Constructing the Term Structure of Uncertainty from the Ragged Edge of SPF Forecasts

Todd E. Clark ¹ Gergely Ganics ² Elmar Mertens ³

¹Federal Reserve Bank of Cleveland, ²Banco de España, ³Deutsche Bundesbank

The results presented here do not necessarily represent the views of Federal Reserve Bank of Cleveland, the Federal Reserve System, the Banco de España, the Deutsche Bundesbank, or the Eurosystem

October 7, 2022

RESEARCH AGENDA

Setup

We observe predictions from the SPF (or similar sources) in form of point and/or density forecasts for fixed horizons and/or fixed events

RESEARCH AGENDA

Setup

We observe predictions from the SPF (or similar sources) in form of point and/or density forecasts for fixed horizons and/or fixed events

Problem

How to construct fan charts i.e. term structures of expectations and uncertainty that are consistent with the SPF? ... by filling in missing values as needed

RESEARCH AGENDA

Setup

We observe predictions from the SPF (or similar sources) in form of point and/or density forecasts for fixed horizons and/or fixed events

Problem

How to construct fan charts

i.e. term structures of expectations and uncertainty

that are consistent with the SPF?

... by filling in missing values as needed

Throughout we look at average SPF responses

1) State space model

Maps arbitrary sets of SPF point forecasts (fixed-event & -horizon) into term structures of expectations and uncertainty

1) State space model

Maps arbitrary sets of SPF point forecasts (fixed-event & -horizon) into term structures of expectations and uncertainty without measurement error

1) State space model

Maps arbitrary sets of SPF point forecasts (fixed-event & -horizon) into term structures of expectations and uncertainty without measurement error

- Extends Clark, Mertens & McCracken (2020, "CMM"), who relied on observed fixed-horizon forecast errors
- Predictive densities reflect historical forecast errors

1) State space model

Maps arbitrary sets of SPF point forecasts (fixed-event & -horizon) into term structures of expectations and uncertainty without measurement error

- Extends Clark, Mertens & McCracken (2020, "CMM"), who relied on observed fixed-horizon forecast errors
- Predictive densities reflect historical forecast errors

2) We match the SPF histograms with entropic tilting

We replicate the entire "bin" structure Robustness check: Tilting to moments from distributions fitted to SPF histograms

Survey uncertainty based on past forecast errors

- Reifschneider & Tulip (2007/19), Clark, McCracken & Mertens (2020)
- Lahiri & Sheng (2010), Knüppel (2014), Jo & Sekkel (2019)

Survey uncertainty based on past forecast errors

- Reifschneider & Tulip (2007/19), Clark, McCracken & Mertens (2020)
- Lahiri & Sheng (2010), Knüppel (2014), Jo & Sekkel (2019)

Survey forecasts: term structures, densities and fixed events

- Patton & Timmermann (2011), Kozicki & Tinsley (2012)
- Aruoba (2020), Crump, Eusepi, Moench, & Preston (2022)
- Bassetti, Casarin, & Del Negro (2022), Cakmakli & Demircan (2022)
- Dovern, Fritsche & Slacalek (2012), Ganics, Rossi & Sekhposyan (2019)

Survey uncertainty based on past forecast errors

- Reifschneider & Tulip (2007/19), Clark, McCracken & Mertens (2020)
- Lahiri & Sheng (2010), Knüppel (2014), Jo & Sekkel (2019)

Survey forecasts: term structures, densities and fixed events

- Patton & Timmermann (2011), Kozicki & Tinsley (2012)
- Aruoba (2020), Crump, Eusepi, Moench, & Preston (2022)
- Bassetti, Casarin, & Del Negro (2022), Cakmakli & Demircan (2022)
- Dovern, Fritsche & Slacalek (2012), Ganics, Rossi & Sekhposyan (2019)

Efficiency and calibration of survey forecasts

- Faust & Wright (2009), Croushore (2010)
- Diebold, Tay & Wallis (1999), Clements (2018)
- Clements & Galvao (2017), Glas & Hartmann (2022)
- Coibion & Gorodnichenko (2015), Mertens & Nason (2020)
- Farmer, Nakamura & Steinsson (2022), Hajdini and Kurmann (2022), Bianchi, Ludvigson & Ma (2022)

Survey uncertainty based on past forecast errors

- Reifschneider & Tulip (2007/19), Clark, McCracken & Mertens (2020)
- Lahiri & Sheng (2010), Knüppel (2014), Jo & Sekkel (2019)

