(In)efficient repo markets

Tobias Dieler¹ Loriano Mancini² Norman Schürhoff³

¹University of Bristol

²Swiss Finance Institute, USI Lugano

³Swiss Finance Institute, University of Lausanne, CEPR

2021 Financial Stability Conference

18 November 2021

Repo markets: Efficiency vs. resilience

Fact 1 Repo is important short-term funding market (daily outstanding repo >\$2T)
Fact 2 Repo runs are recurrent phenomenon (Duffie (2020), He et al. (2021))
Fact 3 Repo market structures differ in efficiency & resilience (Mancini et al. 2016)
Fact 4 Repo markets reliant on liquid collateral in crisis times (Infante & Saravay 2020)

Our paper

Research questions

- What are the trade offs between different repo market structures?
- What is the optimal repo market design?
- What is the role of collateral across different markets?
- Existing repo market structures trade off
 - Efficient resource allocation
 - Resilience to runs
- Both trading & clearing mechanisms impact tradeoff
- ▶ Non-anonymous trading + central clearing w/ two-tiered guarantee fund
 - ▶ Liquidity fund (or collateral upgrade) \rightarrow Illiquidity mutualization
 - ▶ Default fund → Default loss mutualization

Repo trading & clearing mechanisms affect welfare

• Existing repo markets combine different trading & clearing mechanisms

Clearing Trading	direct	central
non-anonymous	OTC repo market (bilateral & tri-party U.S. customer repo)	Clearinghouse (reform proposals, e.g., Duffie (2020))
anonymous	COB without novation (MTFs with ex-post name give-up)	CCP = COB + nova- tion + default fund (GCF Repo & FICC DVP via e.g. Bro- kerTec, EUREX, LCH.Clearnet)

- COB = Anonymous non-discriminatory repo pricing
- Novation = CCP becomes legal counterparty
- Default fund = Insurance against borrower default

#1 Repo trading mechanism affects efficiency & resilience

Collateral buffer: Anonymity provides insurance to *L*-type since collateral buffers shock Inefficient liquidation: Anonymity forces inefficient liquidation of *H*-type assets Narrow run: Run on *L*-type borrowers Systemic run: Run on *L*- & *H*-type borrowers (market failure)

#2 Central clearing improves resilience, not efficiency

▶ Novation excludes low-quality borrowers → Systemic run can be averted

▶ **Default fund** provides insurance → Repo market absorbs larger funding shocks

#3 Improving repo market design

- 1. Central clearing of bilateral & tri-party trades (Duffie, 2020)
 - Improves run resilience, but not resource allocation
- 2. Hybrid trading in centrally-cleared markets
 - Switch from anonymous to non-anonymous trading when funding becomes tight improves resource allocation
- 3. Two-tiered guarantee fund is privately optimal market solution

Liquidity fund	Default fund
Collateral transfers support illiq- uid yet solvent borrowers	Profit transfers repay lenders of defaulting borrower
Collateral liquidated before LTT \rightarrow Improves resource allocation	ightarrow Increases run resilience

Model

- 3-period model of incentive-based runs at rollover stage
- 2 borrowers have ex-ante identical, ex-post heterogeneous long-term technologies (LTT) for which they need financing
- Maturity mismatch: LTT is financed with short-term loans
- Demand-side asymmetric info & supply-side funding scarcity
 - ▶ Borrowers learn over time their technology's quality $R^{\omega} \ge 1$, $\omega \in \{L, H\}$, where $Pr(R^H) = \beta$
 - ▶ 2*m* lenders are subject to funding shock $f \ge 0$ with prob α
- Risk-free asset can be used as collateral $\kappa_t k_0$
- Pecking order: Liquidation of collateral is cheaper than LTT
 Illiquid LTT has firesale value λ ∈ (0,1) < collateral quality κ₁

Timeline

Borrowers repay loans with new loan (c_2, ℓ_1) , collateral $\kappa_1 w_1$ and LTT λz_1 .

