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Abstract
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inflation, incorporating key economic relations such as the Phillips curve and
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Inflation is characterized by an underlying trend that has been essen-

tially constant since the mid-1990s; [. . . ]. Theory and evidence suggest

that this trend is strongly influenced by inflation expectations that, in

turn, depend on monetary policy. In particular, the remarkable stabil-

ity of various measures of expected inflation in recent years presumably

represents the fruits of the Federal Reserve’s sustained effort since the

early 1980s to bring down and stabilize inflation at a low level. The an-

choring of inflation expectations [. . . ] does not, however, prevent actual

inflation from fluctuating from year to year in response to the tempor-

ary influence of movements in energy prices and other disturbances. In

addition, inflation will tend to run above or below its underlying trend

to the extent that resource utilization – which may serve as an indicator

of firms’ marginal costs – is persistently high or low.

Yellen (2016), ‘Macroeconomic Research After the Crisis’

Speech for the 60th Boston Fed Conference

The quote by Janet Yellen reflects a view, widely shared by policy makers and

central bankers in particular, which maintains that three components matter for

inflation dynamics: trend-expectations, oil prices, and the degree of resource util-

isation in the economy. Similarly, most macroeconomic modelling is based on these

three core ideas: some measure of slack affects short term fluctuations of inflation

via a Phillips curve; monetary policy, via expectations, shapes its long run trend;

and oil price and other idiosyncratic shocks explain the volatile component of head-

line inflation. While models that incorporate these ideas use a variety of different

auxiliary assumptions, for example on the nature of expectations, the functional

form of key equations, and the channels of propagation of the shocks, these three

components remain the building blocks of a shared narrative. In this paper, we

call this broadly and loosely defined understanding of inflation dynamics the ‘Fed’s

view’.

Recent empirical evidence has challenged this view. Indeed, the literature presents

a wide range of contrasting findings, including on the existence, stability, and steep-
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ness of the slope of the Phillips curve, and regarding the degree of anchoring of

inflation expectations.1 First, many studies have found the Phillips curve to be

unstable, hard to identify, and weak or disappearing in recent samples (see results

and discussions in IMF, 2013, Ball and Mazumder, 2011, Blanchard et al., 2015

and McLeay and Tenreyro, 2018). Second, Phillips curve based forecasting models

have been shown to perform poorly with respect to naive benchmarks, pointing to

the irrelevance of slack measures for explaining inflation dynamics (see, Atkeson

and Ohanian, 2001, Stock and Watson, 2007, 2009, and also Dotsey et al., 2011,

Cecchetti et al., 2017, and Forbes et al., 2018 for recent evidence and relevant dis-

cussion). Third, a small but increasingly important literature has challenged the

idea that expectations are fully anchored and forward looking. For example, papers

have connected the ‘missing disinflation puzzle’ of the post-2008 crisis period to

the partial dis-anchoring of consumers’ inflation expectations that, in turn, can be

accounted for by the evolution of oil prices (see Coibion and Gorodnichenko, 2015,

and Coibion et al., 2017b).

This paper revisits some of this evidence by assessing the Fed’s view of infla-

tion dynamics through the lens of a stylised statistical model that is informed by

economic theory and incorporates economic expectations while allowing for devi-

ations from perfect information and full rationality. Our modelling strategy can be

defined as ‘semi-structural’ since it incorporates minimal identifying assumptions

from a general class of economic models, but lets the data speak on key aspects,

such as expectation formation, the nature of the Phillips curve, and the role of oil

prices. In this sense it occupies the middle ground between a fully specified Dynamic

Stochastic General Equilibrium (DSGE) model and a Vector Auto Regressive (VAR)

model. Our specification nests several potentially different forward and backward

looking Phillips curve models, including the standard New-Keynesian Phillips curve
1A survey of the extensive empirical literature on the PC is beyond the scope of this paper.

For a recent survey of the New Keynesian Phillips curve focusing on univariate limited-information
methods, see Mavroeidis et al. (2014). For a review of results using full-information methods to
estimate dynamic stochastic general equilibrium (DSGE) models, see An and Schorfheide (2007).
Nakamura and Steinsson (2013) review the use of microeconomic data to study price dynamics.
Coibion et al. (2017b) discuss the incorporation of survey data on inflation expectations in models of
inflation dynamics. Other surveys, providing complementary approaches, include Henry and Pagan
(2004), Ólafsson (2006), Rudd and Whelan (2007), Nason and Smith (2008), Gordon (2011), and
Tsoukis et al. (2011).
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(NKPC), in which inflation is a purely forward-looking process, driven by expecta-

tions of future real economic activity. Moreover, the model incorporates profession-

als’ and consumers’ forecast survey data, as measures of agents’ expectations, and

allows them to depart from the full-information rational expectations benchmark

without imposing any specific form of information friction. We do not require either

of the two surveys to be an efficient and unbiased predictor of future inflation and

allow for temporary and permanent deviations from a rational forecast, potentially

capturing measurement and observational errors, as well as a time-dependent bias

in inflation expectations. Finally, the model also captures the different channels

through which energy prices can affect headline inflation. A first channel is through

production marginal costs and the Phillips curve. We allow for this channel by ex-

tracting a business cycle component in oil prices.2 However, energy prices can also

impact inflation without affecting marginal costs and the real side of the economy.

Indeed, in the model, oil disturbances can affect headline prices directly via energy

services, which are part of the consumption basket, but also potentially via expect-

ation formation, in line with the findings of Coibion and Gorodnichenko (2015).

These two channels are captured by studying the differential impact of the energy

cycles on headline and core inflation.

The empirical specification includes three price variables: CPI inflation, core

CPI inflation, and oil prices; three real variables: GDP, employment, and the un-

employment rate and two expectation variables: the median forecasts for 1-year-

ahead CPI inflation from the University of Michigan consumers survey (UoM) and

the Philadelphia Fed Survey of Professional Forecaster (SPF). The minimal restric-

tions we impose on the data allow us to identify three orthogonal components of

inflation: (i) a unit root trend, common to inflation and inflation expectations –

as represented in professionals’ and consumers’ surveys – which we interpret as a
2A large and important literature has analysed the connection between demand and supply oil

shocks and the business cycles (see, for example, Baumeister and Kilian, 2016, Hamilton, 2013,
Kilian and Vigfusson, 2017). While this paper is not directly concerned with the identification of
the channels of propagation of oil shocks, we incorporate some of the broad conclusions of this
literature in our model by allowing for both a correlation of oil prices, inflation and slack in the
economy, but also potentially for some other mechanisms through which oil shock can affect prices
in the economy.
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measure of monetary policy driven long term inflation expectations;3 (ii) a station-

ary stochastic cycle, which, in the tradition of Burns and Mitchell (1946), captures

multivariate and lagged commonalities in real, nominal (including energy prices),

and labour market variables at business cycle frequencies and connects the output

gap to prices and their expectations via a Phillips curve relationship, and to unem-

ployment via Okun’s law; (iii) a stationary stochastic cycle capturing the common

dynamics between oil prices, inflation expectations, and CPI inflation but not af-

fecting real variables. The model also identifies other key economic objects such as

output potential, trend employment, and equilibrium unemployment, in the form of

unit root trends.