Survey forecasts: term structures, densities and fixed events

- Patton & Timmermann (2011), Kozicki & Tinsley (2012)
- Aruoba (2020), Crump, Eusepi, Moench, & Preston (2022)
- Bassetti, Casarin, & Del Negro (2022), Cakmakli & Demircan (2022)
- Dovern, Fritsche & Slacalek (2012), Ganics, Rossi & Sekhposyan (2019)

Efficiency and calibration of survey forecasts

- Faust & Wright (2009), Croushore (2010)
- Diebold, Tay & Wallis (1999), Clements (2018)
- Clements & Galvao (2017), Glas & Hartmann (2022)
- Coibion & Gorodnichenko (2015), Mertens & Nason (2020)
- Farmer, Nakamura & Steinsson (2022), Hajdini and Kurmann (2022), Bianchi, Ludvigson & Ma (2022)

Entropic tilting: recent applications

- Krüger, Clark & Ravazzolo (2017), Tallman & Zaman (2020)
- Galvao, Garratt, & Mitchell (2021), Ganics & Odendahl (2021) Banbura, Brenna, Parades & Ravazzolo (2021)

AGENDA

3 Densities from SPF histograms and model

Effects of entropic tilting on predictive densities

5 Conclusions

OUR DATA: U.S. SPF

1) Point forecasts

2) Probabilistic forecasts (histograms)

to be discussed later

OUR DATA: U.S. SPF

1) Point forecasts

- "Fixed horizons:" Quarters 0 to 4, since 1968Q4
- "Fixed events:" Calendar years 1 to 3, since 1981Q3 (or 2009Q2)

2) Probabilistic forecasts (histograms)

to be discussed later

OUR DATA: U.S. SPF

1) Point forecasts

- "Fixed horizons:" Quarters 0 to 4, since 1968Q4
- "Fixed events:" Calendar years 1 to 3, since 1981Q3 (or 2009Q2)

2) Probabilistic forecasts (histograms)

to be discussed later

Today: Focus on GDP growth results (RGDP) w/others shown in paper

AGENDA

- **3** Densities from SPF histograms and model
- 4 Effects of entropic tilting on predictive densities
- **5** Conclusions

MODEL OVERVIEW

• Map observed outcomes and SPF point forecasts Z_t into latent state vector of fixed-horizon forecasts Y_t

$$Z_t = C_t \; Y_t$$

with C_t known (based on data definitions)

MODEL OVERVIEW

• Map observed outcomes and SPF point forecasts Z_t into latent state vector of fixed-horizon forecasts Y_t

$$Z_t = C_t \; Y_t$$

with C_t known (based on data definitions)

2 Use accounting identity for forecast errors

$$Y_t = F \; Y_{t-1} + \eta_t$$

with F known, and η_t a vector of forecast updates

MODEL OVERVIEW

• Map observed outcomes and SPF point forecasts Z_t into latent state vector of fixed-horizon forecasts Y_t

$$Z_t = C_t \; Y_t$$

with C_t known (based on data definitions)

O Use accounting identity for forecast errors

$$Y_t = F \; Y_{t-1} + \eta_t$$

with F known, and η_t a vector of forecast updates

Specify DGP for η_t, options:
a) Baseline: Martingale difference
b) Alternative: Persistent process

with SV or CONST shock variances

STATE EQUATION

Collect definitions of nowcast error, forecast updates and change in long-run forecast:

y_{t-1} .		$\begin{bmatrix} y_{t-1 t-1} \end{bmatrix}$		e_{t-1}
$y_{t t}$	=	$y_{t t-1}$	+	$\mu_{t t}$
$y_{t+1 t}$		$y_{t+1 t-1}$		$\mu_{t+1 t}$
:				
$y_{t+H-1 t}$		$y_{t+H-1 t-1}$		$\mu_{t+H-1 t}$
$y_{t+H t}$		$y_{t+H-1 t-1 }$		μ_t^*

which can be cast in recursive form (with F known)

$$Y_t = F Y_{t-1} + \eta_t$$

Baseline model: $\eta_t \sim N(0, \Sigma_t)$

Baseline: forecast updates are unpredictable

• $E_t \eta_{t+1} = 0$ (martingale difference sequence)

Baseline: forecast updates are unpredictable

- $E_t \eta_{t+1} = 0$ (martingale difference sequence)
- Does not try to out-forecast the SPF: posterior densities are centered on SPF