The rollover decision

Repayment condition:

Borrower:

$$R^{\omega}(i_0-z_1)-c_2\ell_1+\kappa_2(k_0-w_1)\geq 0$$

Second-round lenders:

 $c_2 \geq 1$

 $\mathsf{Ex}\text{-}\mathsf{post}\ \mathsf{net}\ \mathsf{welfare} = \mathsf{borrowers'}\ \mathsf{profit} + \mathsf{lenders'}\ \mathsf{profit}$

First best solution

- Pecking order due to illiquidity discounts
- All collateral liquidated at κ_1
- ▶ Welfare decreases in funding shock *f* depending on liquidation of collateral vs LTT

Constrained FB: Non-anonymous OTC

- ▶ Inefficient liquidation of *L*-type LTT beyond collateral $\frac{\kappa_1}{2}$
- Narrow run on *L*-type for $f \ge f^{OTC} = \frac{R^L 1}{R^L \lambda} \frac{\lambda}{2} + \frac{R^L}{R^L \lambda} \frac{\bar{k}}{2}$
- Decentralized non-anonymous trading puts burden of funding shock on low-quality borrowers

Pooling equilibrium: Anonymous COB

> One-fits-all loan in anonymous market has bright & dark side

- Anonymity provides insurance for f ≤ κ₁, but reduce total revenue due to inefficient liquidation of H's LTT for f > S
- Leads to systemic run for large funding shocks $f \ge f^{CCP}$

•
$$S = (\frac{R^{H}}{\lambda} - \frac{\kappa_{2}}{\kappa_{1}}) \frac{\kappa_{1}\lambda}{R^{H} - R^{L}}$$
 increases in illiquidity $1/\lambda$ & quality κ_{1}

$\mathsf{CCP} = \mathsf{COB} + \mathsf{novation} + \mathsf{default} \mathsf{ fund}$

- Novation prevents systemic runs
- Default fund increases resilience to narrow runs
- OTC market dominates CCP over range $f \in (S, f^{OTC})$

Two-tiered guarantee fund

- Participants transfer both safe collateral & risky assets into escrow accounts
- Collateral transfer resembles collateral upgrade by ECB & Fed (Carlson & Macchiavelli, 2018)

Conclusion

Repo markets trade off efficient allocation of liquidity with resilience to runs

- Trading & clearing mechanisms impact allocation-resilience tradeoff
 - Common mechanisms are inefficient & welfare rankings depend on funding tightness
 - Clearing OTC markets centrally & hybrid trading in CCP markets improve welfare
 - Welfare is maximized with a two-tiered guarantee fund
- Liquid collateral improves allocation & resilience to runs
- ▶ Model helps to reconcile the convenience yield puzzle (He et al. 2021)

Novation

- Novation excludes insolvent borrowers
 - Prevents systemic runs
 - No effect on resource allocation nor on run threshold

Repo market reform #1: Hybrid trading in a CCP

- Alternative reform is to modernize trading mechanism
- \blacktriangleright Switch from anonymous to non-anonymous trading at ${\cal S}$
 - Similar to upstairs market for equities
- Improves resource allocation for f > S

Repo market reform #2: Centrally cleared OTC

- Central clearing of repos improves run resilience
- But, central clearing leaves resource allocation unaffected!

Collateral quality and run resiliency

CCP market's resilience to run is more sensitive to collateral quality than OTC market's resilience when LTT is illiquid

- Recall, f^{OTC} < f^{CCP}: Might expect that marginal increase in collateral value would benefit borrowers in OTC market most
- Not true when LTT is illiquid! In CCP markets, high-quality borrower is forced to partially liquidate LTT, which is the most valuable asset in the economy, and hence its liquidation is particularly costly

Collateral convenience yield

Why is an asset used as collateral instead of being sold on the spot market (Parlatore, 2019; Madison, 2020)?

In OTC markets, when a run becomes likely, ex-ante convenience yield increases (decreases) in the funding shock if expected borrower quality is low (high)

- GFC: Expected borrower quality was low due to large positions in ABS on banks' balance sheets
- Covid-19: Banks were better capitalized & had higher creditworthiness than during GFC
- Support for empirical evidence showing that convenience yield increased during GFC & decreased in Covid-19 (He et al. 21)

Collateral scarcity and negative NPV

"Market participants have voiced concerns that in anonymous CCP markets low-quality borrowers can hide amongst high-quality borrowers." (Financial Times, July 7, 2013 & January 8, 2018)

Collateral has a skin in the game effect which prevents risk hoarding in anonymous COB markets

Literature

- Optimal opacity: Dang et al. (2017), and Goldstein and Leitner (2018) no runs, Bouvard et al. (2015) – different LTT
- Maturity mismatch & runs: Diamond and Dybvig (1983), Postlewaite and Vives (1987), Allen and Gale (1998) Goldstein and Pauzner (2005) no asymmetric information
- Interbank market: Heider et al. (2015), Martin et al. (2014a, b) and Brunnermeier and Pedersen (2009) - no CCP
- CCP: Kuong and Maurin (2021) moral hazard & monitoring

Contribution:

- (i) Ex-post heterogeneous borrowers in maturity mismatch model
- (ii) Naturally, question arises of allocation vs. resilience tradeoff
- (iii) Derive optimal repo market structure