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Abstract

The price adjustment hazard function - the probability of a good’s price changing as a func-
tion of its price misalignment - enables the examination of the relationship between price stick-
iness and monetary non-neutrality without specifying a micro-founded model, as discussed by
Caballero and Engel (1993a, 2007). Using the micro data underlying the U.S. Consumer Price
Index going back to the 1970s, we estimate the hazard function relying on empirical patterns
from high and low inflation periods. Our estimated hazard function features three properties: 1)
the probability of adjustment rises only slowly in the absolute value of the price misalignment;
2) the value at zero (the probability of infinitesimal price changes occurring) must be signif-
icantly positive; 3) the hazard function is asymmetric in that price increases are significantly
more likely to occur than price decreases (holding the absolute value fixed). Our estimated
hazard function therefore implies a high degree of monetary non-neutrality. Finally, estimat-
ing hazard functions at the sectoral level, we find substantial heterogeneity in the aggregate
flexibility across sectors.
JEL classification codes: E31, E32, E47, E52

1 Introduction

It has long been established that monetary policy has real effects (or is non-neutral) if firms face

constraints in changing the prices of their goods and services (i.e. if prices are “sticky”). This

has led to a proliferation of micro-founded models of price-setting that feature various nominal
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rigidities (Caplin and Spulber, 1987; Golosov and Lucas, 2007; Midrigan, 2011). These studies

have notably shown that a key determinant of monetary non-neutrality is the extent to which the

prices that change are selected based on their misalignment, the selection effect. While most work

in this field has involved micro-founded models, Caballero and Engel (1993a) proposed an alter-

native, model-free approach to analyze the relation between sticky prices and non-neutrality. They

introduced the state-dependent price adjustment hazard function: the probability of an individual

price changing, as a function of the gap between a firm’s current and desired price. This model-free

approach also provides a way to determine monetary non-neutrality through the mapping between

the hazard function and the flexibility of the price level (as derived in Caballero and Engel, 2007).

In particular, every price setting model implies a certain hazard function, thus this general approach

does not require formulating and solving a specific model.

In this paper, we contribute to the debate on non-neutrality by estimating the price adjustment

hazard function using the micro data that underlies the U.S. Consumer Price Index (CPI) from 1977

to 2014. While other studies have offered estimates of the hazard function (such as Berger and

Vavra, 2018; Caballero and Engel, 1993b, 2006; Gagnon et al., 2012), our estimation is based on a

richer data set covering high inflation periods and novel empirical moments, notably the correlation

between inflation and the skewness of the price change distribution. The most important property

of our estimated hazard function is the small increase of the adjustment probability with the size

of the price misalignment from the desired level. In other words, we find that the slope of the

hazard function is small. A we will show, using the correlation between inflation and price change

skewness is what enables us to determine that the slope of the hazard function is small. This

property also implies a high degree of monetary non-neutrality.

The slope of the hazard function is particularly important because of its close relation to the

selection effect in price setting. Caballero and Engel (2007), in deriving the mapping between the

hazard function and aggregate flexibility, made explicit how the selection effect depends critically

on the slope of the hazard function. A large slope means that more misaligned prices have a

much higher probability of changing. Consider the standard menu cost model as an extreme state-

dependent example: firms decide to change their price if and only if the price misalignment is

large enough to justify the fixed adjustment cost. The hazard is zero within the inaction region,

and one elsewhere, which implies an infinite slope at the inaction thresholds. Consequently, the

model implies a large aggregate price response and small real effects of monetary shocks, given

that adjusting firms are the ones that react strongly to nominal shocks. Conversely, a model (such

as a Calvo model) with a small hazard function slope generates weak aggregate price responses to

nominal shocks, thus high monetary non-neutrality.

In order to infer the slope of the hazard function, we use patterns related to the skewness of

price change that are not considered by previous attempts to estimate the hazard function. If the
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hazard function slope is large, the resulting price dynamics will imply that the skewness of price

changes falls with inflation. Price change skewness does not fall with inflation in our data, which

leads us to conclude that the hazard function must have a small slope (and that non-neutrality is

high). In order to determine the empirical relation between inflation and skewness, it is necessary

to observe the skewness in periods of intermediate or high inflation. Most price data sets used

in the literature only cover recent periods in which inflation has been low and stable (such as the

U.S. CPI data from 1988 onwards, Dominicks and the Nielsen Homescan Dataset), making them

unsuitable for our approach. Instead we use the U.S. CPI micro data extended back to 1977, which

covers periods of high and intermediate inflation.

The skewness patterns that help identify the hazard function slope has been discussed throughly

in Luo and Villar (2017), where we showed that a broad class of menu cost models predict that

skewness falls with inflation. Only models that are weakly state-dependent could match the non-

negative inflation-skewness correlation, and such models predict a high degree of non-neutrality.

While we conclude that non-neutrality is high in both papers, the results in this paper are, in a

sense more general. In Luo and Villar (2017), we present a random menu cost model characterized

by firm level random menu cost draws from a calibrated distribution in every period. Instead,

this paper uses a hazard function approach, which is model-free. Our results here reject hazard

functions with a large slope, and thus all models that would imply such a hazard function.

Our estimation establishes three additional features of the hazard function that offer insight into

the price setting process. First, we find that the hazard function is asymmetric around zero. Specif-

ically, for an equivalent magnitude, price increases are more likely to occur than price decreases.

Second, the function takes a significantly positive value at zero. Thus, even extremely small price

imbalances have a positive probability of occurring (so there are no inaction regions). Third, the

hazard function makes it clear that the probability of price adjustment stays far below one even for

large price misalignments. This is related to the small slope feature of the hazard function and is

contrary to what would be obtained from menu cost, or hybrid menu cost models, such as Midrigan

(2011). These findings are relevant for attempts to model the constraints faced by firms in setting

and changing their prices.

As mentioned before, an advantage of using the hazard function to evaluate non-neutrality is

that doing so does not require specifying the price setting constraints faced by firms, nor does it

require solving for firms’ optimal decisions given those constraints. Once the empirical values re-

quired to estimate the function are known, it is a relatively simple procedure to carry out. One way

that we exploit the simplicity of this procedure by implement it for individual sectors. (Nakamura

and Steinsson, 2008, 2010) showed that the frequency of price change differs markedly across

sectors, and it would not be surprising if other aspects of the price setting process (captured by

the shape of the hazard function) also differed across sectors. We estimate sector-specific hazard
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functions by targeting the values of price change moments by sector. According to our results, dif-

ferent sectors have considerably different degrees of state dependence in pricing, and of aggregate

flexibility.