 $E_t y_{t+h} = y_{t+h|t}$

Baseline: forecast updates are unpredictable

- $E_t \eta_{t+1} = 0$ (martingale difference sequence)
- Does not try to out-forecast the SPF: posterior densities are centered on SPF

 $E_t y_{t+h} = y_{t+h|t}$

• We consider SV and CONST specifications for $\operatorname{Var}_t \eta_{t+1}$

Baseline: forecast updates are unpredictable

- $E_t \eta_{t+1} = 0$ (martingale difference sequence)
- Does not try to out-forecast the SPF: posterior densities are centered on SPF

 $E_t y_{t+h} = y_{t+h|t}$

• We consider SV and CONST specifications for $\operatorname{Var}_t \eta_{t+1}$

Alternative: persistent forecast updates

- $E(\eta_t) = 0$: model's prior is centered on SPF
- $\eta_t \sim \mathsf{VAR}(p)$
- Imputed bias: $b_{t+h|t} = y_{t+h|t} E_t y_{t+h}$

SV MODEL FOR FORECAST UPDATES

BASELINE MODEL

Martingale-difference case for forecast updates

Trend and gap shocks with SV

Decompose updates into long-run shifts and cyclical gaps

$$egin{aligned} \eta_t &= egin{bmatrix} ilde{\eta}_t + 1 \cdot \mu_t^* \ \mu_t^* \end{bmatrix} \ \mu_t^* &\sim N(0, \sigma_*^2) \ ilde{\eta}_t &\sim N\left(0, \lambda_t \cdot ilde{\Sigma}
ight) & \log \lambda_t \sim AR(1) ext{ (scalar)} \end{aligned}$$

SV MODEL FOR FORECAST UPDATES

BASELINE MODEL

Martingale-difference case for forecast updates

Trend and gap shocks with SV

Decompose updates into long-run shifts and cyclical gaps

$$egin{aligned} \eta_t &= egin{bmatrix} ilde{\eta}_t + 1 \cdot \mu_t^* \ \mu_t^* \end{bmatrix} \ \mu_t^* &\sim N(0, \sigma_*^2) \ ilde{\eta}_t &\sim N\left(0, \lambda_t \cdot ilde{\Sigma}
ight) & \log \lambda_t \sim AR(1) ext{ (scalar)} \end{aligned}$$

- Combines slow-moving endpoint of term structure with time-varying volatility over near-/medium term
- Low-order factor structure suited for handling of missing observations
- Scale SV invariant to reordering variables in $\tilde{\eta}_t$ (Carriero, Clark & Marcellino, 2016; Chan, 2020)

$$Z_t = C_t Y_t$$

$$\mathbf{Z}_t = C_t Y_t$$

• **Z**_t: observed SPF point forecasts at t (fixed event/horizon)

$$Z_t = C_t \; \underline{Y_t}$$

- **Z**_t: observed SPF point forecasts at t (fixed event/horizon)
- Y_t: latent vector of quarterly forecasts y_{t+h} and y_{t-1} where y_t is quarterly growth (annualized rate)

$$Z_t = \frac{C_t}{V_t} Y_t$$

- Z_t: observed SPF point forecasts at t (fixed event/horizon)
- Y_t: latent vector of quarterly forecasts y_{t+h} and y_{t-1} where y_t is quarterly growth (annualized rate)
- C_t: known, reflects definition of forecast targets, e.g., growth in annual average level of GDP

$$\hat{y}_t = \frac{y_t + 2y_{t-1} + 3y_{t-2} + 4y_{t-3} + 3y_{t-4} + 2y_{t-5} + y_{t-6}}{16}$$

• As in Mariano & Murasawa (2003), Patton & Timmermann (2011), Aruoba (2020)

$$Z_t = C_t \; Y_t$$

- Z_t: observed SPF point forecasts at t (fixed event/horizon)
- Y_t: latent vector of quarterly forecasts y_{t+h} and y_{t-1} where y_t is quarterly growth (annualized rate)
- C_t: known, reflects definition of forecast targets, e.g., growth in annual average level of GDP

$$\hat{y}_t = \frac{y_t + 2y_{t-1} + 3y_{t-2} + 4y_{t-3} + 3y_{t-4} + 2y_{t-5} + y_{t-6}}{16}$$

