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Introduction
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Forecasting lower tail events

Uncertainty and downside risk plays a prominent role for economic forecasts and
policy decisions

It has become popular for economic forecasters’ and policy institutions (e.g.
central banks) to provide probabilistic (density) forecasts (BoE, Norges Bank, the
Fed)

In recent years, policymakers’ have shifted their focus from forecasts uncertainty
in general to being particularly interested in quantifying macroeconomic
downside tail risk, often referred to as GDP-at-risk.

Adrian et al. (2019) argue that financial conditions are particularly informative
above future downside macroeconomic risk.
Led to a surge of interest in growth-at-risk (e.g. Coe and Vahey, 2020; Reichlin
et al., 2020; Carriero et al., 2020; Clark et al., 2021; Brownlees and Souza, 2021;
Amburgey and McCracken, 2022).

A large literature that find a variety of economic and financial variables contain
predictive information about future economic recessions and downturns see e.g.
Marcellino (2006) and Liu and Moench (2016) for an overview.
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Combination of Density Forecasts

To produce accurate and useful forecasts, forecasters and policy makers
routinely rely on multiple sources to produce forecasts.

This has spurred a recent resurgence in interest in combination of density
forecasts in macroeconomics and econometrics.

Combining predictive densities using weighted linear combinations of prediction
models, evaluated using various scoring rules

Hall and Mitchell (2007), Jore et. al (2010), Geweke and Amisano (2011),
Gneiting and Ranjan (2011, 2012) and Aastveit et al. (2014)

Complex combination approaches that allows for time-varying weights with
possibly both learning and model set incompleteness

Billio et al. (2013), Casarin et al. (2015), Pettenuzzo and Ravazzolo (2016), Del
Negro et al. (2016), Aastveit et al. (2018), McAlinn and West 2019 and
McAlinn et al. (2020).
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Combination of Density Forecasts

Suppose that a set of k = 1, . . . ,K predictive distributions ft+h,k for the same
variable of interest yt for horizon h are available.

Standard Combination methods apply a combination weight to the entire
predictive distribution, i.e.:

yt+h
1×Q

= wk
1×K

ft+h,k
K×Q

where q = 1, . . . ,Q indicates the quantiles or bins elements of the density
distribution.

However, this approach implicitly overlooks superior forecast accuracy of
some ft+h,k over a specific region of the distribution.
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Quantile Combination of Density Forecasts

Suppose that a subset of this set is indeed more accurate in predicting the mean
(tails) of the distribution, while they perform poorly in the tails (mean);

It would be desirable then to consider this heterogeneity in accuracy across
regions of the distribution in constructing the combined density i.e.:

yt+h
1×Q

= diag(wq,k
Q×K

ft+h,k
K×Q

)

However: how can we estimate wq?
We need a new measure of forecast accuracy which is quantile-specific.
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This paper

1 Contribute to the literature on combination of density forecasts by proposing
an alternative combination approach that assigns a different set of combination
weights to the various quantiles of the predictive distribution.

Bayesian quantile regression models as in Kozumi and Kobayashi (2011) are used
to build the individual forecasts ft+h,k
Construct quantile-specific weights for each model using the quantile score by
Gneiting and Ranjan (2011)
Quantile combination is compared to traditional combination approaches.

2 Contribute to the literature on forecasting GDP growth by:
Comparing the informativeness of various leading indicators for various parts of
the GDP distribution
Applying the quantile combination to forecast US GDP growth.

3 Main findings:
Forecasts from our quantile combination approach outperforms forecasts from
commonly used combination approaches
We find that also other variables than the NFCI are informative about future
downside macroeconomic risk
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Econometric Framework
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Quantile regression

yt+h,q =

r+p∑
i=1

x ′tβq + εt+1 (1)

q = 1, . . . , 5 denotes the respective quantile.
x ′t is the vector of lagged values of yt (with maximum lag r) and of lagged
values one of the N predictor (with maximum lag p).
εt+1 = σθzt+h + στ

√zt+hut+h following Kozumi and Kobayashi (2011)
zt+h ∼ Exponential(1), σ ∼ IG(n0/2, s0/2) and ut+h ∼ N (0, 1)

θ = (1− 2q)/q(1− q) and τ 2 = 2/1(1− q)

Bayesian Inference
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Evaluation of quantiles’ forecast accuracy: quantile scores
Continuous Ranked Probability Score (CRPS)
According to a loss function, the density forecast is evaluated by computing the
distance at each point of the distribution to the realization. It is defined by:

CRPS(ft+h,k , yt+h) = −
∫ ∞
−∞

(Ft+h,k − I(Ft+h,k ≥ yt+h))2dy (2)

where Ft+h,k represents the cdf of forecast ft+h,k and yt+h the corresponding
realization.
Gneiting and Ranjan (2011) proposes a quantile decomposition of the CRPS
represented by:

