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Motivation & What we do

• Nowcast and forecast models face challenges since Covid-19 shock
• Large observations can distort parameters and increase uncertainty
• Changing correlation structure among macro indicators
• Survey indicators less informative for GDP during the pandemic

• Require flexible model features
• Accounting for time-varying trends and stochastic volatilities (SV) beneficial in UC,

DFM, VAR models (Stock and Watson, 2009; Clark, 2011; Antolin-Diaz et al., 2017)
• Covid-19: Account for extreme observations via t-distr. errors or outliers (Carriero

et al., 2021; Lenza and Primiceri, 2022; Antolin-Diaz et al., 2021)

• We combine such flexible features with
• a multivariate Mixed Data Sampling (MIDAS) regression
• a flexible group-shrinkage prior that allows for flexible variable selection and

signal communication
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Proposed Model

We propose the Trend-SV-t-BMIDAS model with three features

1. Time-varying unobserved components in the lower-frequency target variable
(time-varying Trend, SV, t-distr. errors)

2. Timely information from high frequency indicators in a multivariate MIDAS block

3. Bayesian shrinkage via a group-global-local prior with three tiers of continuous
shrinkage (overall, between indicators, and within lags of an indicator)

We enhance the prior with a sparsification step
This imposes variable selection and helps interpret signals over time via inclusion
probabilities.
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Links to the literature

• The model nests / compares to existing models when shutting down model features

• multivariate BMIDAS with horseshoe (Kohns and Bhattacharjee, 2022) or
spike-and-slab group shrinkage prior (Mogliani and Simoni, 2021) asymptotically

• BMIDAS model with SV (Carriero et al., 2015)
• Trend-SV-outl. DFM (Antolin-Diaz et al., 2021)

• MIDAS literature (Ghysels et al., 2007, 2020; Foroni et al., 2015)

• Global-local shrinkage priors (Polson and Scott, 2010; Polson et al., 2014; Carvalho
et al., 2010) and group-lasso priors (Casella et al., 2010; Xu and Ghosh, 2015) and
spike-and-slab (Ishwaran et al., 2005; Piironen et al., 2017)
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Results

• For a nowcast application to UK GDP growth, we show that combining all features
improves nowcasts relative to alternatives that shut down the Trend and/or SV-t, or
use a prior without group shrinkage

• The shrinkage prior helps selecting a sparse group of the most informative indicators
over nowcast periods (a few survey ind., then “hard” production and services ind.)

• Covid-19 pandemic: move towards signals from indicators for services, away from
production surveys, reflecting shifts in spending related to lockdowns

• the model performs better during the Covid-19 period compared to “dense”
specifications such as a DFM or model without group-shrinkage
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Methodology



The Trend-BMIDAS-SV-t Model

yt = τt + θ′Z(m)
t−h +

√
λte

1
2 (h0+whh̃t)ϵ̃yt ,

ϵ̃yt ∼ N(0, 1), λt ∼ IG(ν/2, ν/2)
(1)

τt = τt−1 + e 1
2 (g0+wgg̃t)ϵ̃τt , ϵ̃

τ
t ∼ N(0, 1)

h̃t = h̃t−1 + ϵ̃ht , ϵ̃
h
t ∼ N(0, 1)

g̃t = g̃t−1 + ϵ̃gt , ϵ̃
g
t ∼ N(0, 1).

(2)

• τt: time-varying trend; τt and yt are lower frequency (quarterly)
• Z(m)

t = (z(m)
1,t , · · · , z

(m)
K,t )

′, i.e. m indicators (monthly) between t− 1 and t for each
indicator K.

• θ: (pk + 1) ∗ K parameters that link higher and lower frequency observations.
• MIDAS with Almon lag polynomial restrictions, but U-MIDAS works too Almon

• ht,gt: SVs for observation and trend follow non-centered random walks
(Frühwirth-Schnatter and Wagner, 2010)

• λt: enforces a ν-degrees of freedom t-distribution, fat-tailed SV 5



Group-shrinkage prior on multivariate MIDAS component

• GIGG (Group-Inverse-Gamma-Gamma) prior (Boss et al., 2021) on MIDAS
• Global-local prior
• Accounts for group-shrinkage + correlation within higher frequency lags

• Each group g has pg + 1 parameters to estimate

θg,i ∼ N(0, ϑ2γ2gφ2g,i), ∀i ∈ {0, · · · ,pg + 1}

ϑ ∼ C+(0, 1), γ2g|ag ∼ G(ag, 1), φ2g,i|bg ∼ IG(bg, 1),
(3)

ϑ controls the overall level of sparsity, γ2g controls sparsity across groups g, φ2g,i
controls sparsity of group members i within g