- As in Mariano & Murasawa (2003), Patton & Timmermann (2011), Aruoba (2020)
- In Q4: next-year forecasts omitted (since spanned by quarterly forecasts)

ESTIMATION SETUP

- Model applied separately for each outcome variable (RGDP, PGDP, CPI, UNRATE, TBILL)
- Estimated with MCMC over growing samples of real-time data and SPF that start in 1968Q3 (FRB Phil.'s Real-Time Data Set for Macroeconomists)
- Generate out-of-sample predictive densities from 1992Q1 onwards
- Predictions evaluated against 2nd release outcomes for RGDP and PGDP and latest data for CPI, UNRATE, TBILL

AGENDA

- 2 State space model for forecasts
 Term structures of expectations
 Non-MDS specification
- **3** Densities from SPF histograms and model
- **4** Effects of entropic tilting on predictive densities

5 Conclusions

TERM STRUCTURE OF GDP GROWTH EXPECTATIONS

Quarterly real-time estimates w/68% bands for unobserved values

2009Q2

TERM STRUCTURE OF GDP GROWTH EXPECTATIONS

Quarterly real-time estimates w/68% bands for unobserved values

2009Q2

TERM STRUCTURE OF GDP GROWTH EXPECTATIONS

Quarterly real-time estimates w/68% bands for unobserved values

2009Q2

Dotted lines: quarters included in tent-shaped mapping from annual-average to quarterly changes

TERM STRUCTURES OF GDP GROWTH EXPECTATIONS

Quarterly real-time estimates w/68% bands for unobserved values

FITTED TERM STRUCTURES OF EXPECTATIONS

Key feature

We can perfectly match any shape of the term structure of expectations that could be seen in the data

AGENDA

1 SPF data

2 State space model for forecasts

- Term structures of expectations
- Non-MDS specification

3 Densities from SPF histograms and model

4 Effects of entropic tilting on predictive densities

5 Conclusions

NON-MDS FORECAST UPDATES

Extended model

Relaxation of MDS assumption

- Persistent forecast errors instead of $E_{t-1}\eta_t=0$
- Transformation from Y_t to η_t still useful: motivates shrinkage to VAR(1)

$$egin{aligned} Y_t &= FY_{t-1} + \eta_t \ \eta_t &= G\eta_{t-1} + arepsilon_t \ , \quad arepsilon_t \sim N(0, \operatorname{Var}_{t-1}arepsilon_t) \end{aligned}$$

NON-MDS FORECAST UPDATES

Extended model

Relaxation of MDS assumption

- Persistent forecast errors instead of $E_{t-1}\eta_t=0$
- Transformation from Y_t to η_t still useful: motivates shrinkage to VAR(1)

$$egin{aligned} Y_t &= FY_{t-1} + \eta_t \ \eta_t &= G\eta_{t-1} + arepsilon_t \ , \quad arepsilon_t \sim N(0, \operatorname{Var}_{t-1}arepsilon_t) \end{aligned}$$

Results:

- Similar avg forecast performance (relative to MDS)
- Persistence in η_t matters most at turning points
- ... and is hard to predict in real time

AGENDA

3 Densities from SPF histograms and model

Effects of entropic tilting on predictive densities

5 Conclusions

OUR DATA: U.S. SPF

1) Point forecasts

- "Fixed horizons:" Quarters 0 to 4
- "Fixed events:" Calendar years 1 to 3

2) Probabilistic forecasts (histograms)

- Fixed-event only, calendar years 1 to 3
- Using only predictions since 1992 (b/o data issues)
- To match SPF, we transform draws from log-linear model to actual annual-average changes

Today: Focus on GDP growth results (RGDP) w/others shown in paper

CONSISTENCY OF POINT AND DENSITY FORECASTS

GDP growth next year

Ranges of histogram-consistent mean forecasts computed by placing mass for each bin on left / right edges

CONSISTENCY OF POINT AND DENSITY FORECASTS

Point vs. ranges of mean forecasts consistent with the SPF histograms

- Point forecasts almost always consistent with histograms
- Ranges of histogram-consistent mean forecasts computed by placing mass for each bin on left / right edges
- GDP growth

CDF IMPLIED BY SPF HISTOGRAMS

2007Q3

Next-year GDP growth

SPF histograms pin down selected CDF values:

Growth rates (x-axis) and probabilities (y-axis) in percentage points

By construction,

2007Q3

SV and CONST model densities have same median ...

