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Motivation: density forecasts

GDP ranges: pre and post COVID

Source: Eurosystem staff macroeconomic projections for the euro area, March and June
2020.
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Motivation: combination and survey information

Tools for forecasting macroeconomic variables:

From simple random walk to fully-fledged DSGE models;

Bayesian VARs somewhere in between: simple to estimate, flexible to
adjust, naturally produce density forecasts (from posterior densities).
These models are now a standard tool for central banks forecasts.

However, BVAR models present certain shortcomings:
I Within time-series world, large variation across models in terms of

model settings, types of priors, use of off-model information... no
“best” specification.

I Time-series world purely backward-looking, hard to get the forecast
right in times of heightened uncertainty or “never-happened-before”
events.
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Our paper

How do we hedge against model uncertainty and adjust for the absence of
forward-looking information?

1 We estimate in real-time a wide range of BVAR model specifications,
then optimally combine the forecast densities obtained.

2 We incorporate forward-looking survey information, and analyse to
which extent does it improve or hinder forecasts performance.

We find:

1 Optimally combining several models improves overall point and
density accuracy, as well as forecast calibration.

2 Including survey forecasts on the target’s mean helps, while on the
variance hinders, overall performance (accuracy+calibration).

3 Ex-ante tilting performs well −→ scope for improving ex-ante models
and then combine.

4 COVID case study: SPF information particularly useful in times of
unprecedented and fast moving events;
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Related literature

Large literature on Bayesian VARs (see next slide);

Forecast combination methods: Bassetti et al. (2020); Hall and
Mitchell (2007); Jore et al. (2010); Geweke and Amisano (2011).

Judgement and model forecasts: Galvao et al. (2021) find similar
results from tilting forecast combinations to survey moments for the
UK; Clements (2018) and Clements (2014) analyse US SPF’s density
performance; Krüger et al. (2017); Tallman and Zaman (2020);
Ganics and Odendahl (2021) apply tilting to a class of individual
models; Amisano and Geweke (2017) focus on the combination of
several macroeconomic models.
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Individual BVARs included in the combination

BVAR model types:

Minnesota priors with SV (Sims and Zha, 1998; Bańbura et al., 2010)

Democratic priors with SV (Villani, 2009; Wright, 2013)

(Survey) Local Mean with SV (Bańbura and van Vlodrop, 2018)

TVP-SV (Primiceri, 2005)

UCSV à la Stock and Watson (2007)

More models can be added...
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Estimation and forecast

Target variables: y-o-y growth rate of euro area HICP inflation and
GDP, evaluated at 1- and 2-year ahead horizon (same horizons as for
EA SPF).

Different data set compositions: 3 or 19 variables, aggregated euro
area or by country (“big 4”: DE, FR, ES, IT).

Real-time recursive estimation, with vintages corresponding to SPF’s
cutoff dates, and forecasts evaluated from 2000:Q1 to 2019:Q4
(2021:Q3 in the COVID case study).
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Optimal linear predictive pool

The model weights are picked so as to maximise the combined predictive
likelihood (i.e. log score):

t∑
s=T1

log (p(ys ;Ys−h, . . . ,Y1,M)) , (1)

where p(ys ;Ys−h, . . . ,Y1,M) is the predictive density from model M for ys
given the data Y1, . . . ,Ys−h.

w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I∑

i=1

wip(ys ;Ys−h, . . . ,Y1,Mi )

]
(2)

where I is the number of models and w∗t+h|t,i is the time-varying weight
for model Mi . The weights are constrained to be non-negative and sum to
one.
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Adding forward looking information: euro area SPF

Since 1999, asks a panel of experts their forecasts for EA GDP
growth, inflation and unemployment, for 1-, 2-, and 5-year horizons;

Experts need to provide both a point forecast and probabilities for the
forecasts to fall within pre-determined ranges;

The resulting individual responses are aggregated using simple
averages;

We build a continuous distribution from the bins, and simulate
draws from this distribution, which we use as an additional model in
the pool.

We use both the point forecast and the standard deviation from the
aggregated histograms for tilting models and combination;
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Combining survey and model information

Three ways to combine the two sources of information:

1 Include SPF simulated draws as an additional model in the optimal
pooling;

2 Tilting “ex-ante”: use entropic tilting to re-weigh individual model
densities so that they take the first and second moments from the
SPF, then perform optimal pooling;

3 Tilting “ex-post”: use entropic tilting to re-weigh the combined
density obtained from optimal pooling.
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Combination performance - GDP

Optimal
Pool:
abs.
scores

SPF Opt.
Pool
w/SPF

µ
tilted
ex-
ante

µ
tilted
ex-
post

µ & σ
tilted
ex-
ante

µ & σ
tilted
ex-
post

4-q

CRPS 0.808 0.994 0.997 0.935 0.932 0.966 0.971

LPS -1.922 -0.627 0.030 0.302 0.026 -0.406 -0.485

PITs 0.042 0.000 0.016 0.624 0.279 0.000 0.000

8-q
CRPS 0.994 1.091 1.001 1.080 1.033 1.102 1.099

LPS -1.973 -1.112 -0.094 -0.042 -0.095 -1.243 -1.303

PITs 0.020 0.000 0.011 0.099 0.004 0.000 0.000

Table: CRPS and LPS: relative accuracy scores with respect to optimal pooling
(i.e. first column); PITs: p-values of Berkowitz uniformity test (in absolute
terms).
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Combination performance - HICP

