Understanding Persistent ZLB: Theory and Assessment

Pablo Cuba-Borda * Sanjay R. Singh ‡

*Federal Reserve Board of Governors
‡University of California, Davis

ECB and Federal Reserve Bank of Cleveland - Inflation Conference
October 2021

The views expressed herein are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System.
the threat of japanification

Benhabib, Schmitt-Grohé & Uribe (2001); Bullard (2010); Mertens & Ravn (2014); Schmitt-Grohé & Uribe (2017); Aruoba, Cuba-Borda & Schorfheide (2018); Lansing(2019); Ascari and Bonchi (2020); Nakata and Schmidt (forthcoming)
persistent ZLB hypotheses

expectations-driven liquidity traps

secular stagnation

considered in separate frameworks!!
Question 1: is it possible to reconcile secular stagnation and expectation-driven traps within an unified framework?

- allow movements in long-run real rate to kill strong Fisherian effects
- assumptions on nominal rigidity key as to which hypothesis emerges

Question 2: why does it matter?

- contrasting policy implications depending on hypothesis at play
- identify hypotheses using data → bayesian prediction-pools
 - Substantial uncertainty
 - Need many years of data
- need for robust policies
Outline

1. simple model
2. analytical results
3. quantitative evaluation
A simple new-Keynesian model: ingredients

- Euler equation with endogenous discounting: Uzawa (1968), Epstein (1983)

\[
1 = \delta_t \tilde{C}_t \beta \left[\frac{C_t}{C_{t+1}} \frac{R_t}{\Pi_{t+1}} \right], \quad 0 < \beta < 1; \quad \delta_t > 0
\]

- Nominal rigidity in prices: Bhattarai, Eggertsson, Gafarov (2019)

\[
\Pi_t = \kappa Y_t + (1 - \kappa \bar{Y}), \quad \kappa \equiv \frac{\alpha_p}{1 - \alpha_p}
\]

- Monetary policy rule subject to ZLB constraint

\[
R_t = \max \left\{ 1, (1 + r_t^*) \Pi^* \left(\frac{\Pi_t}{\Pi^*} \right)^{\phi_\pi} \right\}, \quad 1 + r_t^* \equiv \frac{1}{\delta_t \beta}
\]
Steady state representation $\rightarrow AD - AS$

Aggregate Demand:

$$Y_{AD} = \frac{1}{\beta \delta} \left\{ \begin{array}{ll}
\frac{1}{(1+r^\ast)\Pi^{\phi\pi} - 1}, & \text{if } R > 1 \\
\Pi, & \text{if } R = 1
\end{array} \right.$$

- $R > 1$: negative relation between Y and Π
- $R = 1$: positive relation between Y and Π

Aggregate Supply:

$$\Pi = \kappa Y + (1 - \kappa)$$

- κ: degree of nominal rigidity
- $1 - \kappa$: lower bound on inflation
Result 1 (disarming the perils)

Let $\Pi^* = 1$, $0 < \delta < \frac{1}{\beta}$, and when prices are rigid enough, $\kappa < 1$, there exists a globally unique steady state, called the targeted-inflation steady state that features $Y = 1$, $\Pi = \Pi^* = 1$, $R = \frac{1}{\beta \delta} > 1$.
Result 2 (expectations-traps)

Let $\Pi^* = 1$, $0 < \delta < \frac{1}{\beta}$, but let prices more flexible $\kappa > 1$. There exist two steady states:

1. The targeted-inflation steady state $Y = 1, \Pi = \Pi^* = 1$, and $R > 1$.

2. An expectations-driven trap steady state with $Y = \frac{1 - \kappa}{\beta \delta - \kappa} < 1$, $\Pi = \frac{\beta \delta (1 - \kappa)}{\beta \delta - \kappa} < 1$ and $R = 1$. The local dynamics in a neighborhood around this steady state are locally indeterminate.
Result 3 (secular stagnation)

Let $\Pi^* = 1$, $\delta > \frac{1}{\beta}$, and $\kappa < 1$. There exists a unique, secular stagnation steady-state, with $Y = \frac{1-\kappa}{\beta \delta - \kappa} < 1$, $\Pi = \frac{\beta \delta (1 - \kappa)}{\beta \delta - \kappa} < 1$ and $R = 1$. The equilibrium dynamics in this steady state's neighborhood are locally determinate.
Take An and Schorfheide (2006):

- Add bonds-in-utility
- Monetary policy always constrained by the zero lower bound
- Structural shocks: government spending \(g \), technology growth \(z \), markups \(\nu \)

Use likelihood-based methods to compare secular stagnation vs BSGU traps (Geweke and Amissano 2011, Del Negro et al. 2016)

Details:

- Match -1.06% annualized inflation under secular stagnation and expectations-trap
- Natural interest rate: secular stagnation = -1.1% vs expectations-trap = 0%
expectations traps or secular stagnation?