Figure 1 portrays a synthetic view of our findings. In the upper chart we show

the decomposition of the cycle of CPI inflation into component (ii) (the blue area),

component (iii) (the red area) and an idiosyncratic residual (yellow area). In the

bottom chart we show CPI inflation and its estimated trend.

The chart suggests (and the econometric analysis developed in the paper con-

firms it) that the Phillips curve – understood as a relationship connecting nominal

variables with real variables and inflation expectations – is alive and well and has

been fairly stable since the early 1980s.4 Importantly, our cycle decomposition

shows that the Phillips curve is not always the dominant component. Large oil

price fluctuations can move prices away from the real-nominal relationship both by

directly impacting energy services prices and by shifting consumers’ expectations

away from the rational forecast – ‘disanchoring’ them – and hence inducing expect-

ation driven fluctuations in prices. This result confirms the intuition of Coibion

and Gorodnichenko (2015) in a methodology which, in contrast to their approach,

allows the Phillips curve to be recovered as orthogonal to oil-driven movements in

the expectations and prices that are not transmitted to real variables. We provide
3The choice of modelling inflation as non-stationary is supported by findings in the forecasting

literature which suggests that models perform better when they allow for trend inflation (Faust
and Wright, 2013).

4While we observe that a fixed parameter model is able to capture a stable Phillips curve
from the 1980s, it is possible that time-variation in the parameters or stochastic volatility may be
important over a longer sample (see Stock and Watson, 2007; Mertens and Nason, 2017). We do
not explore this possibility in this paper. Indeed, estimation uncertainty is likely to obfuscate all
gains coming from a more sophisticated model.
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Figure 1: Top: Decomposition of the cycle of CPI inflation into common (in blue and red) and
independent (in yellow) components, as estimated by the model. Bottom: Trend of CPI inflation
(in blue), with relative coverage intervals at 68% coverage (dark shade) and 90% coverage (light
shade), as estimated by the model.

confirmation of the importance of using expectational data to identify both trend in-

flation and the Phillips curve, while dealing with disturbances to expectations that,

albeit reflected in inflation, are unrelated to real variables and fundamentals. From

a policy perspective, the stable inflation trend is an indication of the Fed’s success

in anchoring expectations. However, our results also point to the challenges that

policymakers have to overcome in guiding expectations and stabilising the economy

in the presence of large energy price disturbances.

From the statistical point of view, the model has a number of attractive fea-

tures: it does not rely on arbitrary preliminary detrending of the data which may

create distortions, it contains a rich lag structure allowing us to capture dynamic

heterogeneity amongst variables, it allows us to perform conjunctural analysis and

historical decompositions of variables in cyclical and trend components, and it is suf-

ficiently efficient and parsimonious to be used as a forecasting tool. The unit root
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trend common to inflation and inflation forecasts can be related to agents’ long-term

expectations, under the assumption that the ‘law of iterated expectations’ holds (see

Beveridge and Nelson, 1981 and Mertens, 2016). In fact, the impact of all transitory

components has to be zero in the long run.5

Our econometric representation is general in the sense described but has a struc-

ture that is motivated by the objective of parsimony. Indeed, our model can be

understood as a restricted VAR model where, by adopting minimal economic re-

strictions to identify the potentially different dynamic components of inflation, we

induce ‘informed’ parsimony thereby helping with signal extraction and forecasting.

The proposed decomposition leads to a rather complex state space form. In order

to deal with this complexity, we estimate the model using Bayesian methods. A

Bayesian approach in the context of a similar but simpler model has been proposed

by Planas et al. (2008) who implement a Bayesian version of the work of Kuttner

(1994) and, more recently, by Lenza and Jarociński (2016). The latter paper is the

closest to our work but focuses on estimating measures of the output gap in the

Euro Area rather than on providing a decomposition that can be used for studying

the drivers of inflation dynamics. Our paper also shares a similar approach and

methodology with Del Negro et al. (2017), who employ a flexible VAR model that

incorporates long-term survey expectations, to estimate common trends and study

the natural rate of interest in the US.

Our work builds on the tradition of structural time series models (see Harvey,

1985), where observed time series are modelled as the sum of unobserved compon-

ents: common and idiosyncratic trends and cycles. In doing this, and by focussing

on inflation dynamics, this paper relates to the literature on the output gap, the

Phillips curve, and trend inflation estimation with unobserved components mod-

els, started by Kuttner (1994). Similarly to Baştürk et al. (2014) and Lenza and

Jarociński (2016), we do not pre-filter data to stationarity, model their low fre-

quency behaviour by allowing for trends. As in Gordon (1982) and Basistha and

Startz (2008), we use multiple real activity indicators to increase the reliability of
5A discussion on the conditions under which survey data can be employed to study the PC is

in Adam and Padula (2011).
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the output gap estimates. Also, our work relates to a number of papers which have

studied trend inflation in unobserved component models augmented with data on

medium-/long-term inflation expectations, as for example, Clark and Doh (2014),

and Mertens (2016).

There are several by-products of our analysis: we obtain an estimate of the

output gap which is coherent with our modelling of real and nominal variables and

exploits multivariate information, including both output and labor market variables;

we also assess the stability of Okun’s law and the quality of core inflation as an

indicator of underlying inflation. Indeed, our approach generates an indicator of

cyclical inflation which is clean not only from the direct effect of oil prices, as is the

case for core inflation, but also from their indirect effects.

2 A Stylised Model for Inflation Dynamics

At the core of our empirical approach lies a stylised full information rational ex-

pectations model for inflation and output. In this section we discuss the intuition

and basic building blocks. We assume that inflation and output can be decomposed

into three components: (i) independent trends determining output potential µyt and

trend inflation µπt ; (ii) a common stationary cycle relating nominal and real variables

(the output cycle is interpreted as the output gap) ψ̂t; and (iii) some independent

(white noise) disturbances to output and inflation, ψyt and ψπt , that can be thought

of as classic measurement error or idiosyncratic shocks. We have:

yt = µyt + ψ̂t + ψyt , (1)

πt = µπt + δπψ̂t + ψπt , (2)

where the independent trends are assumed to be unit-root processes (with a drift in

output)

µyt = µ0 + µyt−1 + uyt , (3)

µπt = µπt−1 + uπt . (4)
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The economic interpretation of the different trend and cycle components is stand-

ard (see, for example the discussion in Yellen, 2015). The output trend – i.e. the

output potential, capturing the long-term growth of the economy – is usually thought

of as driven by technological innovation. Inflation fluctuates around a longer-term

trend that, at least in recent times, has been essentially stable. Theory relates this

trend inflation to inflation expectations that, in turn, are shaped by the conduct

of monetary policy – for example, by policymakers’ targets. Shocks of a different

nature can impact marginal production costs and modify the intensity of resource

utilisation in the economy, thus, temporarily pushing output away from its balanced

growth path. The shortfall of actual GDP from potential output is the output gap

ψ̂t. The slack in the economy is reflected in the short-run cyclical fluctuations of

inflation around its trend, in the presence of price rigidity. This relationship is gen-

erally described by an expectations-augmented Phillips curve in theoretical models.