Optimal
Pool:
abs.
scores

SPF Opt.
Pool
w/SPF

µ
tilted
ex-
ante

µ
tilted
ex-
post

µ & σ
tilted
ex-
ante

µ & σ
tilted
ex-
post

4-q

CRPS 0.503 0.932 0.991 0.917 0.937 0.943 0.944

LPS -1.306 -0.024 0.003 0.117 0.056 -0.007 -0.082

PITs 0.839 0.002 0.704 0.218 0.156 0.000 0.000

8-q

CRPS 0.567 0.949 1.020 0.922 0.941 0.964 0.963

LPS -1.429 -0.040 -0.001 0.082 0.032 -0.263 -0.284

PITs 0.552 0.000 0.961 0.368 0.232 0.000 0.000

Table: CRPS and LPS: relative accuracy scores with respect to optimal pooling
(i.e. first column); PITs: p-values of Berkowitz uniformity test (in absolute
terms).
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Optimal weights: GDP 1 year ahead
GDP 4-q ahead
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Optimal weights with SPF: GDP 1 year ahead
GDP 4-q ahead
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Non-tilted vs tilted weights: GDP 1 year ahead
Non-tilted

2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean-tilted

2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minn
MinnL
DPSV
LM
SLM
TVP
UCSV
Minn MC
DPSV MC
SLM MC
TVP MC
Minn Large
DP Large

joan.paredes@ecb.europa.eu FRBC Conf. - Oct. 06, 2022 15 / 22



Non-tilted vs tilted weights: HICP 1 year ahead
Non-tilted
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COVID times: a case study

Forecast densities for 2020q1-2021q3 euro area GDP y-o-y growth. The dotted lines are
the realizations.
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COVID times: a case study

Forecast densities for 2020q1-2021q3 euro area GDP y-o-y growth. The dotted lines are
the realizations.
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COVID times: a case study

Forecast densities for 2020q1-2021q3 euro area GDP y-o-y growth. The dotted lines are
the realizations.
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COVID times: a case study

Forecast densities for 2020q1-2021q3 euro area GDP y-o-y growth. The dotted lines are
the realizations.
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Conclusions

We evaluate in real time density forecasts from a broad range of
Bayesian VARs for euro area GDP and inflation; we look at point and
density performance over the sample average and at overall
calibration, both of individual models and of combinations; we include
judgement by adding SPF forecasts to the pool of models, or by
tilting them to SPF first and second moments.

We find large gains from optimal pooling for both HICP and GDP.

The best performing combination (pre-COVID) is the mean-tilting
ex-ante.

For both variables, including SPF’s second moments worsens
calibration and density forecasts accuracy.

In times of high uncertainty and extreme data realisations, higher
moments may help, but tilting should be used carefully.
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Thank you
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Background Slides
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Forecast distributions of one-year-ahead forecasts during
COVID - GDP
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Forecast distributions of one-year-ahead forecasts during
COVID - HICP
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COVID times: a case study

Forecast densities for 2020q1-2021q3 euro area GDP y-o-y growth. The dotted lines are
the realizations.
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Forecast densities for 2020q1-2021q3 euro area GDP y-o-y growth. The dotted lines are
the realizations.
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Forecast distributions of one-year-ahead forecasts - GDP
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PITs of one-year-ahead forecasts - GDP
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Cumulative relative scores of one-year-ahead forecasts -
GDP
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Forecast distributions of one-year-ahead forecasts - HICP
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PITs of one-year-ahead forecasts - HICP
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Cumulative relative scores of one-year-ahead forecasts -
HICP
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Optimal weights: HICP 1 year ahead

HICP 4-q ahead
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Optimal weights including SPF: HICP 1 year ahead
HICP 4-q ahead
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Minnesota priors

Independent normal priors for Bi ’s. Prior means equal to 0, with the
exception of the prior for the diagonal of B1 (first lag of the dependent
variable in each equation) for the specification “in levels”, equal to 1.
Coefficients for more distant lags are “shrunk” more. The overall degree of
shrinkage, as governed by the hyperparameter λ, is set to the standard
value of 0.2. The prior for the intercept c is non-informative.

yt = c +

p∑
i=1

Biyt−i + εt , εt ∼ N (0,Ht) , (3)
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Democratic priors

In contrast to the previous version, this parameterisation of the VAR
model is in deviation from the unconditional mean µ (sometimes referred
to as the “steady state”). Informative normal priors are used for µ. As the
mean of the prior we take the long-term forecasts from Consensus
Economics. As this type of parameterisation assumes the existence of
constant unconditional mean it is only used for variables “in differences”.
The priors for Bi are the same as above.