Growth rates (x-axis) and probabilities (y-axis) in percentage points

MODELS VS SPF

Cumulative densities for next-year GDP growth

... but differ otherwise:

Growth rates (x-axis) and probabilities (y-axis) in percentage points

SCORES FOR HISTOGRAM EVALUATIONS

Setup

- Let $b_{j,t}$ denote the upper edge of SPF bin j (at t)
- Histogram provides discrete-valued CDF:

$$P_{j,t} = \mathsf{Prob}_t(y_{t+h} \leq b_{j,t})$$

SCORES FOR HISTOGRAM EVALUATIONS

Setup

- Let $b_{j,t}$ denote the upper edge of SPF bin j (at t)
- Histogram provides discrete-valued CDF:

$$P_{j,t} = \mathsf{Prob}_t(y_{t+h} \leq b_{j,t})$$

Discrete Ranked Probability Scores

$$\mathsf{DRPS}_t = \sum_j \left(P_{j,t} - \mathbb{1} \left(y^o_{t+h} \leq b_{j,t}
ight)
ight)^2$$

where y^o_{t+h} denotes the observed value

- Measures accuracy of predictions to fall into SPF bins
- Depends on specification of SPF bins $(b_{j,t})$

SCORES FOR HISTOGRAM EVALUATIONS

Setup

- Let $b_{j,t}$ denote the upper edge of SPF bin j (at t)
- Histogram provides discrete-valued CDF:

$$P_{j,t} = \mathsf{Prob}_t(y_{t+h} \leq b_{j,t})$$

Discrete Ranked Probability Scores

$$\mathsf{DRPS}_t = \sum_j \left(P_{j,t} - \mathbb{1} \left(y^o_{t+h} \leq b_{j,t}
ight)
ight)^2$$

where y^o_{t+h} denotes the observed value

- Measures accuracy of predictions to fall into SPF bins
- Depends on specification of SPF bins $(b_{j,t})$
- Bin-specific analogue to CRPS

ACCURACY OF PREDICTIONS FOR BIN EVENTS

Avg DRPS scores over growing samples, next-year GDP growth

Models better than SPF pre GFC and on par over full sample

AGENDA

- **2** State space model for forecasts
- **3** Densities from SPF histograms and model

4 Effects of entropic tilting on predictive densities

5 Conclusions

AGENDA

- 2 State space model for forecasts
- **3** Densities from SPF histograms and model

Effects of entropic tilting on predictive densities Entropic tilting method

• Average forecast performance w/and w/o entropic tilting

CDF BEFORE ENTROPIC TILTING

2007Q3

Cumulative densities for next-year GDP growth

Our state space model matches SPF point forecasts, but not generally the histogram bins

Growth rates (x-axis) and probabilities (y-axis) in percentage points

CDF'S BEFORE AND AFTER ENTROPIC TILTING

2007Q3

Cumulative densities for next-year GDP growth

ET reweighs MCMC output to match bin probabilities while minimizing KL divergence

Growth rates (x-axis) and probabilities (y-axis) in percentage points

TILTED MODELS VS SPF

2007Q3

Cumulative densities for next-year GDP growth

After tilting, SV and CONST densities similar, but not identical:

Growth rates (x-axis) and probabilities (y-axis) in percentage points

ENTROPIC TILTING

Generic setup

- Given: predictive density draws $f := \{y_{t+h}^i\}_{i=1}^M$
- Target: moment conditions $E[g(y_{t+h})] = \bar{g}$
- Tilting problem: Reweigh draws from f into \tilde{f} to match \bar{g} while minimizing KL divergence

$$\mathsf{min}_{ ilde{f} \in \mathbb{F}} \; \mathsf{KL}(ilde{f}, f)$$
 subject to $E_{ ilde{f}} \; [g(y_{t+h})] = ar{g}$

Key insight for our application

Bin probabilities are predictive moments for example:

 $\mathsf{Prob}_t \ (2.5 < y_{t+h} \leq 3.0) = E_t \ (\mathbbm{1} \ (2.5 < y_{t+h} \leq 3.0))$

We target all bin probabilities

AGENDA

- 2 State space model for forecasts
- **3** Densities from SPF histograms and model
- Effects of entropic tilting on predictive densities
 Entropic tilting method
 - Average forecast performance w/and w/o entropic tilting