- policymaker confronted with two different models: \mathcal{M}_S vs \mathcal{M}_B
 \[p(y_t \mid \lambda, \mathcal{P}) = \lambda p(y_t \mid y_{1:t-1}, \mathcal{M}_b) + (1 - \lambda)p(y_t \mid y_{1:t-1}, \mathcal{M}_s), \quad 0 \leq \lambda \leq 1 \]
- real-time assessment is highly uncertain
inspect the mechanism: theoretical moments

- Why are expectation-traps a better description of the Japanese experience?
- Equilibrium indeterminacy of expectation-trap central to model fit

(a) $\text{corr}(\Delta y_t^o, \pi_t^o)$

(b) $\sigma_{\pi_t^o} / \sigma_{\Delta y_t^o}$
provide first unified treatment of two sources of persistent ZLB: secular stagnation and expectation traps

tractable theoretical framework with analytical results and AS-AD representation

suggest robust policies to tackle contrasting policy implications

quantitative assessment of the best-fitting hypothesis in real time

equilibrium indeterminacy is central for quantitative performance

similar findings in medium-scale DSGE model
simple model: households

$$\max_{\{C_t, b_t\}} \sum_{t=0}^{\infty} \Theta_t [\log C_t - \chi h_t]$$

s.t. $$C_t + b_t = \frac{W_t}{P_t} h_t + \frac{R_{t-1}}{\Pi_t} b_{t-1} + \Phi_t + T_t$$

- endogenous discounting (Uzawa-Epstein): $$\Theta_0 = 1$$ and $$\Theta_{t+1} = \hat{\beta} \left(\tilde{C}_t \right) \Theta_t \forall t \geq 0$$
- $$\hat{\beta}(\tilde{C}) = \delta_t \beta \tilde{C}_t$$, where $$0 < \beta < 1 \rightarrow$$ analytical results
- $$\tilde{C}_t$$ is average consumption that the household takes as given
- $$\delta_t > 0$$ are exogenous shocks to the discount factor

$$1 = \delta_t \beta \tilde{C}_t \left[\frac{C_t}{C_{t+1}} \frac{R_t}{\Pi_{t+1}} \right]$$ \hspace{1cm} (4)

simple model: producers

- Continuum of intermediate goods $Y_t(j), \ j \in [0, 1]$

$$\max_{P_t(j)} \Phi_t(j) = (1 + \tau) P_t(j) Y_t(j) - W_t h_t(j),$$

$$s.t. \ Y_t(j) = h_t(j), \ Y_t(j) = f(P_t(j)/P_t, Y_t)$$

- Labor services $h_t(j)$ bought from competitive labor market at nominal price W_t

- Bhattarai, Eggertsson, Gafarov (2019): fraction α_p of firms can adjust prices, $(1 - \alpha_p)$ indexation: $\frac{P_t^i}{P_t} = \Gamma_t \frac{P_{t-1}}{P_t}$

- Final-good producing firms: $Y_t = \left(\int_0^1 Y_t(j)^{1-v} dj \right)^{\frac{1}{1-v}}, v = 1/2 \rightarrow \text{linear Phillips curve}$

$$\Pi_t = \kappa Y_t + (1 - \kappa \bar{Y}), \ \kappa \equiv \frac{\alpha_p}{1 - \alpha_p} \quad (5)$$
simple model: government policies

fiscal policy

\[B_t + T_t = R_{t-1} B_{t-1} \]

monetary policy

\[R_t = \max \left\{ 1, (1 + r^*_t) \Pi^* \left(\frac{\Pi_t}{\Pi^*} \right)^{\phi_\pi} \right\} \] \hspace{1cm} (6)

- natural rate = \((1 + r^*_t) \equiv \frac{1}{\delta_0 \beta} \)
- inflation target = \(\Pi^* = 1 \)
- \(\phi_\pi > 1 \)

market clearing

\[C_t = Y_t, \quad \text{and} \quad B_t = 0 \]
Simple model: competitive equilibrium