The fact that the hazard function involves an unobserved variable (the desired price gap) makes

it particularly difficult to estimate. An estimation strategy must make assumptions about the

desired price gap to relate different hazard functions to observable facts about prices and price

changes. Two recent papers (Berger and Vavra, 2018; Petrella et al., 2018) also attempt to estimate

the price adjustment hazard function with assumptions that differ from those in our paper. One

difference is that both of those papers estimate a flexible functional form for the distribution of

desired price gaps and a quadratic hazard function. In contrast, we estimate a more restricted form

for the distribution of desired price gaps, but a more flexible form for the hazard function. Perhaps

more importantly, we use a broader set of empirical moments in our estimation. Our approach has

the advantage of using information from the variation of price change moments over time (mainly

in the form of the skewness correlation previously discussed) to identify the key parameters of the

hazard function. As we will show, these moments provide a considerable amount of information

that identifies the slope of the hazard function.1 In addition, our data sample includes the high

inflation periods of the U.S. going back to 1977.

This paper (as well as Berger and Vavra, 2018; Petrella et al., 2018) contribute the sticky price

literature with non-structual estimates of price changes following Caballero and Engel (1993a,

2007) using high order moments of price changes. An important finding in our work is that an

asymmetric hazard function fits the data best, which implies a stronger monetary non-neutrality

during deflationary episodes. Berger and Vavra (2018), in contrast, estimate a symmetric quadratic

hazard function that can not generate this result. Petrella et al. (2018) estimate a hazard function

that is potentially asymmetric, but they do not seem to find a major role for asymmetry.

Before continuing our discussion of the price adjustment hazard function, it is important to

draw a distinction with another hazard function that has received attention in the sticky price

literature: the time-dependent hazard function. The time-dependent hazard function gives the

probability of a price change occurring at time t, given that t periods have passed since the last

price adjustment. Different models also imply different types of time-dependent hazard functions,

and some work has been done to estimate these using micro price data (such as Klenow and

Kryvtsov, 2008; Nakamura and Steinsson, 2008). However, in this paper we only investigate the

state-dependent price adjustment hazard function.

1Another significant difference is that both Berger and Vavra (2018) and Petrella et al. (2018) estimate the param-
eters of the hazard function for every period of time (which gives them, among other things, a time-varying for the
degree of monetary non-neutrality), while we estimate a hazard function that is static over time. Note that estimating
the hazard function period by period makes it impossible to use the correlations of inflation with price change moments
over time, and thus discarding the valuable information those correlations provide.

4



The rest of this paper is organized as follows. Section 2 formalizes the hazard function ap-

proach, illustrates it with various examples, and describes our estimating method. Section 3

presents our main results: the general hazard function estimates (parametric and non-parametric),

and an illustration of how different key features of the hazard function are identified by our set of

moments. In Section 4, we derive results on monetary non-neutrality from the estimated hazard

function. Section 5 contains the estimates for sector-specific hazard functions. Finally, we provide

some concluding remarks in Section 6.

2 Price Adjustment Hazard Function and Monetary Non-neutrality

The basic framework of the model is that firms adjust their prices infrequent and the adjustment

probability is state dependent.

In this section, we propose a simple price adjustment framework similar to that in Caballero

and Engel (2007), in which the price adjustment policy of a firm depends on a state-dependent con-

tinuous hazard function. We do not explicitly model the underlying microeconomic optimization

problem of firms or the general equilibrium aspects. Despite the absence of micro-foundations, this

approach can be viewed as an empirical-theoretical strategy to shed some light on and complement

the structural sticky price models as Caballero and Engel (1993a) had suggested.

In this economy, a continuum of firms indexed by i ∈ [0, 1] face idiosyncratic and aggregate

shocks. Let pit denote the log of the price for firm i in period t, and p∗it denote the log of the target

price. The target is the sum of two components, which changes stochastically as follows,

p∗it = zit +mt,

where zit is the idiosyncratic component and mt is the aggregate component, and both are subject

to shocks over time. The idiosyncratic component is important in order to match the fact that,

even within a given period, there is a wide variation of price changes (as shown notably by Bils

and Klenow (2004), Nakamura and Steinsson (2008), and Klenow and Kryvtsov (2008)). This

component follows an AR(1) process, as the idiosyncratic productivity shocks in menu cost models

like Golosov and Lucas (2007):

zit = ρzi,t−1 + εit, εit ∼ N(0, σε).

The aggregate component of shocks follows a random walk with drift:

mt = µ+mt−1 + ηt, ηt ∼ N(0, ση),

where the drift parameter (µ) accounts for the fact that inflation is positive, on average (as over the

long run, price changes will average µ). The aggregate shocks lead to variations in inflation period
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by period, and represent monetary, or aggregate demand, shocks.

Firms adjust the prices of their products infrequently due to adjustment costs (e.g. menu cost

or information cost, which are not modeled here) and follows an adjustment hazard function. Fur-

thermore, when a price adjusts, it is set to its current optimal level (p∗it), such that the desired price

gap (or price imbalance) is closed. Thus, the hazard function gives the probability of a firm’s price

adjusting given the difference between the current price and the optimal price, i.e.

H(x) = P (∆pit = x|x ≡ p∗it − pi,t−1).

This set-up is extremely general, and nests existing sticky price models. For instance, in the fric-

tionless case, it would be optimal for firms to set their price equal to the target at all times (i.e.

H(x) = 1, ∀x).

While we are not modelling firms’ optimal response to these shocks, the hazard function (along

with the distribution of idiosyncratic shocks) will determine how the aggregate price level responds

to them. It is in this way that the hazard function allows us to assess the degree of aggregate price

flexibility, or the inverse of monetary non-neutrality. In what follows, we denote the cross-sectional

density of price imbalances (x) at time t as ft(x). Although we have made assumptions about the

distribution of the imbalance’s components, the theoretical results apply to a general distribution.

The change in the aggregate price level (or the average price change, or inflation) can therefore be

expressed as:

∆pt =

∫
xH(x)ft(x)dx.