Finally, a nontrivial fraction of the quarter-to-quarter variability of inflation and

output is attributable to independent and idiosyncratic shocks.

In line with the econometric literature on the output gap, we assume that ψ̂t is a

stationary process with stochastic cyclical behaviour. The simplest process allowing

for such a stochastic cycle is an AR(2) process with complex roots of the form

ψ̂t = α1ψ̂t−1 + α2ψ̂t−2 + vt . (5)

Indeed, the AR(2) model can be written in a different and slightly more general

form, displaying its pseudo-cyclical behaviour more clearly , i.e.

ψ̂t = ρ cos(λ)ψ̂t−1 + ρ sin(λ)ψ̂∗t−1 + vt , (6)

ψ̂∗t = −ρ sin(λ)ψ̂t−1 + ρ cos(λ)ψ̂∗t−1 + v∗t ,

where the parameters 0 ≤ λ ≤ π and 0 ≤ ρ ≤ 1 can be interpreted, respectively,

as the frequency of the cycle and the damping factor on the amplitude while ψ̂∗t
is a modelling auxiliary cycle and vt and v̄t are uncorrelated white noise disturb-
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ances (see Harvey, 1990).6 The disturbances make the cycle stochastic rather than

deterministic and, if ρ < 1, the process is stationary.

It is important to observe that, by assuming an output gap that is a stationary

solution to an AR(2) process, the model in Eq. (1-2) admits a hybrid expectations-

augmented New Keynesian Phillips Curve connecting the cyclical components of

output, inflation, and inflation expectations, of the form

π̂t =
2∑
i=1

δiπ̂t−i + βEt [π̂t+1] + κŷt + εt , (7)

where hats indicate deviations from trends.7 In this model, rational expectations

agents correctly form model-consistent expectations about inflation, that is

Et [πt+1] = Et
[
µπt+1 + δπψ̂t+1 + ψπt+1

]
= µπt + δπ(α1ψ̂t + α2ψ̂t−1)

= µπt + δexp,1ψ̂t + δexp,2ψ̂t−1 .

The equations for output, inflation, and inflation expectations can be written in a

compact reduced form representation in terms of a common cycle and a common

trend 
yt

πt

Et [π̂t+1]

 =


1 0

δπ 1

δexp,1 + δexp,2L 1


ψ̂t

µπt

 +


µyt

0

0

 +


ψyt

ψπt

0

 . (8)

In principle this simple set of equations can also accommodate different specifications

for the Phillips Curve, under suitable parameter restrictions. For example, an AR(1)
6It is straightforward to show that the model can be rewritten as

(1− 2ρ cos(λ)L+ ρ2L2)ψ̂t = (1− ρ cos(λ)L)vt + (ρ sin(λ)L)v∗t .

Hence, under the restriction σ2
v = 0, the solution of the model is an AR(2), otherwise an

ARMA(2,1). The intuition for the use of the auxiliary cycle is closely related to the standard
multivariate AR(1) representation of univariate AR(p) processes.

7Empirical studies often feature hybrid Phillips curves to account for inflation persistence (a
recent survey is in Tsoukis et al., 2011). Several different mechanisms have been proposed in the
literature to introduce hybrid Phillips curves such as indexation assumptions (e.g. Gali and Gertler,
1999), state-contingent pricing (e.g. Dotsey et al., 1999), or deviations from rational expectations
assumption (e.g. Erceg and Levin, 2003; Milani, 2007).
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ψ̂t would be the solution to a purely forward looking New-Keynesian Phillips Curve.

It also nests the backwards looking ‘Old-Keynesian’ Phillips curve connecting output

gap and prices – as in the ‘triangle model of inflation’ (see Gordon, 1982, 1990).

Also, in line with the interpretation proposed, it is worth noting that trend

inflation corresponds to the long-run forecast for inflation, which implies

lim
h→∞

Et[πt+h] = µπt , (9)

in the spirit of Beveridge and Nelson (1981), and that trend output informs expect-

ations of growth in the long run:

lim
h→∞

Et[yt+h] = lim
h→∞
{µ0h+ µyt } . (10)

While such a stylised rational expectations model can provide the gist of the

intuition for our econometric model, it is likely to be too simple as an empirical

representation of business cycle dynamics.8 First, it does not allow for dynamic

heterogeneity, and hence nominal and real variables fluctuate only as contemporan-

eously connected by the slack in the economy, in contrast with the evidence that

prices and labour market variables respond with lags to the slack in production.

In fact, output is linked to unemployment via Okun’s law and to inflation via the

Phillips curve relationship which may involve lagging dynamics. These fundamental

relationships connect potentially different measures of the slack in the economy, such

as the output gap and the cyclical component of unemployment – i.e. the difference

between the unemployment rate and its normal long-run level (equilibrium unem-

ployment)9 – and inform fluctuations at business cycle frequency in other real and

nominal variables.

Second, in modelling price dynamics, forecasters and policymakers often distin-

guish between changes in food and energy prices – which enter into headline inflation
8An estimated version of this model provides poor fit to the data. Results are available from

the authors on request.
9For example, the measure of slack that is adopted in policy analysis by the Fed is obtained

as the difference between the unemployment rate and the Congressional Budget Office’s (CBO)
historical series for the long-run natural rate (as in Yellen, 2015).
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– and movements in the prices of other goods and services – that is, core inflation.

This is because food and energy prices tend to be extremely volatile and influenced

by factors that are disconnected from the slack in the economy and that are beyond

the control of monetary policy. Examples are international political events – as is

the case for oil price – as well as weather or diseases – as for food and beverages.10 In

fact, the price index for total consumer price (headline) inflation πt is decomposed

as

πt = πct + υ1π
en
t + υ2π

food
t , (11)

where πct is core CPI inflation, and πent and πfoodt are, respectively, the growth rate

for prices of consumer energy goods and services and prices of food, both expressed

relative to core CPI prices; and υ1, and υ2 are the weights of energy and food in total

consumption. This decomposition is important to study how slack in real output is

transmitted to prices, by separating the direct impact of energy price shocks onto

energy products, from their role as cost push shocks in production.