- three endogenous processes \(\{Y_t, R_t, \Pi_t\} \) that satisfy:

\[
1 = \delta_t \beta Y_t \left[\frac{Y_t}{Y_{t+1}} \frac{R_t}{\Pi_{t+1}} \right]
\]

\[
\Pi_t = \kappa Y_t + (1 - \kappa)
\]

\[
R_t = \max \left\{ 1, (1 + r^*_t) \Pi_t^{\phi\pi} \right\}
\]

- for a given exogenous \(\{\delta_t\}_{t=0}^{\infty} \), \(1 + r^*_t = \frac{1}{\delta_t \beta} \) and initial price level \(P_{-1} \)

- focus on steady state representation \(\rightarrow AD - AS \) diagrams
why does it matter?
Example: exogenous aggregate demand shift (e.g. government policies)

- nature of stagnation matters, hence need to assess likelihood of B vs S
- in the paper: fiscal policy, neofisherian exit, structural reforms
policy implications

- challenges in disentangling the source of liquidity trap, especially in real time
- need for developing policies that are robust to the source of recession
- two theoretical proposals in the paper
 - price indexation schemes in the presence of price adjustment frictions
 - minimum wage policies in the presence of downward nominal wage rigidity
- we do not analyze other potential trade-offs from these policies → future research
robust policy

Result 4 (Price Indexation)

Consider an indexation rule where non-optimizing firms index their prices to last period’s price level with indexation coefficient: $\Gamma_t = \frac{P_t}{Y_t^{t-1}(P_t - \lambda P_{t-1}) + P_{t-1}}$, then the price Phillips curve is given by: $\Pi_t = \kappa Y_t + (\lambda - \kappa \bar{Y})$

1. There does not exist expectations-driven liquidity trap $\forall \lambda > \kappa$.
2. Output and inflation under secular stagnation are increasing in λ.

Intuition:

- λ can be interpreted like an increase in markups
 - sets a lower bound on deflation to eliminate expectations-trap steady state
 - increasing inflation stimulates output under secular stagnation

- other policies that restrict deflation have similar effects (e.g. minimum income)

- structural reforms that increase price flexibility make the economy vulnerable to expectation-driven traps
calibrated parameters

<table>
<thead>
<tr>
<th></th>
<th>β (discount factor)</th>
<th>δ (Euler eq. wedge)</th>
<th>κ (Slope of NKPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>secular stagnation (S)</td>
<td>0.942</td>
<td>0.1132</td>
<td>0.0036</td>
</tr>
<tr>
<td>expectations trap (B)</td>
<td>0.942</td>
<td>0.1058</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

Galí & Gertler (1999)

<table>
<thead>
<tr>
<th></th>
<th>natural rate</th>
<th>inflation</th>
<th>output gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>secular stagnation (S)</td>
<td>-1.1</td>
<td>-1.06</td>
<td>-7.6</td>
</tr>
<tr>
<td>expectations trap (B)</td>
<td>1.0</td>
<td>-1.06</td>
<td>-4.5</td>
</tr>
</tbody>
</table>

- natural rate:
- expectations trap: match real rate in data during sample period
- implied output gap for Japan: Haussman and Wieland (2014) \sim 5%
why sunspots matter?

- Consider MSV solution criterion (McCallum, 2003)
- Prediction-pool cannot distinguish between hypothesis of stagnation under MSV
inspecting the mechanism

- equilibrium indeterminacy breaks positive relation between π and y at the ZLB

![Graphs showing response to shocks](image-url)
role of indeterminacy

- In an expectations trap $\zeta_t = \hat{\pi}_t - \hat{\pi}_t - 1$ not unique
- Use likelihood to pin down correlation of ζ with fundamental innovations
euro area: correlation $\pi, \Delta y$

- 10-year rolling correlation of GDP deflator inflation and GDP growth

![Graph showing the 10-year rolling correlation of GDP deflator inflation and GDP growth for the euro area. The graph illustrates a decrease in correlation from 2005 to 2020.](image-url)
which correlation matters?

$$\text{corr}(\zeta, g) = 0$$
which correlation matters?

$$corr(\zeta, z) = 0$$
which correlation matters?

\[\text{corr}(\zeta, v) = 0 \]

\[\rho(\zeta, v) > 0, \text{ induce } \rho(\pi, y) < 0, \text{ consistent with Wieland (2019)} \]