In particular, we are interested in how this change will depend on the aggregate shock, and so we

consider the change in the price level as a function of the change in mt. As presented by Caballero

and Engel (2007), the average inflation response to an aggregate shock deviation from its average

rate (∆mt = 0) is,

∆pt(∆mt) =

∫
(x+ ∆mt)H(x+ ∆mt)ft(x)dx.

Aggregate flexibility is then defined as the derivative of inflation with respect to ∆m, evaluated at

(∆m = 0), which is equal to:2

∆p′t(∆m = 0) =

∫
H(x)ft(x)dx︸ ︷︷ ︸

frequency of price change

+

∫
xH ′(x)ft(x)dx︸ ︷︷ ︸
extensive margin

. (1)

This illustrates the importance of having a precise estimate of the hazard function, and of knowing

what shape it takes, in particular. The first term in this expression is simply the frequency of price

2Note that the average sensitivity of the price level to the change in the aggregate component takes the same
expression, with the ergodic density of price imbalances, fE(x) replacing ft(x).
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Table 1: Examples From Existing Models

H(x) Extensive margin

Calvo f None

Menu cost

{
0, x ∈ (L,U)

1, otherwise
|L|ft(L) + Uft(U)

Calvo & menu cost hybrid

{
pz, x ∈ (L,U)

1, otherwise
(1− pz)[|L|ft(L) + Uft(U)]

change in period t. Although the hazard function clearly plays a role, the frequency of price change

can be observed directly from price micro data, and can therefore be assessed independently of the

hazard function. However, the second term does not have a simple relation to anything measurable

in the data. Caballero and Engel (2007) refer to this term as the role of the extensive margin, and

show that it is typically twice as large as the frequency, in a wide variety of models associated with

increasing hazard functions. This incorporates the role for the ”selection effect” induced by state-

dependent pricing, which makes the price level more responsive to aggregate shocks. Since the

derivative of the hazard function enters the extensive margin, its shape has an important influence

on monetary non-neutrality. Also important is whether the density of price imbalances is high in

the regions where the slope is large.

Table 1 illustrates the importance of these concepts with a few examples of hazard functions

implied by different sticky price models. The simplest and perhaps most used sticky price model,

Calvo (1983), has a constant hazard function with f representing the frequency of price change.

Consequently, the derivative is zero everywhere, meaning that the contribution of the extensive

margin to aggregate flexibility is zero. At the other extreme in terms of flexibility is the class of

menu cost, or Ss, models (such as Golosov and Lucas (2007)). When firms have to pay a fixed cost

to change their nominal price, they optimally choose a threshold rule, under which they re-set their

optimal price if and only if their price mis-alignment is outside of some interval (L,U). Thus, its

extensive margin term is clearly positive as shown in the second row. In addition, some advanced

sticky price models are close to a hybrid of Calvo and menu cost, such as Midrigan (2011)’s menu

cost model or the CalvoPlus model presented by Nakamura and Steinsson (2010). In each case,

firms will occasionally and randomly receive the opportunity to change their price for free or for a

relatively low menu cost. The common feature shared by these models is that firms occasionally

have the chance to change their price for free or low cost with a hazard function and the extensive
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margin as presented in the last row.3

A comparison of the extensive margin generated by various models clearly infers their levels

of monetary non-neutrality. A menu cost has an extreme extensive margin, because only the most

mis-aligned prices adjust. Since they adjust by a large amount, the average price response to

monetary shocks is very large, leading to high aggregate flexibility and monetary non-neutrality.

On the other hand, the Calvo model has a much lower degree of monetary non-neutrality than the

menu cost.

The models that we have presented so far yield hazard functions that are extremely simple.

However, richer and more interesting hazard functions can be obtained from models of imperfect

information (e.g. Alvarez et al., 2011b; Costain and Nakov, 2014; Woodford, 2009). For instance,

the hazard function of the rational inattention model in Woodford (2009) change drastically for

different levels of tightness of the information constraint.4 Indeed, the model can nest the Calvo

model (in the no information case) and the menu cost model (free information, or no constraint), as

well as intermediate cases. This can be seen in the different hazard functions implied by different

values for the cost of information (denoted by θ), shown in Appendix A Figure 6. Thus, the

extensive margin effect depends on the exact shape of the hazard function.

As these examples illustrate, various sticky price models can be analyzed under the hazard

function approach, which makes it possible to clearly see and understand the differences in the

degree of aggregate flexibility that they imply. In the following section, we present the estimation

of the hazard function, which will then be used to revisit the aggregate flexibility results of the

different models.

3 Hazard Function Estimation

3.1 The set of hazard functions

In this section, we describe the estimation of the hazard function. The estimation is carried out by

comparing the price change moments implied by different guesses of the hazard function (obtained

from simulations) with the moments from the data, and choosing the hazard function that matches

these moments best. For this to be feasible, the hazard function is characterized by a finite number

3In the Midrigan (2011) model, each firm produces multiple products, but once it pays the menu cost, it can change
the price of all its products. Once a particular product’s price is mis-aligned beyond a certain amount, the firm pays
the menu cost to re-set the price. When this occurs, however, the firm’s other prices will also be re-set, essentially for
free, and these will not necessarily be very mis-aligned. This means that all prices will have a positive probability of
adjusting, no matter how small their imbalance. In the CalvoPlus model, every period firms face either a high menu
cost or a low menu cost, with a fixed probability (typically higher for the high menu cost).

4In this model, firms face a cost to processing relevant information (measured in terms of entropy reduction) to
making their pricing decisions. A related discrete-choice model is presented in (Costain and Nakov, 2014, 2015), in
which price stickiness is the result of errors due to costly decision-making.
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of parameters. One way to do this is to impose a functional form on the hazard function, and

to estimate the parameters that characterize it. This can be applied to the models in section 2,

for example, as most of them imply hazard functions that are summarized by a small number of

parameters. The resulting estimates do not recover the structural parameters of the models, but

they do make it possible to assess the model’s implications for various empirical patterns, and the

degree of aggregate flexibility.