Finally, it has been argued in the literature that, once inflation expectations are

admitted to a forward- or backward-looking Phillips curve equation, it is also possible

that economic disturbances impact prices without any intermediating transmission

through the output gap or other measures of slack in the economy (see, for example,

Sims, 2008). In this spirit, Coibion and Gorodnichenko (2015) argue that the absence

of disinflation during the Great Recession can be explained by the rise of consumers’

inflation expectations between 2009 and 2011 due to the increase in oil prices in

this period. Also, while macro-variables are likely to be affected by non-classical

measurement error, agents’ expectations, as captured by consumers’ and professional

forecasters’ surveys, are likely to be only partially in line with national accounting

definitions of aggregate prices and can introduce measurement errors and biases of

a different nature.11

10While the Federal Reserve’s inflation objective is defined in terms of the overall change in
consumer prices, core inflation is considered to provide a better indicator than total inflation for
the developments in prices, in the medium term.

11For example, especially in consumer surveys the forecast horizon may be loosely defined while
the relevant price index may be left unspecified. Also, projections are often reported at different
frequencies and can have different forecasting points.
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In the next section, we present an empirical model that expands on the core

model to accommodate these possibly important aspects of business cycle and in-

flation dynamics.

3 An Empirical Trend-Cycle Model

Our benchmark empirical model expands on the core rational expectations model

presented in the previous section to incorporate a rich information set including

output, employment, and the unemployment rate – as measures of real activity

and labor market developments – CPI inflation, core CPI inflation and consumers’

and professionals’ forecasts for one year ahead inflation – as proxies for economic

agents’ inflation expectations –, and oil prices to proxy for energy prices. To capture

the complex dynamics relationships among the variables, we generalise the stylised

model presented in the previous section by incorporating dynamic heterogeneity in

the relationship linking real variables, labour market outcomes, and prices and by

allowing for deviations from perfect rationality.

Importantly, our model provides an empirical specification of a number of key

macroeconomic concepts. A unit root trend with drift provides a measure of output

potential, while the trend in employment/unemployment captures the evolution of

equilibrium unemployment. The cyclical component of unemployment connects to

fluctuations in output at business cycle frequency via an Okun’s law that involves the

output gap and its lagged value. A unit root trend – common to headline and core

CPI inflation, and inflation expectations – captures the inflation trend shaping long

term expectations. The slack in the economy is reflected in the short-run cyclical

fluctuations of inflation (and expectations) via a Phillips curve relationship involving

the output gap and its lagged value. Also, oil prices are allowed to co-move along

the business cycle with to the slack in the economy and possibly its lagged value,

due to demand effects or mark-up shocks. The fact that the cyclical component

of output informs economy-wide lead-lag fluctuations in both labour market and

nominal variables supports the interpretation of the output gap as a measure of the

business cycle.

13



Table 1: Data and transformations

Variable Symbol Mnemonic Transformation

Real GDP yt y Levels
Employment et e Levels
Unemployment rate ut u Levels
Oil price oilt oil Levels
CPI inflation πt π YoY
Core CPI inflation πct πc YoY
UoM: Expected inflation F uomt πt+4 uom Levels
SPF: Expected CPI F spft πt+4 spf Levels

Note: The table lists the macroeconomic variables used in the empirical model. ‘UoM: Expected
inflation’ is the University of Michigan, 12-months ahead expected inflation rate. ‘SPF: Expected
CPI’ is the Survey of Professional Forecasters, 4-quarters ahead expected CPI inflation rate. The
oil price is the West Texas Intermediate Spot oil price.

We also design the model to be able to account for several potential deviations

from the rational expectations benchmark. In particular, we allow for (i) oil price

disturbances to affect prices either directly via energy prices in headline CPI, or via

economic agents’ forecasts by inducing a transitory disanchoring of expectations,

with a stationary cycle connecting oil prices, expectations, and inflation but not

the measure of slack in the economy; (ii) a time varying bias i.e. a permanent

disanchoring of expectations in the form of unit root processes; (iii) non-classic

measurement error in the variables and other sources of coloured noise.

We summarise these modelling choices in the following assumptions.

Assumption 1 CPI headline inflation, core CPI inflation. and agents’ inflation ex-

pectations (consumers’ and professional forecasters’) share a common random

walk trend (viz. trend inflation).

Assumption 2 Real output, employment, and unemployment have independent

trends modelled with unit roots, with a drift for output and employment

(i.e. potential output and equilibrium employment/unemployment

respectively).

Assumption 3 Business cycle fluctuations in output are described by a station-

ary process with stochastic cycle in the form of an ARMA(2,1) process with

complex roots (i.e. output gap).
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Assumption 4 Inflation, inflation expectations, and output are connected by a

Phillips curve relationship defined as a moving average of the output gap

and its first lag.

Assumption 5 Labour market variables are linked to output via the Okun’s Law

defined as a moving average of the output gap and its firs lag.

Assumption 6 Oil prices commove with the business cycle via a a moving average

of the output gap and its firs lag (business cycle component of oil prices).

Assumption 7 Inflation expectations and inflation are connected, via a moving

average of order one, to an ARMA(2,1) cycle in oil prices (Energy cycle).

Assumption 8 All variables can have an idiosyncratic ARMA(2,1) cycle compon-

ent, possibly capturing non-classic measurement error, differences in

definitions and other sources of noise.

Assumption 9 Agents’ (consumers and professional forecasters) expectations have

independent idiosyncratic unit roots without drift, capturing time varying

bias in the forecast.

Assumption 10 All components are mutually orthogonal.

For the purpose of this analysis the University of Michigan (UoM) consumer sur-

vey and the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasts

(SPF) one year ahead inflation forecast were chosen as proxies for consumers’ and

professionals’ expectations. This was done because they both have relatively long

histories and are available at quarterly frequency. Importantly, both of them target

CPI inflation, either explicitly as is the case for the SPF or, implicitly, by survey-

ing consumers, as is the case for UoM. For both surveys, we employ the median

expected price change in the four quarters following the date of the survey, which

is consistent with our use of year-on-year inflation. Data incorporated in the model

are at quarterly frequency, with the sample starting in Q1 1984 and ending in Q2

2017. All variables enter the model in levels, except for price variables which are

transformed to the year-on-year inflation rate (see Table 1 for details).
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Our model in xt := {yt, et, ut, oilt, πt, πct , F uom
t πt+4, F

spf
t πt+4} can be written as



yt

et

ut

oilt

πt

πct

F uom
t πt+4

F spf
t πt+4



=



1 0 0

δe,1 + δe,2L 0 0

δu,1 + δu,2L 0 0

δoil,1 + δoil,2L 1 0

δπ,1 + δπ,2L γπ,1 + γπ,2L φπ

δπc,1 + δπc,2L γπc,1 + γπc,2L φπc

δuom,1 + δuom,2L+ δuom,3L
2 γuom,1 + γuom,2L φuom

δspf,1 + δspf,2L+ δspf,3L
2 γspf,1 + γspf,2L φspf




ψ̂t

ψEPt

µπt

 +



ψyt

ψet

ψut

ψoilt

ψπt

ψπ
c

t

ψuomt

ψspft



+



µyt

µet

µut

µoilt

0

0

µuomt

µspft



(12)

where φπ, φπc , φuom, and φspf are normalised to have unitary loading of inflation

and inflation expectations on trend inflation.12 It is worth noting that our empirical

specification in Equation 12 would reduce to the stylised rational expectations model

in Equation 8, under suitable parametric restrictions.