• ag < bg → stronger group-shrinkage, strong prior correlation among lags
• bg < ag → stronger shrinkage within groups (individual lags selected)
• At group-size 1, ag = bg = 0.5, give horseshoe prior (Carvalho et al., 2010)

• We set g = k, i.e. groups defined as lags of each indicator (can be extended to
groupings across indicators if k large) 6



Univariate shrinkage with global-local prior
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GIGG Prior Visualisation: Bi-variate shrinkage hyperparamers

ag controls group-level sparsity while bg controls the degree of correlation with the overall sparsity level.
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Sparsification step for GIGG prior

With continuous priors the posteriors of lag groups remain non-zero with probability one
(Hahn and Carvalho, 2015). This hampers the interpretability of results.

Final Step: decision theoretically motivated sparsification method to the posterior on θg

• Achieved by minimising a utility function over the Euclidean distance between a
linear model that penalises group-size akin to Zou (2006) and our model’s prediction:

L(Ỹ, α) = 1
2 ||Z

(m)α− Ỹ||22 +
K∑
k=1

ϕk||αk||2, (4)

• penalisation term creates a soft-thresholding effect between [-ϕk, ϕk], forcing the
coefficients on all group members to zero.

The relative frequency of lag-group k in the sparsified estimate α∗(s) over all Gibbs draws
gives inclusion probabilities that inform on the relative impact of an indicator.
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Other priors and estimation

Priors for latent states standard: (τ , h̃, g̃) joint normal prior as in Chan and Jeliazkov
(2009), McCausland et al. (2011) and Kim et al. (1998)

Estimation via Metropolis-within-Gibbs sampler M-H Gibbs

• Recursive sampling from conditional distributions: MIDAS parameters θ, GIGG
hyperparameters, latent states (τ , h̃, g̃) (non-recursively, as in Chan and Jeliazkov
(2009)), λt, degrees of freedom ν

• sampling of ν requires Metropolis step

• 5000 burn-in iterations, retain further 5000 for inference
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Empirical Application



Nowcast quarterly UK GDP growth, 1999-2021

• Setup
• In-Sample Start: Q1 1999, Nowcast Start: Q1 2011
• Nowcast End: “pre-pandemic” Q4 2019, “including pandemic” Q3 2021

• Monthly indicators
• indices of services and production, trade
• surveys (CBI, PMI, GfK)
• labour market (unemployment rate, employment, vacancies, hours)
• mortgage approvals, VISA consumer spending

• Nowcast evaluation
• pseudo-real-time calendar: 20 nowcasts per quarter around data releases calendar

• each nowcast has new information set, uses the latest 6 monthly observations (3
contemporaneous, 3 lagged) of that indicator available at time of nowcast

• Metrics
• Point: Root-mean-squared forecast error (RMSFE)
• Density: Average cumulative rank probability score (CRPS) 11



Results

• Trend-SVt-BMIDAS model gives posterior estimates for time-varying trend, cyclical
component, and stochastic volatilities of GDP growth and trend

• we show them estimated with data covering full sample period
• sensitivity of posterior estimates to other model specifications (no Trend, const.

Var.) and over the data release cycle - Trend-SVt model most robust

• Nowcast evaluation compared to model alternatives

• Shutting down time-varying components (No Trend, SV without t-distr. errors,
homoskedastic model)

• No group shrinkage: horseshoe prior
• Alternatives to BMIDAS: Combined univariate MIDAS, mixed-frequency DFM

(both with time-varying trend and SV-t)
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Posterior estimates for trend, cyclical component and stochastic volatilities.
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Shutting down time-var. Trend and/or SV-t
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Performance against other prior and alternatives to multivariate MIDAS
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Which signals does the model rely upon?

• Results so far:

• Trend-SV-t BMIDAS performs competitively against various alternatives where
some of the model features are shut down

• Strong performance for late nowcast periods when “hard” indicators available
• During the Covid-19 pandemic period, the model picks up the recovery earlier

and updates nowcasts about the initial trough earlier on

• Which signals does the model exploit over the data release cycle?

• The sparsification step on the GIGG prior allows us to derive inclusion
probabilities for each indicator over time and over the data release cycle

• We show inclusion probabilities prior to the Covid-19 pandemic and including
the pandemic, compared to prior without group shrinkage (Horseshoe prior)
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Average posterior inclusion probabilities, until 2019
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Average posterior inclusion probabilities, including pandemic
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Conclusions

• We have brought time-varying trends, volatilities and accounts for large observations
to the Bayesian MIDAS framework.

• A flexible group-shrinkage prior regularises the MIDAS.
• Sparsification step allows for variable selection which facilitates interpretability.