Our focus is on producing more flexible estimates that are not tied to a particular model. The

first way in which we will carry this out will be by proposing flexible parametric forms for the

hazard function, and estimating the parameters of the parametric form. One such form that we

consider is an asymmetric quadratic function with discrete jumps in the probability of price change:

H(x)quad =



1, if x < c−

p0 + a−x+ b−x2, if c− ≤ x < 0

p0, if x = 0

p0 + a+x+ b+x2, if 0 < x ≤ c+

1, if x > c+

. (2)

The discrete jumps in probability enable this functional form to nest the menu cost and CalvoSs

hazard functions. The coefficients on x determine the slope of the hazard function, and therefore to

a large extent the size of the extensive margin effect. As in the CalvoSs hazard function, this form

allows for a positive probability at an output gap of 0, which also nests the Calvo hazard function.

The positive probability at 0 and the thresholds at which the probability can generalize the simple

quadratic form that Caballero and Engel (2006) estimated.

A second functional form that we use is the following logistic function:

H(x)logit =


a−·exp(b−(|x|−c−))
1+exp(b−(|x|−c−))

, if x < 0;

a+·exp(b+(|x|−c+))
1+exp(b+(|x|−c+))

, if x ≥ 0.
(3)

This functional form has the interesting feature that a discrete choice problem in a rational inatten-

tion framework implies a logit specification like this in general (see Woodford, 2008, 2009; Yang,

2015).5

Last but not least, we estimate the hazard function in a non-parametric way as an alternative.

Specifically, we select nine “points” on the grid of price imbalances, equally spaced between -0.5

and 0.5. We then search for the value of the candidate function at the nine grid points, and assign

the values between the grid points by linearly interpolating between them. In other words, the non-

5The discrete choice problem (as presented by (see Woodford, 2008, 2009; Yang, 2015) departs from the linear-
quadratic-Guassian framework used by (Sims, 1998, 2003).
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parametric hazard functions we are considering are a subset of the space of real-valued functions

spanned by a basis consisting of the nine grid points on the space of price imbalances. The hazard

function is then based on the candidate function, h(x) in the following way:

H(x)non-param =


h(−0.5), if x < −0.5

h(x), if x ∈ [−0.5, 0.5]

h(0.5) if x > 0.5

. (4)

We further assume that h′(x) ≤ 0 if x < 0 and h′(x) ≥ 0 if x ≥ 0. However, we notably do

not impose that the hazard function be symmetric around zero. While the functional forms that

we are considering are very flexible, the non-parametric approach naturally imposes even fewer

restrictions on the shape of the function.

3.2 Data and Moments

As in Luo and Villar (2017), we use the micro data underlying the U.S. Consumer Price Index for

the period 1977-2014. Since it contains a very large number of individual prices tracked over time,

this data set enables us to construct statistics related to individual price changes. These statistics

can then be compared with the results of simulating firms adjusting prices according to various

hazard functions.

The first key moment in the estimation is the average frequency of price change. As shown

in equation 1, monetary non-neutrality depends on the frequency of price change, and on the

extensive margin effect. The latter has to do with the extent to which prices that are more mis-

aligned are more likely to change, but the size of this effect cannot be observed. That is why

a model, or a hazard function, is needed, and this is the focus of our exercise. However, the

frequency of price change can be directly observed and estimated with the micro data, and we

ensure that our estimated hazard function matches its correct value. The second moment used is

the average absolute value of price changes (measured as a percentage change, conditional on a

non-zero change occurring). While this statistic does not enter directly into the expressions for

aggregate flexibility, it is key to discipline the variance of the idiosyncratic component of desired

price changes. It has also been consistently found that price changes are large on average (e.g.

Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008).6

These are the basic moments that all sticky price models or hazard functions should match.

And while they are necessary to place restrictions on the parameters of these models (such as the

price adjustment probability, or the width of the inaction bands), it is also worth noting that almost

6Caballero and Engel (2006) only used the frequency and size moments to estimate the hazard function. They
were able to do this by restricting the function to a quadratic function that is potentially asymmetric around 0.
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any model can match these. Another moment that can provide additional information is the frac-

tion of price changes that are smaller than a certain threshold. Midrigan (2011) had shown that

the standard menu cost model cannot match this moment, as under a fixed menu cost firms will

never be willing to pay the cost to carry out small changes. Midrigan’s model provides additional

flexibility that allows it to match this, and this leads it to predict a much higher degree of mone-

tary non-neutrality than the standard menu cost model. Our hazard function will also match this

fraction, with the threshold for a price change being small set at 1% (in absolute value). All the

moments described thus far (the frequency, size, and fraction of small price changes) are what we

denote “unconditional” moments, as they are all averages across time, and do not capture any time

variation in price change behavior.

In Luo and Villar (2017), we had argued that the unconditional moments do not provide enough

information to conclusively discriminate between models that predict very different degrees of

monetary non-neutrality. However, conditional moments that describe the relationship between

inflation and the shape of the price change distribution can be much more informative. Indeed,

Luo and Villar (2017) showed that menu cost models predict that the distribution of price changes

should become less dispersed and more negatively skewed as inflation increases, while other mod-

els (such as the Calvo model, or the rational inattention model under certain parameter values for

the cost of information) do not make these predictions. Our estimation therefore includes these

correlations among the moments to be matched, and we will show that it is precisely these mo-

ments that allow us to reject several types of hazard functions. In addition, we will include the

correlation between inflation and the frequency of price change, as it creates a very clear and sim-

ple distinction between state-dependent models (in which more firms choose to change their prices

when inflation is high) and the Calvo model (in which the same fraction of firms change their

prices in every period, by assumption).

All of the moments mentioned are used as targets to estimate the hazard function. We also

include the average over time of the dispersion and skewness of price changes, to add further

discipline to the shape of the hazard function. Our main results will show that while our different

hazard function estimates match the unconditional moments that have been considered by the

literature before us, they also match the correlations that we have emphasized here and in Luo and

Villar (2017), in a way that no existing model has. In Table 2, we list the moments that we will

target, as well as their values in the data.