CRPSt+h,k =

∫ 1

0
QSt+h,k(q)dq

QSt+h,k(q) =
1

n − h + 1

m+n−h∑
t=m

QSq(F−1
t+h,k(q), yt+h)

QSq(F−1
t+h,k(q), yt+h) = 2

(
I{yt+h ≤ F−1

t+h,k(q)} − q
)

(F−1
t+h,k(q)− yt+h)

(3)
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Quantile Combination Weights

Quantile-specific combination weights:

wt+h(k, q
K×Q

) =

∑m+n−h
t=m 1/QSt,k,q∑K

k=1
∑m+n−h

t=m 1/QSt,k,q
(4)

We need to impose that w(t, k, q) ≥ 0 and that:

K∑
k=1

w(t, k, q) = 1

The combined density forecast y c
t+h is obtained by multiplying the matrix of

combination weights computed according to (4) with the matrix of quantile
forecasts:

y c
t+h = diag(wt+h,k,q × ft+h,q,k) (5)
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Alternative combination approaches

f (yt+h) =
K∑

k=1
ωk ft+h,k

Equal Weights ωk = 1/K
Optimal Weights by Hall and Mitchell (2007) and Geweke and Amisano (2011)
wk = 1

T−h
∑T−h

t=1 ln(ft+1,k) s.t. wk > 0,
∑K

k=1 wk = 1
the inference algorithm for wk in Conflitti et al. (2015) is used.
Log score weights by Jore et al. (2010)

wt+h(k) =

∑m+n−h
t=m

LSt,k∑K
k=1

∑m+n−h
t=m

LSt,k

CRPS weights wt+h(k) =

∑m+n−h
t=m

1/CRPSt,k∑K
k=1

∑m+n−h
t=m

1/CRPSt,k

Bayesian Model Averaging
p(yt+h|IK ) =

∑K
k=1 P (Mk) p(ỹt+h|k) where P (Mk) is the posterior probability

of model k, based on the predictive likelihood for model k.
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Forecast evaluation

Gneiting and Ranjan (2011) uses versions of the continuous ranked probability score
that emphasize regions of interest and retain propriety.

emphCRPSt+h,k =

∫ 1

0
QSq(F−1

t+h,k(q), yt+h)ν(q)dq

where ν is a nonnegative weight function on the unit interval.

We focus on:
Uniform: ν(q) ν0(q) = 1
Centre: ν0(q) = 1
Tails: ν1(q) = q(1 − q)
Right Tail: ν2(q) = (2q − 1)2ν3(q) = q2

Left Tail: ν4(q) = (1 − q)2

Heavy Tails: ν5(q) = (2q − 1)4
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Empirical Exercise
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Forecasting US GDP growth in real time

We use the following set of predictors:

Label Trans Real Time Description Source
RGDP ∆ln 73:Q1-19:Q4 Real GDP growth, sa AL
NFCI level 11:Q2-19:Q4 National Financial Conditions Index Chicago Fed
ICS level-100 98:Q3-19:Q4 Consumer Sentiment Index AL
CreSpread Level none:Q1 Credit Spread: BAA corporate bond yield - 10-year treasury F
U ∆ log 65:Q4-19:Q4 Unemployment rate AL
ResInv ∆% 65:Q4-19:Q4 Real Gross Private Domestic Investment: Fixed Investment: Residential AL

Quarterly real-time data
Period: 1971Q2-2019Q4
Out-of-sample forecasting sample: 1993Q1-2019Q4
Expanding window forecasts
Forecast Horizons: H={1,4}
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Evaluation of single predictive models for one-quarter
ahead forecasts.

Emphasis Uniform Centre Tails Right Tail Left Tail Heavy Tails
ν(q) ν0(q) = 1 ν1(q) = q(1− q) ν2(q) = (2q − 1)2 ν3(q) = q2 ν4(q) = (1− q)2 ν5(q) = (2q − 1)4

GDP 0.342 0.070 0.063 0.098 0.104 0.020
NFCI 0.361 0.073 0.067 0.099 0.115 0.022
ICS 0.334 0.068 0.063 0.095 0.103 0.020
U 0.367 0.075 0.069 0.104 0.114 0.022
CR Spread 0.317 0.065 0.059 0.093 0.095 0.019
ResInv 0.343 0.070 0.064 0.103 0.100 0.021

Average CRPS values with emphasis on specific regions of the distribution.
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Evaluation of single predictive models for one-year ahead
forecasts.