5 Conclusions

POINT FORECAST PERFORMANCE

RMSE relative to SV

SV w/ET	CONST	CONST w/ET
---------	-------	------------

POINT FORECAST PERFORMANCE

RMSE relative to SV

	SV w/ET		CONST		CONST w/ET	
h	92–22	92–16	92–22	92–16	92–22	92–16
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						

POINT FORECAST PERFORMANCE

RMSE relative to SV

	SV w/ET		CONST		CONST w/ET	
h	92–22	92–16	92–22	92–16	92–22	92–16
0	1.01	1.01^{*}	1.00	1.00	1.01**	1.01*
1	1.00	1.01	1.00	1.00	1.00	1.01
2	1.00	1.00	1.00	1.00	1.00	1.00
3	1.00	0.99	1.00	1.00	1.00	0.99
4	1.00	0.99	1.00	1.00	1.00	0.99
5	1.00	0.98	1.00	1.00	1.00	0.99
6	1.00	0.99	1.00	1.01	1.01	1.01
7	1.00	0.99	1.00	1.01	1.00	1.00
8	1.00	0.99	1.00	1.02	1.00	1.01
9	1.00	0.99	1.00	1.01	1.00	1.00
10	1.00	1.00	1.00	1.02	1.00	1.01
11	1.00	0.99	1.00	1.02^{*}	1.00	1.01
12	1.00	1.00	1.00	1.02	1.00	1.01
13	1.00	1.01^{*}	1.00	1.02	1.00	1.02
14	1.00	1.00	1.00	1.00	1.01	1.00
15	1.00	1.00	1.00	1.00	1.00	1.00

DENSITY FORECAST PERFORMANCE

CRPS relative to SV

	SV w/ET		CONST		CONST w/ET	
h	92–22	92–16	92–22	92–16	92–22	92–16
0	1.00	1.00				
1	1.00	1.00				
2	0.99	1.00				
3	0.99	0.99				
4	0.99	0.99				
5	0.99	0.98				
6	0.99	0.99				
7	1.00	0.99				
8	1.00	0.99				
9	1.00	0.99				
10	1.00	0.99				
11	0.99	0.98				
12	0.99	0.99				
13	1.00	1.00				
14	1.00	1.00				
15	0.99^{*}	0.99				

DENSITY FORECAST PERFORMANCE

CRPS relative to SV

	SV w/ET		CONST		CONST w/ET	
h	92–22	92–16	92–22	92–16	92–22	92–16
0	1.00	1.00	0.99	0.99	1.00	0.99
1	1.00	1.00	1.04	1.01	1.04^{*}	1.02
2	0.99	1.00	1.00	1.02	1.01	1.02
3	0.99	0.99	1.01	1.02	1.01	1.01
4	0.99	0.99	1.01	1.03^{*}	1.01	1.01
5	0.99	0.98	1.01	1.04^{*}	1.01	1.01
6	0.99	0.99	1.03	1.06^{**}	1.03	1.04
7	1.00	0.99	1.03	1.06^{**}	1.03	1.04
8	1.00	0.99	1.03	1.06^{**}	1.03	1.04
9	1.00	0.99	1.03	1.06^{**}	1.03	1.05
10	1.00	0.99	1.03^{**}	1.07^{***}	1.04^{**}	1.06^{**}
11	0.99	0.98	1.04^{**}	1.07^{***}	1.03	1.05^{*}
12	0.99	0.99	1.04^{**}	1.07^{***}	1.03^{**}	1.06^{**}
13	1.00	1.00	1.04^{***}	1.07^{***}	1.04^{***}	1.06^{***}
14	1.00	1.00	1.04^{**}	1.05^{***}	1.04^{**}	1.05^{**}
15	0.99^{*}	0.99	1.04^{**}	1.04^{**}	1.04^{**}	1.04^{**}

AGENDA

- **2** State space model for forecasts
- **3** Densities from SPF histograms and model
- 4 Effects of entropic tilting on predictive densities

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure

- Matches observed SPF
- Can be used to produce FOMC-like fan charts
- Incorporates all SPF bins with entropic tilting

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure

- Matches observed SPF
- Can be used to produce FOMC-like fan charts
- Incorporates all SPF bins with entropic tilting

Findings

- Calendar-year histograms add some, but mostly occasional value . . .
- ... relative to model centered on SPF point forecasts
- At onset of COVID-19, narrower uncertainty after tilting

APPENDICES

(6) Application: SEP-style fan charts

7 SPF data

- B Details on state space model
- 9 Fan charts after tilting
- **10** Effects of tilting on uncertainty
- **1** Skew induced by entropic tilting
 - Results from Non-MDS model

FAN CHARTS FOR Q4/Q4 GDP GROWTH

2011Q1

- In format of FOMC's SEP
- Generated by SV model
- Next: comparison against SEP uncertainty bands

FAN CHART UNCERTAINTY: MODEL VS SEP

SEP setup

- SEP fan-chart bands based on historical forecast errors assume constant variances over last 20-years
- \bullet Uncertainty bands reflect \pm RMSE around forecast
- ... and can differ from FOMC's subjective assessments
FAN CHART UNCERTAINTY OVER TIME

Width of 68% bands from SV model ...