Using these moments, we will estimate the hazard function according to the functional forms

specified above, and the non-parametric form. We do this by running simulations for 60,000 firms

and 1,000 periods. Based on the simulated shocks for the firms, a candidate hazard function de-

termines the simulated price changes. We then calculate moments based on the price change

distribution, and compare them to their empirical counterparts. The estimated parameters of the
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Table 2: Target Moments

Full sample 1977-1984 1985 onwards
Avg. Frequency 10.7% 13.1% 10.1%

Avg. Dispersion (IQR) 0.099 0.085 0.103
Avg. Skewness -0.14 -0.02 -0.171

Avg. absolute price change 7.5% 7.6% 7.5%
Fraction of Small Changes 13.2% 14.8% 12.8%

Avg. Frequency of Increases 7.64% 10.3% 6.93%
Avg. Frequency of Decreases 2.97% 2.5% 3.1%

Avg. Size of Increases 7.2% 7.5% 7.1%
Avg. Size of Decreases 7.9% 6.7% 8.2%

Dispersion of Price Increases 0.077 0.073 0.078
Dispersion of Price Decreases 0.087 0.084 0.088

Corr(Frequency,π) 0.69 0.713 0.389
Corr(IQR,π) -0.676 -0.432 -0.498

Corr(Skewness,π) 0.361 0.425 0.023

hazard function then solve the following optimization problem:

min
H(x)

∑
t∈{Moments}

(
1− t

t∗

)2

, (5)

where t is the value of a given moment by a particular hazard function H(x) and t∗ is the empirical

value. 7

Next, we will use a subset of the moments to estimate parametric functions related to some of

the existing models. Although the main result of this paper is the estimates not based on models,

the model estimates illustrate what moments can be matched by hazard functions with different

restrictions. Furthermore, they can be used to evaluate the degree of monetary non-neutrality that

they imply (with which we compare the non-neutrality from our general estimates).

3.3 General Hazard Function

Here we present the main result of our paper: the price adjustment hazard function estimated using

both unconditional and conditional price change moments.

7When implementing this procedure, we place a higher weight on the frequency and size of price change moments.
The reason for this is that we are particularly interested in making the hazard function imply values of these moments
that match the empirical values as accurately as possible. In contrast, for the correlations between inflation and the
different price change moments, we are more interested in matching the sign and the general magnitude. This is
because we believe that it is the signs of the correlations that are informative about the price setting process, while the
exact values are likely to be affected by variables that we do not consider in our framework.
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In all the different cases (the quadratic and logistic forms, and the non-parametric form), this

is implemented by searching for parameters that lead to the best between the simulated and em-

pirical moments. This is done with a two-step procedure. In the first step, the idiosyncratic shock

process parameters (pε and σε) are held constant at a chosen value, and then we solve the mini-

mization problem in equation 5 under various functional forms of H(x) (according to equations

2 - 4). Specifically, we use the pattern search optimization procedure, which is intended for opti-

mization problems in which the gradient of the objective is not defined. This is exactly the case for

our problem, as the values of the model-implied moments can only be computed by simulation.

Davidon (1991) describes this specific procedure in more detail, and we stop the process once

the value of the objective function changes by less than 10−6 across successive iterations. With the

values of the hazard function fixed, in the second step we adjust the values of pε and σε manually to

match the average size and fraction of small price changes. Since there is a very close relationship

between those two parameters and moments, this step is relatively simple to implement manually.

However, if necessary (if the simulated moment values are still considerably off), we re-run the

optimization. Finally, we obtain the the values of pε and σε as well as the parameters in the hazard

functions (equations 2 - 4).

Our procedure is in practice a calibration, as we cannot be certain that the parameter values

that we settle on are the only ones that match the data. Nevertheless, in searching for the values

that best match the moments that we target, we can rule out several types of hazard functions.

In the following sub-section we will explain how the moments that we target, including the sign

restrictions on the moment correlations, make it possible to set values for the parameters of the

hazard function.

In Figure 1, we plot the three different (quadratic, logistic and non-parametric) hazard function

estimates that best matches the moments we had set as targets.89 According to our estimate, there

is a significant probability of price adjustment (7%) at a price gap of 0, which gives the hazard

function a strong ”Calvo feature”. The same was true for the CalvoSs hazard function, but the

estimated probability of zero was lower in that case (because a higher probability at 0 helps to

match the non-negative correlation between inflation and price change skewness). The function

is also considerably asymmetric around 0: for a given absolute value of the price gap, a price

increase is considerably more likely to occur than a price decrease (the slope over the positive

region is much larger than over the negative region). For example, a desired price cut of 10% only

8The quadratic function goes with the following parameter values for the idiosyncratic shock process: ρ = 0.7,
σε = 0.058, pε = 0.485.

9Even though they are estimated with different specifications, the functions are quite similar. While there are
some noticeable differences in the values over certain regions, this occurs at values of the price gap that have a very
low probability density. As we will show, this means that the different functions will imply very similar degrees of
monetary non-neutrality, which is high in all of them.
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has a 10% probability of occurring, while a 10% price increase has a probability of over 20% in

the quadratic hazard function.

What is also striking about this function is that the probability of price adjustment stays rel-

atively low even for large desired price adjustments. Our specification allows for a steep hazard

function, and even for discrete jumps in the probability of price adjustment, but the data rejects pa-

rameter values that yielded high probabilities of price adjustment for small or intermediate values

of the price gap. It is also worth noting that because of the variance of the idiosyncratic shocks, the

price gap will lie between -0.2 and 0.2 in the vast majority of cases, and in this region the probabil-

ity of price adjustment never exceeds 0.4. This is in stark contrast to all menu cost models, under

which the probability of adjustment rises to 1 very quickly. For example, according to our estimate

of the hazard function associated with the CalvoSs model, the thresholds are -9% and 4.4%. As

we will show, this feature of the estimate results from the restriction that the correlation between

inflation and price change skewness be non-negative. Furthermore, it leads the hazard function to

imply a very high degree of monetary non-neutrality.

Figure 2 plots the hazard function estimates for the two sub-samples, 1977-1984 and 1985

onwards. Although price changes (especially price increases) were more frequent before the Great

Moderation, the shape of the estimated hazard functions for the two sub-periods is quite similar.

This is at least in part because the values of the moment correlations are also similar.

In summary, the main features of our estimated hazard function are therefore: 1) a significant

probability of price adjustment at 0 (there is no inaction region), 2) asymmetry around 0, making

price cuts less likely than price increases, and 3) positive slope (implying some state-dependence),

but small enough that the adjustment probability remains low in the region over which price gaps

are concentrated.

Table 3 presents the moments implied by the estimated hazard functions. They match the

unconditional price change statistics as well as the menu cost hazard functions, but succeed in no

longer predicting a negative inflation-skewness correlation.

The three different estimates match almost all the moments very closely. The main shortcom-

ing is in matching the large difference between the frequency of price increases and decreases.