Emphasis Uniform Centre Tails Right Tail Left Tail Heavy Tails
ν(q) ν0(q) = 1 ν1(q) = q(1− q) ν2(q) = (2q − 1)2 ν3(q) = q2 ν4(q) = (1− q)2 ν5(q) = (2q − 1)4

GDP 0.393 0.079 0.076 0.117 0.118 0.025
NFCI 0.350 0.071 0.066 0.095 0.113 0.021
ICS 0.344 0.070 0.065 0.096 0.108 0.021
U 0.393 0.08 0.074 0.112 0.121 0.024
CR Spread 0.352 0.072 0.066 0.099 0.109 0.021
ResInv 0.329 0.067 0.062 0.097 0.099 0.020

Average CRPS values with emphasis on specific regions of the distribution.
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Comparison between quantile combination and linear
combination: one-quarter ahead

Emphasis ν(q) EQ OPT BMA Log Score CRPS Q-comb
Uniform ν0(q) = 1 0.604*** 0.923 0.903 0.952 0.988 0.336
Centre ν1(q) = q(1− q) 0.602*** 0.919 0.906 0.957 1 0.068
Tails ν2(q) = (2q − 1)2 0.604*** 0.927 0.888 0.941 0.955 0.064
Right Tail ν3(q) = q2 0.489*** 0.834 0.873 0.881 0.923 0.096
Left Tail ν4(q) = (1− q)2 0.776 1.029 0.937 1.019 1.04 0.104
Heavy Tails ν5(q) = (2q − 1)4 0.617 0.913 0.913 0.954 0.954 0.021

Average CRPS values with emphasis on specific regions of the distribution. Values > 1 denotes higher forecast
accuracy than our quantile combination.
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Comparison between quantile combination and linear
combination: one-year ahead

Emphasis ν(q) EQ OPT BMA Log Score CRPS Q-comb
Uniform ν0(q) = 1 0.561*** 0.793*** 1.000 0.996 0.846 0.319
Centre ν1(q) = q(1− q) 0.579*** 0.795*** 1.000 1.000 0.833 0.066
Tails ν2(q) = (2q − 1)2 0.504*** 0.778*** 1.018 0.833 0.857 0.056
Right Tail ν3(q) = q2 0.452*** 0.833*** 1.021 0.989 0.842 0.095
Left Tail ν4(q) = (1− q)2 0.707*** 0.748*** 0.978 0.989 0.858 0.092
Heavy Tails ν5(q) = (2q − 1)4 0.500*** 0.783*** 1.200 1.000 0.833 0.018

Average CRPS values with emphasis on specific regions of the distribution. Values > 1 denotes higher forecast
accuracy than our quantile combination.
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Cumulative CRPS for alternative approaches relative to our
combination for one-quarter ahead forecasts
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Simulation
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Simulation: Increasing sample size

Generate Simulated data with sample size T = 1000 for GDP and NFCI
Draw GDPt from p(GDPt |GDPt−r ,NFCIt−s ,ϑ).
Draw NFCIt from p(NFCIt |NFCIt−p ,ϑ)

Where ϑ are estimated from quantile regression using “real data” in the application
exercise.

The draws for GDP and NFCI are added to the “real data” dataset. The process is
iterated 1000 times.

Predictive forecasts using simulated data for GDP and NFCI are then estimated and
combined as in the previous application.
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Simulation 1: T = 1000, Q = 5, K = 2

Table: Simulation 1 with T=1000 forecast origins. CRPS scores for Q-comb and relative performance of
alternative models compared to Q-comb.

EQ Opt BMA Log Score CRPS Q-comb
Uniform 0.71617 0.71304 0.71617 0.71572 0.71661 1.143
Centre 0.77187 0.76947 0.77187 0.77187 0.77187 0.247
Tails 0.49211 0.49057 0.49211 0.49211 0.49211 0.156
Right Tail 0.93865 0.93578 0.93865 0.93865 0.94154 0.306
Left Tail 0.54358 0.54101 0.54358 0.54358 0.54444 0.343
Heavy Tails 0.44231 0.44231 0.44231 0.44231 0.44231 0.046

Values > 1 denotes higher forecast accuracy than our quantile combination.
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Cumulative CRPS for alternative approaches relative to our
combination for one-year ahead forecasts
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Simulation 2: Increasing sample size and number of
quantiles

Generate Simulated data with sample size T = 1000 for GDP and NFCI
Draw GDPt from p(GDPt |GDPt−r ,NFCIt−s ,ϑ).
Draw NFCIt from p(NFCIt |NFCIt−p ,ϑ)

Where ϑ are estimated from quantile regression using “real data” in the application
exercise.
The draws for GDP and NFCI are added to the “real data” dataset. The process is
iterated 1000 times and quantiles estimated are increased from Q = 5 to Q = 10.

Predictive forecasts using simulated data for GDP and NFCI are then estimated and
combined as in the previous application.
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Simulation 2: T = 1000, Q = 10, K = 2

Table: Simulation 2 with T=1000 forecast origins and Q = 10 quantiles. CRPS scores for Q-comb and relative
performance of alternative models compared to Q-comb.