Like the output gap in Equation 6, the energy cycle and the idiosyncratic

ARMA(2,1) stationary cycles can be written in the following form:

ψjt

ψ∗jt

 = ρj

 cos(λj) sin(λj)

− sin(λj) cos(λj)

ψjt−1
ψ∗jt−1

 +

 vjt

v∗jt

 ,

 vjt

v∗jt

 ∼ N (0, ς2j I2)

(13)

where j ∈ {EP, x1, . . . , xn} and ψ∗j, as discussed, is a term capturing an auxiliary

cycle. For stationarity, we impose 0 < λj ≤ π and 0 < ρj < 1 for all cycles,

including the output gap. As discussed, the common and idiosyncratic trends are

random walks (with/without drifts – µj0) that can be written as

µjt = µj0 + µjt−1 + ujt , ujt ∼ N (0, σ2
j ) .

All of the stochastic disturbances in the model are assumed to be mutually ortho-

gonal and Gaussian. Finally, it is worth noting that the common and idiosyncratic

trends in inflation and inflation expectations are identified up to a constant (see Bai

and Wang, 2015, for a discussion on identification). For the sake of interpretation,
12In the empirical model, the series are standardised so that the standard deviations of their

first differences are equal to one. For this reason, we normalise φπ, φπc , φuom, and φspf to the
reciprocal of the standard deviation of the first difference of the respective variable.
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Table 2: Prior distributions

Name Support Density Parameter 1 Parameter 2

δ, γ, φ and τ IR Normal 0 1000
σ2 and ς2 (0,∞) Inverse-Gamma 3 1
ρ [0.001, 0.970] Uniform 0.001 0.970
λ [0.001, π] Uniform 0.001 π

Note: Prior distribution for the model parameters adopted in estimating the model with US
data. All of the priors are uniform over the range of the model parameters compatible with our
modelling or weakly informative. Boundaries of the uniform priors ensure that the stochastic cycles
are stationary and correctly specified according to the restrictions described in Harvey (1990).

we attribute the constant to the common trend so that it is on the same scale as

the observed inflation variables.

4 Bringing the Model to the Data

Our estimation strategy builds on the approach recently suggested by Harvey et

al. (2007), that adopts modern Bayesian techniques to support the estimation of

‘structural’ trend-cycle models á la Harvey (1985). In estimating the model, we elicit

prior distributions that are either uniform over the range of the model parameters

compatible with our modelling choices (i.e. 0 < λj ≤ π and 0 < ρj < 1), or weakly

informative and in the form of very diffuse Normal and Inverse Gamma priors.

Table 2 reports the parameters of our prior distributions.

We maximise and simulate the posterior distributions with a Metropolis-Within-

Gibbs algorithm that is structured in two blocks. In the first block, we estimate the

state space parameters by the Metropolis algorithm and, in the second block, we use

the Gibbs algorithm to draw unobserved states conditional on model parameters.

Relevant details and references are in the text and Appendix A.13

An important question concerns the role of the priors in identifying the model.

Figure 2 and Figure 3 illustrate prior and posterior distributions for the variance

of the error terms of the unobserved components, the frequency and persistence of

the two common cycles, and the coefficients for the common cycles.14 The charts
13The lags for the survey variables in Equation 12 are implemented by including the auxiliary

cycle ψ∗j
t from Equation 13.

14The posterior distributions of the full set of model parameters can be found in Appendix B.
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Figure 2: Prior distributions (in red) and posterior distributions (in blue) of the frequency of the
common cycles, persistence of the common cycles, and the variance of the shocks to the common
cycles and common trend.

provide a good indication on whether data provide enough information to identify

the model parameters. Indeed, the posterior distributions are well peaked and not

shaped by the priors, and show that the data is very informative in estimating the

many parameters of the model – in particular the variance of the shocks of the

common components and the frequencies of the cycles. Importantly, the posterior

distributions of the coefficients for the common cycles (Figure 3) indicate that coeffi-

cients equal to zero have negligible probability to be drawn in both cases. Moreover,

our results are robust to changes in the parameters of the distributions of the more

informative priors. See Appendix C.
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Figure 3: Prior distributions (in red) and posterior distributions (in blue) of the coefficients for
the common cycles of CPI inflation and Core CPI inflation.

5 Trends and Cycles in the US Economy

The empirical model produces a coherent historical narrative of business cycle dy-

namics and an evaluation of how they impacted inflation dynamics, as well as a set

of model-consistent measures for trend inflation, equilibrium unemployment, and

output potential.

We start by analysing economic trends identified and estimated by the model in

the next section and then move to economic cycles in the following one. We compare

our assessment of trend-cycle dynamics with the estimates by the Congressional

Budget Office (CBO) and the Board of Governors of the Federal Reserve.

5.1 Trend Inflation, Equilibrium Unemployment, GDP Po-

tential

The model delivers very smooth and stable trends. Figure 4 plots real GDP, employ-

ment, unemployment, and oil prices against the median of the estimated independent
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Figure 4: Independent trends of output, employment, unemployment, and oil prices (in blue),
with coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade), as estimated
by the model. The chart also reports the measures of potential outputs and NAIRU estimated by
the CBO (in red).

trends, along with coverage bands (at 68% darker shade, and at 90% lighter shade

coverage rate). Output trend, which can be thought of as a measure of potential

output, is compared with the corresponding measure provided by the CBO.

While both trends are equally stable, they provide a different description of long

term growth in the US. Since 2001, the model-implied trend lies below the CBO

trend implying that, while the CBO’s reading of the data is that the US economy
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had only just reached its potential at the pre-crisis peak in 2008, our model signals

an overheating of the economy from 2006 to 2008 and a marked slow-down of trend

growth in the last part of the sample.