However, the estimates all imply a frequency of increases that is much larger than the frequency

of decreases.10 Next, we explain in more detail how the key parameters of the hazard function are

identified by different moments.

10The target moments corresponding to this that were included in the estimation were the frequency of price
increases and the difference between the frequency of increases and decreases
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Figure 1: All Estimates of the Price Adjustment Hazard Function
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Note: we obtain p0 = 0.069, a+ = 1.224, b+ = 0.208, c+ = 0.244, a− = −0.005, b− = 1.665,
c− = −0.412, σε = 0.058, pε = 0.485 in the estimated quadratic hazard function.

Figure 2: Sub-sample Estimates of the Price Adjustment Hazard Function
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Table 3: Empirical and Simulated Moments

Moment Data Quadratic Logistic Non-Parametric
Avg. Frequency 0.107 0.107 0.108 0.107

Avg. Frequency of Increases 0.076 0.066 0.068 0.068
Avg. Frequency of Decreases 0.030 0.041 0.040 0.039

Avg. Size 0.075 0.075 0.077 0.077
Avg. Size of Increases 0.072 0.075 0.076 0.076
Avg. Size of Decreases 0.079 0.076 0.080 0.078

Fraction of Small Changes 0.132 0.125 0.130 0.135
Avg. Dispersion (IQR) 0.099 0.12 0.12 0.12
Dispersion of Increases 0.077 0.081 0.089 0.088
Dispersion of Decreases 0.087 0.084 0.084 0.087

Avg. Skewness -0.14 -0.24 -0.14 -0.27
Corr(Frequency,π) 0.70 0.91 0.82 0.91

Corr(IQR,π) -0.68 -0.91 -0.88 -0.92
Corr(Skewness,π) 0.36 0.16 0.31 0.11

3.4 Identification of Key Parameters

As presented, the most important features of our estimated hazard function are a positive proba-

bility of free price changes, the asymmetry around zero and a small (but positive) slope on both

sides. In this subsection, we explain how the moments enable us to set values for the parameters

of the hazard function, and why the hazard function must satisfy the aforementioned properties in

order to be consistent with the data.11 We will focus on the flexible quadratic form of the hazard

function, as the parameters have a clear intuitive interpretation in that case.

As the most important moment that distinguishes our estimation procedure from existing ones

is the inflation-skewness correlation, we mainly focus on the discussion about function character-

istics that deliver a positive inflation-skewness correlation. To disentangle the effect of asymmetry

and positive probability of free adjustments from other features, consider a linear version of the

hazard function 2 (i.e. set b+ = b− = 0). Figure 3 plots the inflation-skewness correlation under

different parameter combinations. The first row illustrates the level of inflation-skewness correla-

tion through color plots, in which blue represents negative values and yellow represents positive

11The value of the moments implied by a specific hazard function and idiosyncratic shock process (and how those
values change with the parameters of the hazard function and shock process) can only be evaluated by simulation. It
is therefore not possible to analytically derive the relationship between the moments and parameters. That is why, to
illustrate how are approach is able to pin down the key parameters, we show here how the moments vary in simulations
for different values of the parameters.
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values. The second row illustrates corresponding hazard functions of the parameter combinations

in the first row, while fixing one x-variable or one y-variable (with the color of the function again

indicating the value it implies for the skewness correlation).

Figure 3: Effect of varying asymmetry and free price adjustment opportunity

In the first two columns of Figure 3, the probability at 0 (p0) varies along the x-axis, and the

positive linear term (a+) varies along the y-axis. The negative linear term (a−) is set to vary with

a+ in the first column, such that hazard functions are symmetric. As illustrated in the figure,

the inflation-skewness correlation rises as the linear terms fall or p0 rises. It is relatively difficult

to generate a positive inflation-skewness correlation with symmetric hazard functions unless the

adjustment policy has strong Calvo feature (i.e. the linear terms are very small). However, these

features would, in turn, generate a very low frequency of price change and a very large fraction of

small price changes. In the second column, a− is fixed at a constant value, -0.5, so that the slope

of the hazard function is asymmetric. Here, an intermediate value of p0 makes it possible to match

the non-negative correlation, as the non-negative region has been considerably expanded. This can

also be seen in the last column, where a− is also allowed to vary (allowing for asymmetry) and

p0 is set at the value that we estimate (0.069). Here, if a− is set to be small, a+ can be quite high

(making it easier to match the overall frequency of price change) while maintaining a non-negative

correlation. That is why our estimation procedure settles on an asymmetric hazard function with
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a positive probability of free price change. In addition, this is consistent with the fact that the

frequency of price increases is much larger than that of price decreases in the data.

As presented in the appendix, other patterns in addition to the frequency and size of price

change respond to changes in the hazard function parameter values and are important determinants

of monetary non-neutrality, such as the fraction of small price changes and the inflation-frequency

or inflation-dispersion correlations which provide information on the slope of the hazard function.

For instance, a+ raises the frequency of price increases, but a higher a+ also decreases the average

size of price change (because the density of x is highest for relatively small values). Non-linear

parameters, b+ and b−, on the other hand, raise the slope of the hazard function, but more so for

larger values of x and affect the probability of large price changes occurring, the inflation-skewness

correlation is quite sensitive to them. Finally, the patterns for c+ and c− show that the skewness

correlation is negative whenever these parameters are set to small or intermediate values (less than

0.15 in absolute value). This means that the probability of price adjustment cannot rise sharply for

low values of the price gap (as it does in menu cost models) to be consistent with the data.

This analysis has shown how the different parameters of the hazard function can be identified

from the moments that we use. In particular, matching the fact that the inflation-skewness cor-

relation is non-negative, while simultaneously matching the empirical value of the frequency and

size of price change, places strong restrictions on the slope of the hazard function, and on how

high the probability of price adjustment can be for small and intermediate values of the desired

price gap. These restrictions are such that the slope of the hazard function cannot be too high,

and that there cannot be a large jump in the hazard function for relatively small values of the price

gap (as in menu cost models). Finally, it is worth noting that these restrictions can only be in-

ferred using the information from the inflation-skewness correlation. Conversely, disregarding the

inflation-skewness correlation, and focusing only on unconditional moments (like the average fre-

quency or average size of price change) would mean that a much larger range of hazard function

slopes could be consistent with those moments. That can be seen, for example, in the fact CalvoSs

or quadratic Caballero and Engel style hazard functions can match many of these unconditional

moments, and yet imply much higher slopes than our estimated hazard function. The ability to use

the inflation-skewness correlation to rule out hazard functions with a large slope is, we believe, a

significant advantage of our estimation approach, relative to those that estimate a hazard function

for each time period and thus cannot use the correlation of moments across time (such as (Berger

and Vavra, 2018; Petrella et al., 2018)). Of course, our approach has the disadvantage of not being

implementable period by period.

