1.995

GAL-SS 30 0.5 1.131 0.69 0.70 0.49 2.65 1.26 0.77 0.75 0.68
0.9 1.151 1.05 1.06 0.87 1.92 0.80 0.59 0.74 0.65

50 0.5 1.417 0.87 0.88 0.53 2.14 1.04 0.65 0.88 0.73
0.9 1.406 0.99 1.01 0.69 1.86 0.69 0.50 0.89 0.81

100 0.5 2.050 1.17 1.15 1.25 1.95 0.71 0.49 1.03 0.94
0.9 2.033 1.16 1.18 0.75 2.33 0.49 0.31 0.81 0.69

GIGG 30 0.5 1.131 0.71 0.72 0.57 2.86 1.17 0.56 0.75 0.70
0.9 1.151 0.89 0.91 0.74 2.08 0.89 0.65 0.73 0.63

50 0.5 1.417 0.88 0.88 0.70 1.98 1.03 0.69 0.95 0.78
0.9 1.406 0.89 0.92 0.60 1.62 0.84 0.70 0.82 0.75

100 0.5 2.050 1.09 1.09 1.08 1.49 0.92 0.81 0.94 0.84
0.9 2.033 1.02 1.04 0.80 1.56 0.81 0.72 0.80 0.68

Notes: .
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