Figure 5 also compares the model-implied measure of equilibrium unemployment

against the CBO’s measure for the natural rate of unemployment (NAIRU). The two

measures coincide in the first part of the sample while they diverge post-2000. While

our model provides a very stable unemployment trend hoovering around 6% and with

a temporary and small increase around the financial crisis in 2008, the CBO NAIRU

shows a slow and persistent decline of the trend continuing through the crisis.

The trend in the oil price shows a hump-shaped increase in the second half of

the sample that may be related to the global increase in oil demand post-2000. It

is important to observe that, in our model, trends are jointly estimated with the

cyclical components. Hence, the differences between our estimated trends and those

of the Fed and the CBO have relevant implications for the reading of business cycle

dynamics. This will be analysed in the remainder of the paper.

The inflation trend common to headline CPI, core CPI inflation, and consumers’

and professional forecasters’ inflation expectation variables is shown in Figure 5.

Trend inflation appears to be roughly stable from 2000 to 2010 and, interestingly, is

closely tracked by the SPF median forecast. The behaviour of UoM expectations,

on the other hand, shows large and persistent deviations from the common trend

(long-term inflation expectations) since 2004. We interpret this sizeable time-varying

idiosyncratic trend as a bias in consumers’ expectations.

The unit-root inflation trend can be connected to the long-term inflation expect-

ations of rational agents under the assumption that the ‘law of iterated expectations’

holds (see Beveridge and Nelson, 1981 and Mertens, 2016). This interpretation is

supported by Figure 6 where CPI inflation is plotted against the implied trend

and the median 10-year ahead SPF inflation forecast. The chart provides a visual

validation of our interpretation that the model trend estimate captures long-term

expectations.
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Figure 5: Trend common to CPI inflation, core CPI inflation, and inflation expectations (in blue),
with coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade), as estimated
by the model.

5.2 Business and Energy Price Cycles

Figure 7 shows the estimated common cycles in both the time and frequency do-

mains. The first cycle provides a direct measure of the slack in the economy and

captures fluctuations of output around its potential. It also connects real, labour

market, and nominal variables and hence can be interpreted as a measure of the

business cycle. For this reason, in what follows, we refer to it as ‘business cycle’
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with a slight abuse of terminology. The upper charts in Figure 7 report the median

of the posterior distribution of the business and energy price cycles with relative

coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade).

The lower charts show the associated spectral densities and coverage bands. The

charts indicate that the ‘business cycle’ is quite regular and much less volatile than

the energy price cycle. The spectral shape shows that the business cycle contributes

to the inflation spectral shape with a relatively well defined peak and with a cycle

between 7 and 8 years periodicity. Conversely, the energy price cycle occupies a

broader range of frequencies with a less well defined peak and a periodicity about

half as long as that of the business cycle.

Before analysing how these two cycles explain the historically observed inflation

dynamics, it is useful to compare our measures of the business cycle and output gap

with other commonly adopted measures such as those by the CBO and the Fed.

This allows us to validate the business cycle ‘dating’ identified by the model and to

assess the model based description of peak-to-trough fluctuations as compared to a

data-informed judgmental description. Figure 8 shows the stationary deviations of
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output from its trend, as estimated by the model which is obtained by rescaling the

business cycle to match the GDP scale and by summing to it the output idiosyncratic
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cycle component. Figure 8 also reports the output gap measure produced by the

CBO and by the Fed in its Greenbook forecast (the latter is released with a 5 year

delay).

Two features are worth observing. The model-based and the CBO/Fed business

cycle dating of the turning points perfectly coincide as the peaks and troughs align-

ment shows. However, the model-consistent measure and the other two differ in

their assessment of the the degree of slack in the economy since 2001. In fact, at the

time of the slowdown of 2001-2002, our model indicates that the economy went from

over-capacity to trend growth but, unlike the CBO’s, does not identify a protracted

period of slack. Moreover, we estimate a milder recession in 2008-2009 and find the

economy to have been above full capacity since 2015. These differences can be better

understood by contrasting both the model-consistent estimates of output potential

and of the output gap against the CBO measures in Figure 4 and Figure 8. The

CBO provides a more optimistic assessment of the trend growth and attributes the

slowdown since the early millennium to a very deep contraction in the cyclical com-

ponent of output. Its estimated output gap considers the US economy to have been

below potential since 2001. Conversely, our model, which has a variable random

trend and constant-parameter cyclical components, attributes the slowdown since

the early millennium to a decline in trend growth rather than to a widening output

gap in line with the research that has pointed to a slowdown in productivity growth

since that date (see, for example, Hall et al. 2017). We should obviously recognise

that the two different readings of the economic developments since 2001 are based

on different and untestable assumptions about the long run behaviour of output and

there is no obvious criterion to choose the ‘correct’ one. From a statistical perspect-

ive, the model identify a very persistent slowdown in output growth and interprets

it as due to a permanent component – the unit-root output potential –, but cannot

disentangle the source or the nature of this slowdown (see Coibion et al., 2017a for a

discussion on the issue). However, one of the advantages of our modelling approach

is that it allows for a transparent discussion on the assumptions about the long-

run components of the economic variables. It also potentially allows for the direct

incorporation of time-variation or structural breaks in the model parameters.
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Figure 9: Historical decomposition of the cycles, as estimated by the model. The chart reports
the Business cycle (in blue), Energy price cycle (in red), and idiosyncratic cycle (in yellow).

5.3 Historical Decomposition

Let us now turn to the historical decomposition of the stationary components of

the eight variables of interest into common and idiosyncratic cycles, as provided

by the model. Figure 9 shows the results. Overall, the model provides a coherent

description of inflation dynamics with a number of interesting features.

First, the business cycle (in blue) capture almost entirely the fluctuations around

trend in real output, employment and unemployment. A negligible idiosyncratic
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Figure 10: This chart plots the Business cycle component of CPI inflation against the Busi-
ness cycle component of the unemployment rate (red dots) and the corresponding bivariate linear
regression line (red line). The chart also plots demeaned CPI inflation against the demeaned
unemployment rate (blue dots) and the corresponding bivariate linear regression line (blue line).

component (in yellow) is visible only in unemployment and almost non-existent

in output and employment. This indicates that our measure of the output gap

captures the slack in the economy well and is transmitted, via the lagged Okun’s

law relationship to the labour market. It should be stressed that lags are important

in describing the delayed transmission from output dynamics to the labour market

and may capture different types of labour market frictions.

Second, a small but non negligible share of oil price fluctuations is due to the

comovement of this variable with the slack in the economy, along the business cycle.

This may be due either to the demand effect of the US economy onto global oil prices,

or the role of oil shocks as mark-up shocks in the aggregate production function.

Third, the slack in the economy is reflected in price dynamics via the Phillips

curve which captures the lower frequency dynamics in the inflation cycle and ac-

counts for a sizeable share of the variation in CPI inflation and most of the variation
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in core CPI inflation. This ‘real’ component dominates SPF expectations while it

provides a sizeable but not dominant share of variation in consumers’ expectations.