In Appendix C, we present two hazard functions with different shapes and different implica-

tions for non-neutrality that match the same set of static moments for a particular time period. This

illustrates how the static moments alone may not be sufficient to pin down the key features of the
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hazard function.

3.5 A Hazard Function Approach of Existing Models

To illustrate the connection between the hazard function and sticky price models, we take the haz-

ard function approach to five existing models, namely Calvo, menu cost, the CalvoSS or CalvoPlus

model of Nakamura and Steinsson (2010), Woodford (2009) and Caballero and Engel (2006). De-

tailed discussions on these estimates are provided in Appendix A.

Figure 4: Existing Model Hazard Functions
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Figure 4 illustrates the hazard functions estimated. Table 4 reports selected price change mo-

ments from the simulations under these estimates. The complete simulation results of the targeted

moments of each model are listed in Appendix Tables 7-11. As the results make clear, these hazard

functions are quite successful at matching the targeted unconditional moments, which have been

the focus of most of the literature on sticky prices until now. Indeed, they can all exactly match the

overall frequency and absolute value of price changes, and it is mostly in matching the averages

decomposed into increases and decreases that there are marginal differences between the hazard

functions (as well as the fraction of small price changes). In addition, all the hazard functions

(especially for the constant function corresponding to Calvo price setting) feature a very high de-

gree of state-dependence, which can be seen in the large slope of the hazard functions for small

values of the price gap. However, following our findings in Luo and Villar (2017), the correlations

between inflation and various price change statistics show striking differences between some of

the hazard functions.

This general insight has already been known before our results. Indeed, a common criticism

of the Calvo model is the assumption that firms are randomly assigned the opportunity to change
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Table 4: Moments for Existing Model Hazard Functions

Avg. Freq Size Corr(Frequency,π) Corr(IQR,π) Corr(Skewness,π)
Calvo 0.107 0.03 0.49 0.61

Golosov & Lucas 0.108 0.07 0.85 -0.77 -0.99
CalvoSs 0.106 0.074 0.88 -0.94 -0.98

Woodford 0.104 0.152 0.167 -0.109 -0.29
Caballero & Engel 0.107 0.077 0.95 -0.92 -0.99

Data 0.107 0.075 0.70 -0.68 0.36

their price, with a constant probability of price adjustment. While the Calvo model can easily

match the frequency of price change, and even the average size of price changes (once the model

is augmented with idiosyncratic shocks, as we have done), it was understood that a simple way

to reject this assumption would be to show that the frequency of price change rises with inflation.

This has indeed been shown by Gagnon (2009) and Alvarez et al. (2011a), among others. In this

way, the implications of models at different rates of inflation can provide important information

about how they work and how plausible the assumptions underlying them are. The result on the

frequency-inflation correlation has, on its own, indicated the general class of menu cost models

by highlighting the necessity for state-dependence. However, we show that by looking at the

higher moments of the price change distribution, in particular the skewness, we can find important

information on how much state-dependence is realistic.

In Table 4, we report the values of the correlations from the simulations under the different

hazard functions. One point related to the derivation of the correlations bears clarifying. These

correlations are based on the period-by-period variations in inflation and price change moments

in the simulations. The variations are the result of the shock (ηt to the aggregate component mt,

and all occur with the trend in the aggregate component µ held constant). That is why we think of

these as short-run variations in inflation induced by temporary shocks around a stable trend. This

is the simplest way to evaluate the relationship between inflation and the price change moments.

However, we verify that these relationships are qualitatively the same if, instead of comparing

different periods within the same inflation regime (constant µ), we instead compare the values of

the price change moments across different inflation regimes. We implement the latter by running

simulations under different values of µ (in each case, simulating the economy for many firms and

periods). Under this analysis, it is again true that the dispersion and skewness of price change are

lower in simulations with higher values of µ under the menu cost and CalvoSs hazard functions.

That is, the hazard functions implied by menu cost models also imply that price change skewness

and dispersion will be on average lower in periods of high average inflation. Therefore, whether the

variations in inflation in the data are driven by short-run fluctuations or different regimes (with the
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latter seeming very likely when comparing the period before and after the Great Moderation), the

fact that we observe a positive inflation-skewness correlation allows us to rule out the menu-cost

based hazard functions.

None of the hazard functions are able to match all three correlations. In particular, while the

menu cost hazard functions match the positive frequency correlation, and the negative dispersion

correlation, they imply a counter-factual skewness correlation. As we explain in Luo and Villar

(2017), this has to do with the fact that, in these models, prices adjust with certainty once they

reach a threshold for the mis-alignment. This is a natural consequence of a menu cost, as there will

always be a point beyond which it is worth paying the fixed menu cost to adjust a price. This means

that as the average of the desired price change distribution rises, a big share of the mass of realized

price changes concentrate right beyond the edges of the positive adjustment threshold, inducing

more negative skewness. The negative inflation-skewness correlation predicted is not supported

by the data. The Calvo model does not feature this kind of effect, as the hazard function implied

by it is flat. While this allows it to match the right sign of the skewness correlation, it fails (by

assumption) to match the fact that the frequency rises with inflation.

4 Monetary Non-Neutrality

The degree of monetary non-neutrality, or aggregate flexibility, can be computed given a haz-

ard function and parameters for the shock processes. In Section 2, we presented the analytical

expressions for aggregate flexibility based on the hazard function and the distribution of price im-

balances. We prefer to compute monetary non-neutrality by simulation, as it comes directly from

the simulations carried out and does not require computing the stationary distribution of the price

misalignments. To do this, we compute the variance (across time) of log real consumption, where

log real consumption is defined as ct = mt − pt 12. The aggregate component of the desired price,

mt, simply follows the random walk process described above, and the aggregate price level is

solved for using the hazard function. This is the measure for monetary non-neutrality (the inverse

of aggregate flexibility) most commonly used in the sticky price literature (e.g. Golosov and Lucas

(2007), Nakamura and Steinsson (2010), and Midrigan (2011)), as it measures the variation in real

activity induced aggregate nominal shocks. With full price flexibility, real activity should not vary

as prices would respond one-for-one to aggregate shocks. In the hazard function framework, that

would be the case if the probability of price adjustment was always 1. In Table 5, we present the

results for the Calvo and menu cost hazard functions, the asymmetric quadratic hazard function

based on Caballero and Engel (2006) as well as our non-parametric estimate.