Width of 68% bands for Q4/Q4 forecasts

FAN CHART UNCERTAINTY OVER TIME Width of 68% bands from SV model vs. SEP's RMSE-based bands

Width of 68% bands for Q4/Q4 forecasts

FAN CHART UNCERTAINTY: MODEL VS SEP

SEP setup

- SEP fan-chart bands based on historical forecast errors assume constant variances over last 20-years
- Uncertainty bands reflect \pm RMSE around forecast
- ... and can differ from FOMC's subjective assessments

Takeaways

- SV-model bands more nimble than SEP estimates
- After GFC:
 - SV estimates returned to lower levels
 - while SEP remained elevated

(6) Application: SEP-style fan charts

SPF data

- Details on state space model
- 9 Fan charts after tilting
- **10** Effects of tilting on uncertainty
- **1** Skew induced by entropic tilting
 - Results from Non-MDS model

AVAILABILITY OF SPF DENSITY FORECASTS

Nowcast and widths of histogram bins

AVAILABILITY OF SPF DENSITY FORECASTS

Nowcast and widths of histogram bins

We consider only histograms as of 1992 (b/o data issues)

AVAILABILITY OF SPF PREDICTIONS

Real growth (RGDP), inflation (PGDP), unemployment rate (UNRATE)

- Point forecasts since 1968
- Next-year bins since 1981 (and since 2009 for UNRATE)
- ... beyond next year since 2009
- But, w/data issues prior 1992
- ... and bin changes throughout

Point forecasts, and widths of histograms

AVAILABILITY OF SPF PREDICTIONS

Real growth (RGDP), inflation (PGDP), unemployment rate (UNRATE)

- Point forecasts since 1968
- Next-year bins since 1981 (and since 2009 for UNRATE)
- ... beyond next year since 2009
- But, w/data issues prior 1992
- ... and bin changes throughout
- Using only bin data since 1992

Point forecasts, and widths of histograms

7 SPF data

B Details on state space model

- Fan charts after tilting
- **10** Effects of tilting on uncertainty
- **11** Skew induced by entropic tilting
- **12** Results from Non-MDS model

STATE SPACE FOR FORECASTS AND THEIR UPDATES

1) Accounting identity from CMM for *H* steps ahead:

$$y_{t+H} = e_{t+H} + \sum_{i=1}^{H} \mu_{t+H|t+i} + y_{t+H|t}$$

2) Track changes in long-run forecasts

$$egin{aligned} y_{t+H|t} = y_{t+H-1|t-1} + \mu_t^* \end{aligned}$$

We obtain a state equation with known transition F

$$Y_t = F \; Y_{t-1} + \eta_t \,, \; \eta_t \sim \mathsf{TBD}$$

$$\underbrace{\begin{bmatrix} y_{t-1} \\ y_{t|t} \\ \vdots \\ y_{t+1|t} \\ \vdots \\ y_{t+H|t} \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots \\ 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 1 \end{bmatrix}}_{F} Y_{t-1} + \underbrace{\begin{bmatrix} e_{t-1} \\ \mu_{t|t} \\ \mu_{t+1|t} \\ \vdots \\ \mu_{t}^* \end{bmatrix}}_{\eta_{t}}$$

Recall: $e_t = y_t - y_{t|t}$ and $\mu_{t+h|t} = y_{t+h|t} - y_{t+h|t-1}$

COMMENTS ON STATE EQUATION

$$Y_t = F \ Y_{t-1} + \eta_t$$

- All rows except last replicate CMM data for η_t
- Transition matrix **F** is known
- All roots of *F* are zero except for one unit root
- F implies common trend in outcomes and forecasts (assuming stationary η_t)
- $\operatorname{Var}\left(\mu_{t}^{*}
 ight)
 ightarrow 0$ captures (near) stationary Y_{t}
- MDS assumption, $E_{t-1}\eta_t = 0$, closes state space
- In extension, we consider VAR for $E_{t-1}\eta_t$ (as in CMM)