In our model the Phillips curve is a lagged relationship connecting prices, expecta-

tions and output (and hence labour market variables). Hence, a discussion about its

‘steepness’ may be slightly misleading since a reduced form relation between prices

and unemployment would involve different lags of our business cycle. Nonetheless,

in Figure 10, we compare a scatter plot showing how the business cycle components

of CPI and unemployment would be related (red dots) with a scatter plot of (de-

meaned) CPI and unemployment variables (blue dots). The linear fit has a slope of

-0.39 for the model based measures (red line), against a slope of -0.14 for a naïve

estimate (blue line). This is a rough way to assess the strength of the Phillips curve

identified by our model against that of a naïve estimate of its steepness.

Fourth, the stationary component of CPI inflation is dominated by the energy

price cycle. This can be explained by the fact that energy prices are one of the com-

ponents of the CPI basket and tend to be extremely volatile with a weak correlation

with the slack in the national economy. Notice also that, while small, the energy

price component is also visible and non-negligible in core CPI inflation where, by

construction, energy prices are removed. This suggests that oil shocks impact core

CPI inflation indirectly via expectations and not via the output gap or other meas-

ures of slack in the economy. In fact, as suggested by Coibion and Gorodnichenko

(2015), household expectations are not fully anchored and respond strongly to oil

price changes. Conversely, as observed above, the SPF median forecast tracks the

unit-root trends while its cyclical component is dominated by the persistent business

cycle component. In other words, the SPF forecasts are relatively unaffected by the

volatile and less persistent energy price component. In this respect, the dynamics

of the median SPF forecast seem to be consistent with a rational forecast.

Finally, overall, the cyclical part of inflation is well captured by the two com-

mon components and little is left to idiosyncratic forces. However, the two common

cycles are not in any sense ‘synchronised’ . This sheds light on some of the puzzling

behaviour of inflation since 2008. From 2011 to mid 2012 the inflation cycle is sup-

ported by oil prices while the Phillips curve exerts negative pressure. The opposite
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Figure 11: Idiosyncratic trends of oil prices (left) and UOM Expected Inflation (right), with
coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade), as estimated by
the model.

is true from 2015 to the end of 2016 when oil prices drag inflation down while the

Phillips curve exerts a small upward pressure.

5.4 The Role of Oil and Global Factors

As discussed, oil shocks can impact price dynamics via several different channels.

First, as cost-push shocks in production, they impact prices via the Phillips curve.

Also, oil prices can fluctuate due to US internal demand along the business cycle.

These channels are directly captured by the common business cycle that connects

the slack in the economy to oil prices and inflation. Secondly, they directly affect

the prices of energy services which enter the consumption basket of headline CPI

without affecting the output gap. This second channel is likely to explain most of

the contribution of the energy price cycle to headline CPI inflation. Thirdly, they

can generate ‘non-fundamental’ movement in consumers’ inflation expectations and

shift prices via this mechanism. This third channel is likely to explain the energy

price cycle component in consumers’ expectations and, importantly, in core CPI

inflation which excludes energy prices. Overall, this channel is quantitatively non

dominant in price dynamics albeit potentially very important since it is not under

the control of standard monetary policy.

Much of the historical differences in inflation expectations between households

and professional forecasters can be accounted for by the contribution of oil prices.
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This was originally observed by Coibion and Gorodnichenko (2015) who also attrib-

ute to oil shocks a sizeable effect on consumer expectations. In our framework the

effect can only be present through common stationary cycles and trends. However,

our results show that there is a large idiosyncratic trend component in oil prices

which, by construction, does not affect CPI inflation. Figure 11 plots it against the

idiosyncratic consumers’ expectation trend and provides suggestive evidence that

consumer price expectations may actually have a persistent component related to

oil prices. Our framework leaves it as unmodelled, and to future research.

A conjecture is that the oil price trend is connected to global demand and com-

modity price cycles as suggested, for example, by Delle Chiaie et al., 2018). Indeed,

in recent years, the potential impact of globalisation on price dynamics has drawn

attention from both policymakers and academics. The literature has suggested that

the increase in international trade has negatively impacted the strength of the do-

mestic Phillips curve relationship and increased the significance of ‘global slack’ and

exchange rates in relation to CPI. It has for example maintained that the increas-

ing impact of demand from emerging markets has affected volatility in commodity

prices, that the increased price competition and the greater role of supply chains have

reduced firms’ pricing power, or that the reduced bargaining power of local work-

ers has weakened the role for domestic slack (see Galí, 2010, for a theory-informed

discussion of the literature on the topic).

A number of empirical works have identified a sizeable global common factor in

inflation dynamics (e.g. Ciccarelli and Mojon, 2010, and Mumtaz et al., 2011), or

proposed to add a measure of global slack (e.g. Borio and Filardo, 2007, Castelnuovo,

2010), supply chain intensity (e.g. Auer and Fischer, 2010; Auer et al., 2017) or

exchange rates (e.g. Forbes et al., 2017) in the econometric specifications of price

equations. We leave the investigation of these effects within our framework for

future research. However, the stability of our results, obtained in a fixed parameter

model, suggests that some of theese potential channels have had limited impact in

US cyclical inflation dynamics.
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6 Model Forecasting Performance

In the previous sections we showed that a trend-cycle model, incorporating key eco-

nomic relations and allowing for deviations of agents’ forecasts from full information

rational expectations, provides a coherent ‘structural’ interpretation of economic

developments in the US from the 1980s onwards, based on fundamental and gen-

erally accepted economic relationships. While this is an important and desirable

feature of the ‘in-sample’ behaviour of the model, an additional test of robustness

and reliability of the model is provided by its out-of-sample behaviour.

In this section we provide an out-of-sample assessment of the model along two

dimensions. First we look at trends and cycles extracted by the model in expanding

samples, as it would happen in out-of-sample forecast, and check for their stability.

This is important in assessing whether the historical decomposition provided by the

model is reliable in a pseudo-real-time exercise. Second we test the out-of-sample

forecasting performance of the model against two of the best performing models

used for inflation forecasting. Forecasting inflation is notoriously difficult and good

performance from such a complex model would provide indirect evidence of whether

the model is able to capture important features of the data generating process.

Figure 12 shows the revisions of the two common cycles and of the inflation

trend over time with an expanding data window. The model is re-estimated every

quarter. The period from Q1 1984 to Q4 1998 is employed as the pre-sample,

while the evaluation sample starts in Q1 1999 and ends in Q2 2017. Results show

that trends and the common business cycle are fairly stable overall and provide an

assessment of the development in the economy that is evenly consistent over the

sample - including in the recessions. The energy price cycle provides a slightly less

stable, albeit roughly coherent, reading of the contribution of energy fluctuations to

prices.