yt = µ+

p∑
i=1

Bi (yt−i − µ) + εt , εt ∼ N (0,Ht) , (4)
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(Survey) Local Mean

VAR in deviation from “local mean”, µt , that can vary over time as a
random walk (reflecting e.g. low frequency changes in demographics,
productivity or inflation trend/expectations).

yt − µt =

p∑
i=1

Bi (yt−i − µt−i ) + εt , εt ∼ N (0,Ht) , (5)

µt = µt−1 + ηt , ηt ∼ N(0,Vt) (6)

In another version, the local mean is linked to the long-term forecasts from
Consensus Economics, zt :

zt = µt + gt , gt ∼ N (0,Gt) , (7)
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TVP-SV

This is the standard implementation of the VAR where all the coefficients
can vary over time, see Primiceri (2005) and Del Negro and Primiceri
(2015).

yt = ct +

p∑
i=1

Bi ,tyt−i + εt , εt ∼ N (0,Σt) , (8)

ct = ct−1 + ηt , ηt ∼ N(0,Uc
t ), (9)

Bi ,t = Bi ,t−1 + ηt , ηt ∼ N(0,UB
t ), (10)
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Unobserved Component with Stochastic Volatility

This is a UCSV model à la Stock and Watson (2007) with gamma priors
on the error variances in the two stochastic volatility state equations. The
model decomposes each variable into a trend and a transitory component,
where each component follows an independent stochastic volatility process
(see Chan, 2018):

yt = τt + e
1
2

(h0+ωhh̃t)εyt , εyt ∼ N(0, 1), (11)

τt = τt−1 + e
1
2

(g0+ωg g̃t)ετt , ετt ∼ N(0, 1), (12)

h̃t = h̃t−1 + εht , εht ∼ N(0, 1), (13)

g̃t = g̃t−1 + εgt , εgt ∼ N(0, 1), (14)
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Measures of relative accuracy: MSFE, CRPS, LPS

1 Mean squared forecast error (MSFE):

1

T2 − T1 + 1

T2∑
t=T1

(yt − ŷ it|t−h)2

2 Continuous ranked probability score (CRPS):

1

T2 − T1 + 1

T2∑
t=T1

(∫ ∞
−∞

(F (y ; yt−h, . . . , y1,Mi )− I (yt ≤ y))2dy

)
3 Log-predictive score (LPS):

1

T2 − T1 + 1

T2∑
t=T1

log(p(yt ; yt−h, . . . , y1,Mi ))
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Examples of LPS and CRPS
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Measures of absolute accuracy: Probability Integral
Transform (PITs)

PITt = F (yt ; yt−h, . . . , y1,Mi ) =

∫ yt

−∞
f (zt |It−1)dzt , t = T1, . . . ,T2

It provides a measure of the model calibration: for well-calibrated
predictive distribution (i.e. such that approximates well the actual
distribution) the sequence PITT1 , . . . ,PITT2 should be uniformly
distributed over the interval [0, 1]. To test the hypothesis of uniformity, we
perform the Berkowitz test. (Berkowitz, 2001)
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Entropic tilting
The basic idea of tilting is re-weight a forecast distribution so that it
satisfies the moments of interest. The new weights are found so that the
new distribution is “close” to the original one, according to the
Kullback-Leibler Information Criterion,

K (π∗i , πi ) =
k∑

i=1

π∗i log(π∗i /πi )

Subject to the following constraints:

π∗i ≥ 0
k∑

i=1

π∗i = 1

k∑
i=1

π∗i g(yi ) = ḡ

The third constraint imposes the moment restrictions and implies that the
expectations of a function of the draws from the forecasting distribution
should be equal to a fixed quantity.
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Individual models - GDP 1-year ahead
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Individual models - GDP 1-year ahead
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Individual models - GDP 1-year ahead
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Individual models - GDP 1-year ahead
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Individual models - HICP 1-year ahead

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4Minn

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4MinnL

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4DPSV

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4LM

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4SLM

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4TVP

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4UCSV

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4Minn MC

joan.paredes@ecb.europa.eu FRBC Conf. - Oct. 06, 2022 27 / 36



Individual models - HICP 1-year ahead
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Individual models - HICP 1-year ahead
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Individual models - HICP 1-year ahead
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Table: Data set compositions

Minn
Dif

Minn
Lev

Dem LM SLM TVP UCSV

Euro area, 3 variables x x x x x x x
Euro area, 19 variables x - x - - - -

Big 4, 3 variables x - x - x x -
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Table: Data set

Variable Small
Model

Medium
Model

Transformation

GDP, real x x log-diff
Private consumption, real x log-diff
Total investment, real x log-diff
Exports XA, real x log-diff
Imports XE, real x log-diff
GDP deflator x log-diff
Total employment x log-diff
Short-term interest rate x x levels
Long-term interest rate x levels
Lending rate x levels
Compensation per employee x log-diff
Headline HICP x x log-diff
HICP excluding energy and food x log-diff
ESI x levels
Foreign demand x log-diff
Price of oil in EUR x log-diff
Nominal effective exchange rate x levels
US short-term interest rate x levels
US long-term interest rate x levels
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