• Results bring new impetus to the debate on density vs sparsity in macroeconomic
forecasting (Giannone et al., 2021)

• a sparse specification performs strongly: grouping + time variation important
• during Covid-19: signals mainly from service indicators + mortgage approvals

• Framework can be applied to a range of time series exercises where group shrinkage
can be relevant, can be useful for disaggregated data (e.g. prices, labour market data).
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Thank you

Thank you

Contact: galina.potjagailo@bankofengland.co.uk
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Appendix



Almon lag polynomial restricted MIDAS

• U-MIDAS (Foroni et al., 2015) involves many parameters and can lead to erratic
weight profiles

• Restrict coefficients via Almon lag-polynomials on θi: assuming a pk << Lk
polynomial process of the coefficients across high-frequency observations

Almon Lag MIDAS
Assume lags i = 0, · · · , L can be represented by a 3rd degree polynomial, then each HF
parameter process, θi can be written as:

θi = β0 + β1i+ β2i2 + β3i3 (5)

We add economically relevant restrictions (Smith and Giles, 1976)
θ′L = 0
θL = 0

(6)

But: Smoothness of Almon-polynomial increases parameter correlation back 21



Metropolis-within-Gibbs sampling algorithm

1. Sample θ|• ∼ p(θ|y, •)

2. Sample hyper-parameters ϑ, γ2k, φ
2
kj, νp in one block

2.1 ϑ2 ∼ p(ϑ2|y, •)
2.2 γ2k ∼ 1/p(γ−2

k |y, •)
2.3 φ2kj ∼ p(φ2kj|y, •)

3. sample τ̃ ∼ p(τ̃ |y, •) and τ0 ∼ p(τ0|y, •)
4. sample h̃ ∼ p(h̃|y, •), h0 ∼ p(h0|y, •) and wh ∼ p(wh|y, •)
5. sample g̃ ∼ p(g̃|y, •), g0 ∼ p(h0|y, •) and ∼ p(wg|y, •)
6. Sample {λt}Tt=1 ∼ p(λt|y, •)
7. Sample ν ∼ p(ν|y, •) with a Metropolis step back

• sampling technique of Chan and Jeliazkov (2009) allows drawing steps 3.-5. in a
non-recursive fashion which increases efficiency and can be sped up using sparse-matrices
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Pseudo Real Time Calendar for UK Nowcast Application

Nowcast Quarter Days to GDP Month Timing within month Release Publication Lag

1 135 1 1st of month PMIs m-1
2 125 1 End of 2nd week IoP, IoS, Ex, Im m-2
3 120 1 3rd week Labour market data m-2
4 115 1 3rd Friday of month Mortgage & Visa m-1
5 110 1 End of 3rd week CBIs & GfK m
6 Reference 105 2 1st of month PMIs m-1
7 quarter 97 2 Mid of 2nd week Quarterly GDP q-1
8 (nowcast) 95 2 End of 2nd week IoP, IoS, Ex, Im m-2
9 90 2 3rd week Labour market data m-2

10 85 2 3rd Friday of month Mortgage & Visa m-1
11 80 2 End of 3rd week CBIs & GfK m
12 75 3 1st of month PMIs m-1
13 65 3 End of 2nd week IoP, IoS, Ex, Im m-2
14 60 3 3rd week Labour market data m-2
15 55 3 3rd Friday of month Mortgage & Visa m-1
16 50 3 End of 3rd week CBIs & GfK m
17 45 1 1st of month PMIs m-1
18 Subsequent 35 1 End of 2nd week IoP, IoS, Ex, Im m-2
19 quarter 30 1 3rd week Labour market data m-2
20 (backcast) 25 1 3rd Friday of month Mortgage & Visa m-1

back
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Trend and SV posterior estimates, alternative models.

Q4-
99

Q1-
01

Q2-
02

Q3-
03

Q4-
04

Q1-
06

Q2-
07

Q3-
08

Q4-
09

Q1-
11

Q2-
12

Q3-
13

Q4-
14

Q1-
16

Q2-
17

Q3-
18

Q4-
19

-2

-1

0

1

2
Cyclical Component: Pre-Pandemic

Q4-
99

Q1-
01

Q2-
02

Q3-
03

Q4-
04

Q1-
06

Q2-
07

Q3-
08

Q4-
09

Q1-
11

Q2-
12

Q3-
13

Q4-
14

Q1-
16

Q2-
17

Q3-
18

Q4-
19

-2

-1

0

1

2
Trend Component: Pre-Pandemic

Trend-SV-t
Trend-SV
Trend-Const. Var.
Realised

back 24



Posterior mean and density nowcasts, selected nowcast periods.
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