EQ Opt BMA Log Score CRPS Q-comb
Uniform 0.96286 0.98788 0.96286 0.96503 0.96016 1.711
Centre 0.9633 0.98746 0.9633 0.96626 0.96037 0.315
Tails 0.96581 0.9869 0.96581 0.96788 0.96375 0.452
Right Tail 0.96578 0.98833 0.96578 0.96823 0.96334 0.762
Left Tail 0.95808 0.98765 0.95808 0.96096 0.95522 0.320
Heavy Tails 0.96364 0.98605 0.96364 0.96364 0.96364 0.212

Values > 1 denotes higher forecast accuracy than our quantile combination.
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Simulation 2: T = 1000, Q = 10, K = 2 Cumulative
CRPS
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Simulation 3: T = 1000, Q = 10, K = 10

Generate Simulated data for GDP, using 10 predictors.
Draw GDPt from p(GDPt |GDPt−r ,X1,t−s , . . . ,XK ,t−s ,ϑ).
Draw Xk,t from p(Xk,t |Xk,t−p,ϑk)

Where Xk,t denotes one of the predictor variables used in the Application: NFCI,
ICS, U, CR Spread, ResInv, plus 5 other: CFNA, S&P500, OIL, PERMSA,
BANKCRg. ϑ are estimated from quantile regression using “real data” in the
application exercise.
The draws are added to the “real data” dataset. The process is iterated 1000 times.

Predictive forecasts using simulated data are then estimated and combined as in the
previous application.
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Simulation 3: T = 1000, Q = 10, K = 10

Table: Simulation (3): T=1000 forecast origins, Q=10 quantiles and K=10 models. CRPS scores for Quantile
combination (Q-comb) and relative performance of alternative models compared to Q-comb.

EQ Opt BMA Log Score CRPS Q-comb
Uniform 0.103 0.539 0.443 0.317 0.354 0.055
Centre 0.083 0.415 0.419 0.334 0.237 0.088
Tails 0.083 0.415 0.419 0.334 0.237 0.088
Right Tail 0.087 0.443 0.423 0.356 0.246 0.083
Left Tail 0.082 0.408 0.415 0.328 0.234 0.089
Heavy Tails 0.083 0.419 0.417 0.337 0.237 0.086

Values > 1 denotes higher forecast accuracy than our quantile combination.
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Simulation 3: T = 1000, Q = 10, K = 10 Cumulative
CRPS

Figure: Simulation (3) with T=1000 forecast origins Q=10 quantiles and K=10 models: Cumulative Scores for
Linear and Quantile Combinations
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Conclusion
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Conclusion

We propose a new forecast combination approach, that assigns a set of
combination weights to the various quantities of the individual density forecasts

Bayesian quantile regression models as in Kozumi and Kobayashi (2011) are used
to build the individual forecasts ft+h,k
Construct quantile-specific weights for each model using the quantile score by
Gneiting and Ranjan (2011)

We apply it to real GDP growth rate for the Unites States for the period
1993Q1-2020Q1. Finding:

Forecasts from our quantile combination approach outperforms forecasts from
commonly used combination approaches

In simulation we relax some of the assumptions made due to dataset feasibility;
where quantile combination resulted to be the most accurate approach.
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Bayesian Inference

Re-parametrisation:

yt+h,q =

r+p∑
i=1

x ′tβq + υtθzt+h + τ
√zt+hυiut+h (6)

Each unknown parameter is sampled from the following posterior distributions using
a Gibbs sampler:

βq|y , v , x, σ ∼ N (β̄q, V̄β)

V̄−1
β =

( T∑
t=1

x ′txt
τ 2συt

+ B−1
q0

)
β̄q = V̄β

[ T∑
t=1

xt(yt − θυt)

τ 2υtσ
+ B−1

q0 βq0

]
(7)

where B−1
q0 and βq0 are priors:

B−1
q0 = 100I βq0 = 0 (8)
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Bayesian Inference

βq|y , v , x, σ ∼ N (β̄q, V̄β)

υt |y ,βqxσ ∼ GIG(1/2, δt , γt)

δt =
(yt − x ′tβ)2

τ 2σ
γ2

t = 2σ + θ2/(τ 2σ) (9)

σ|y ,βqxυt ∼ IG( n
2 ,

s
2 ) where:

n = n0 + 3T s = s0 + 2
T∑

t=1
υt + (yt − x ′tβq − θυt)2/τ 2υt (10)

and n0 ans s0 are priors set to be equal to 0.1.
Results refers to full sample of data, we have used 8 000 Monte Carlo iterations
after discarding the first 4 000. back
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