The forecasting exercise is conducted in the same sample and again the period

from Q1 1984 to Q4 1998 serves as the pre-sample. We use an expanding window

and recursively forecast up to 8 quarters ahead. In every quarter we reestimate

the model, including the unobserved components and the coefficients. Apart from
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Figure 12: This chart shows the revisions of the business cycle (top), energy price cycle (middle),
and common trend (bottom) as estimated during the OOS forecasting exercise.

our model (TC), we consider (i) a BVAR where priors are set as in Giannone et

al. (2015) and (ii) an univariate unobserved components IMA(1,1) with stochastic

volatility model as suggested by Stock and Watson (2007) to be tough benchmarks

for inflation forecasts. For all models we report the root mean squared forecast

errors relative to those of a random walk with drift for forecasting horizons of one,

two, four, and eight quarters.

Results are reported in Table 3, and show that the trend-cycle model outperforms

all others for CPI inflation and does particularly well at the two years horizon. Our

conjecture is that our advantage with respect to the BVAR is driven by the random

walk trend which captures the slow-moving, low frequency component while the

advantage with respect to the UC-SV models is explained by the Phillips curve

which captures cyclical co-movements. The trend-cycle model and the BVAR have
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Table 3: Relative Root Mean Squared Errors

Horizon Variable TC Model BVAR UC-SV

h=1

Real GDP 1.00 0.93 x
Employment 0.94 0.76 x
Unemployment rate 0.82 0.67 x
Oil price 1.06 1.08 x
CPI Inflation 0.97 0.91 1.00
Core CPI Inflation 1.00 1.04 1.01
UOM: Expected inflation 1.03 1.04 x
SPF: Expected CPI 1.00 1.06 x

h=2

Real GDP 1.02 0.93 x
Employment 0.95 0.76 x
Unemployment rate 0.80 0.71 x
Oil price 1.08 1.18 x
CPI Inflation 0.95 0.98 0.99
Core CPI Inflation 0.95 1.15 0.99
UOM: Expected inflation 1.01 1.09 x
SPF: Expected CPI 0.97 1.18 x

h=4

Real GDP 1.04 1.01 x
Employment 0.99 0.82 x
Unemployment rate 0.81 0.83 x
Oil price 1.12 1.26 x
CPI Inflation 0.95 1.13 0.97
Core CPI Inflation 0.89 1.22 0.96
UOM: Expected inflation 1.11 1.14 x
SPF: Expected CPI 0.91 1.31 x

h=8

Real GDP 1.11 1.21 x
Employment 1.07 1.01 x
Unemployment rate 0.81 1.02 x
Oil price 1.10 1.36 x
CPI Inflation 0.85 1.09 0.95
Core CPI Inflation 0.83 1.30 0.91
UOM: Expected inflation 1.02 1.28 x
SPF: Expected CPI 0.86 1.34 x

Note: This table shows the RMSEs relative to the random walk with drift. The BVAR was
estimated using Giannone et al. (2015). The UC-SV model was first proposed in Stock and Watson
(2007).

similar performance in relation to the other variables with the exception of the

unemployment rate one and two quarters ahead where the BVAR outperforms us.

Results seem to indicate that despite the large number of parameters and the

imposition on the data of structural relationships dictated by economic theory, the

model provides a stable historical decomposition in a pseudo real-time exercise and
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very good performance in forecasting. We consider this as evidence providing sup-

port to the claim that the model is able to capture important features of the data

generating process.

7 Concluding Comments

In this paper we propose a semi-structural approach for the empirical modelling of

inflation which exploits minimal restrictions from economic theory while delivering

a flexible empirical specification. The approach can be seen as a mid-way between

the estimation of a fully specified DSGE model and a reduced form VAR model.

We believe that this approach is promising beyond the particular application of this

paper.

The results we have presented are informative for the debate on the Phillips

curve. We point to a well identified and steep Phillips curve which captures a cyclical

component of CPI inflation with maximum power at around eight years periodicity

but also point to deviations from the standard rational expectations formulation

since we identify a sizeable cycle in CPI inflation which is unrelated to real variables

and captures the correlation between inflation expectations and oil prices. This

cycle, which is of slightly shorter periodicity than the business cycle and is more

volatile, points to a channel through which oil price developments temporarily affect

consumer price expectations away from the nominal-real relationship captured by

the Phillips curve. In the presence of large oil price shocks this component may

dominate and cloud the signal on cyclical inflation.

Beyond that, our approach delivers empirical estimates of quantities which are

the focus of policy analysis and does so within a unified framework. We provide a

measure of the output gap, the Okun’s relation, the natural rate of unemployment

and potential output as well as long-run inflation expectations. We also produce

a decomposition of CPI inflation and core inflation into a component related to

the business cycle and one related to the expectationally driven energy price cycle.

Interestingly, we identify an energy price cycle in both core and CPI inflation which

suggests that core inflation provides a clouded signal of fundamental (trend and
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cyclically driven) inflationary pressures. This result provides more motivation for

our signal extraction approach to identify cyclical inflation. As for the real variables,

the model’s estimate of potential output identifies a slowdown around the beginning

of the millennium, in line with recent research on productivity dynamics. This

contrasts with the CBO’s estimates and implies a difference between our estimate

of the output gap and that of the CBO since the beginning of the productivity

slow-down. While the CBO’s view is the US economy was growing around potential

before the 2008 crisis and below it since then, our model points to growth above

potential between 2006 and 2008 and again since 2015. Although it is impossible to

discriminate between these different views, a support for our story comes from the

good inflation forecasting performance of our model which we show to out-perform

traditional benchmarks.

From the policy perspective, our findings indicate that the central bank can ex-

ploit the Phillips curve trade-off but only in a limited way since the latter, although

well identified, is a small component of inflation dynamics. Indeed, some of the

so-called puzzles of inflation behaviour of the last decade can be explained by dis-

entangling the Phillips curve from the energy price cycle. Moreover, while trend

inflation appears to be roughly stable from 2000 to 2010, the behaviour of UoM ex-

pectations shows large and persistent deviations from the common trend (long-term

inflation expectations) since 2004 which can be interpreted as sizeable time-varying

idiosyncratic trend as a bias in consumers’ expectations. Therefore, a problematic

issue for the central bank is that, facing volatile and persistent oil price dynamics,

consumer expectations can affect price dynamics producing large and persistent de-

viations from a stable trend. Our conclusions are therefore quite open-ended. The

Fed’s view that inflation is dominated by three components is supported by the

data. However, the ability of the Central Bank to anchor expectations is limited

especially because oil affects consumer expectations persistently and independently

from the state of the real economy.
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