Even if not literally true, MDS assumption provides useful shrinkage for VAR in η_t

- **7** SPF data
- **B** Details on state space model
- Fan charts after tilting
- **10** Effects of tilting on uncertainty
- **11** Skew induced by entropic tilting
- **12** Results from Non-MDS model

FAN CHARTS FOR GDP GROWTH

SV model before (red) and after entropic tilting (black)

- **6** Application: SEP-style fan charts
- **7** SPF data
- **B** Details on state space model
- Fan charts after tilting
- **10** Effects of tilting on uncertainty
- **11** Skew induced by entropic tilting
 - Results from Non-MDS model

EFFECTS OF TILTING ON UNCERTAINTY

Real growth: SV model before (blue) and after ET (red)

- Uncertainty measured by width of 68% bands
- Not much effect from ET
- Except for narrowing at onset of COVID-19
- Stronger effects on CONST (see next)

EFFECTS OF TILTING ON UNCERTAINTY

BACKUP

Real growth: CONST model before (blue) and after ET (red)

- More visible effects of ET on CONST
- Narrower until COVID
- Recall: Longer-run SPF histograms available only since 2009

- **6** Application: SEP-style fan charts
- **7** SPF data
- **B** Details on state space model
- Fan charts after tilting
- **10** Effects of tilting on uncertainty

1 Skew induced by entropic tilting

SKEW INDUCED BY TILTING

Bowley coefficient

- Our model has zero skew, only ET can induce skew
- *Some* skewness at targeted annual horizon
- But, w/o carrying over to quarterly term structure

1985 1990 1995 2000 2005 2010 2015 2020

- **6** Application: SEP-style fan charts
- **7** SPF data
- **B** Details on state space model
- Fan charts after tilting
- **10** Effects of tilting on uncertainty
- **11** Skew induced by entropic tilting

Results from Non-MDS model

BIAS IN SPF EXPECTATIONS OF GDP GROWTH Bias_t = $E_t y_{t+h} - y_{t+h|t}$ from non-MDS model

MDS VS NON-MDS MODEL: FORECAST PERFORMANCE

Relative RMSE and CRPS (MDS in denominator)

	RMSE				CRPS			
	SV		CONST		SV		CONST	
h	92–22	92–16	92–22	92–16	92–22	92–16	92–22	92–16
0	1.00	1.00	1.12	1.01	1.01	1.01	1.08	1.01
1	1.02	1.00	1.06	1.01	1.02	1.01	1.04	1.01
2	1.00	0.98^{*}	1.00	0.97^{**}	1.01	0.99^{*}	1.00	0.99
3	1.00	1.00	1.00	0.99	1.02	1.01	1.00	1.00
4	1.00	1.00	1.00	0.99	1.02	1.01	1.01	1.01
5	1.00	1.00	1.00	1.01	1.01	1.00	1.01	1.00
6	1.00	1.00	1.00	1.02	1.00	0.99	1.01	1.01
7	1.00	1.00	1.00	0.99	1.00	0.99	0.99	0.99
8	1.00	1.01	1.00	1.00	1.00	0.99	0.99	0.99
9	1.00	1.01	1.01	1.01	1.00	0.99	1.01	1.01
10	1.00	1.01	1.01	1.02	0.99	0.98	1.01	1.01
11	1.00	1.01	1.00	1.02	1.00	0.98	1.01	1.02
12	1.00	1.00	1.00	1.02	0.99	0.97^{**}	1.01	1.01
13	1.00	1.00	1.01	1.01	0.99	0.97^{**}	1.00	1.00
14	1.00	1.00	1.00	1.00	0.99	0.98	1.00	1.01
15	1.00	1.00	1.00	1.00	0.98^{*}	0.98^{**}	1.00	1.00

Stars indicate Diebold-Mariano significance. Green/red colors indicate gains/losses.

FORECAST UPDATES: MDS VS. VAR

Takeaways

Persistence in forecast updates matters mostly at turning points

... and is hard to predict in real time

Croushore (2010), Mertens & Nason (2020), Matthes & Foerster (2021), Hajdini and Kurmann (2022), Farmer, Nakamura & Steinsson (2022), Bianchi, Ludvigson & Ma (2022)