The degree of monetary non-neutrality implied by our estimated hazard function is relatively

12This would be consistent with thinking about mt as the money supply, or as nominal aggregate demand
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Table 5: Monetary Non-Neutrality

Hazard Function V ar(ct)× 104

Calvo 0.537
Non-Parametric 0.312

Logistic 0.334
Flexible Quadratic 0.329

CalvoSs 0.195
Caballero & Engel 0.176
Golosov & Lucas 0.064

high: it is considerably higher than those based on menu cost models, and it is about half as high

as the Calvo The degree of monetary non-neutrality implied by our estimated hazard function is

relatively high: it is considerably higher than those based on menu cost models, and it is about half

as high as that of the Calvo hazard function. These results are generally in line with our findings

in Luo and Villar (2017), which showed that the non-neutrality predicted by the random menu cost

model was also between that in the Calvo and Midrigan models. Our results here reiterate the

fact that taking into account how the shape of the price change distribution varies with inflation

provides evidence in favor of greater non-neutrality than would be expected by simply looking at

unconditional moments.

While we do not analytically evaluate the extensive margin component of aggregate flexibility

from our estimated hazard function (and the distribution of underlying shocks), the expression for

this term in equation 1 helps make sense of the results in Table 5. The extensive margin term

is relatively small under our estimated function, because these hazard functions are relatively flat

(with a small H ′(x)) at the imbalances that have the most density (which are mostly those such

that |x| ≤ 0.1). In contrast, the “Ss” type hazard functions feature a very large increase in the price

adjustment probability at smaller values of x, for which there is a high density, giving them a very

strong extensive margin effect. This is why monetary non-neutrality is high under the estimated

hazard functions, and this result comes from the features of the hazard function that are captured

by our estimation.

5 Hazard Function of Specific Sectors

In this section, we present the estimated hazard function of four sectors: 1) Processed Food, 2)

Unprocessed Food , 3) Household Furnishings and 4) Services. As presented in (Nakamura and

Steinsson, 2008, 2010) and Luo and Villar (2017), there is significant heterogeneity of price change
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statistics across sectors. Given the heterogeneity in various moments of price change distribution

across sectors, it is important to estimate and compare hazard functions of various sectors. Table

6 presents the empirical as well as simulated moments of the four sectors. Figure 5 plots the

estimated hazard function correspondingly.

Figure 5: Sector-Specific Hazard Functions (Non-parametric)
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Note: Food 0: σε = 0.065, pε = 0.55. Food 1: σε = 0.1, pε = 1. Household furniture: σε = 0.06, pε = 0.4.
Services: σε = 0.07, pε = 0.15.

Table 6: Empirical and Simulated Moments - Specific Sectors (Non-parametric)

Proc Food UnProc Food House Furn Services
data fitted data fitted data fitted data fitted

Avg. Frequency 0.119 0.109 0.287 0.240 0.075 0.078 0.070 0.076
Avg. Size 0.107 0.105 0.123 0.151 0.088 0.085 0.072 0.064
Fraction of Small Changes 0.027 0.024 0.017 0.019 0.097 0.095 0.146 0.242
Corr(Frequency,π) 0.80 0.765 0.700 0.566 0.72 0.948 0.59 0.872
Corr(Skewness,π) -0.33 -0.968 -0.2 -0.641 0.01 0.022 0.46 0.560
Corr(IQR,π) -0.69 -0.957 -0.46 -0.659 -0.73 -0.951 0.45 0.312
Avg. Frequency of Increases 0.081 0.068 0.170 0.130 0.052 0.053 0.055 0.053
Avg. Frequency of Decreases 0.037 0.041 0.111 0.110 0.022 0.025 0.011 0.023
Avg. Skewness -0.309 -0.331 -0.169 -0.151 -0.366 -0.561 0.062 0.171
Avg. Dispersion (IQR) 0.126 0.184 0.250 0.268 0.119 0.124 0.069 0.074
Avg. Dispersion of Increases 0.075 0.077 0.163 0.121 0.085 0.082 0.068 0.090
Avg. Dispersion of Decreases 0.101 0.097 0.178 0.132 0.115 0.100 0.061 0.079
Avg. Size of Increases 0.099 0.099 0.119 0.147 0.082 0.082 0.071 0.065
Avg. Size of Decreases 0.124 0.116 0.127 0.156 0.095 0.091 0.072 0.066

Based on the data and the fitted hazard function, it is clear that price adjustment in the food

sectors is more flexible than in the household furnishings or service sectors. This is true in the sense

that the frequency of price change is higher in the food sectors (as already shown by Nakamura

and Steinsson (2008)). However, we find that this is also true in terms of the degree of state-
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dependence, and of the role of the extensive margin in price setting. Indeed, the hazard functions

for the food sectors have steeper slopes for small values of the price imbalance, and resemble the

hazard functions associated with menu cost models. In contrast, the hazard function for services,

in particular, is very flat for negative values of the price imbalance. As in the analysis that we have

presented so far, the differences in the shape of the hazard functions are inferred from the different

signs of the moment correlations across the sectors.

6 Conclusion

As has been shown by Caballero and Engel (2007), the shape of the price adjustment hazard func-

tion is closely related to, and provides important information on, the degree of aggregate flexibility

(or monetary non-neutrality) implied by micro-level price stickiness. While the question of the

significance of monetary non-neutrality has been extensively studied using sticky price models,

less attention has been paid to the hazard function approach to this question. This may be in part

due to the face that, since it is not grounded in optimizing firm-level behavior, there are very few

restrictions that can be placed on the shape of the hazard function a priori. Furthermore, while

Caballero and Engel (2007) have derived the exact relationship between the hazard function and

aggregate flexibility, they did not consider what empirical patterns could be used to discipline the

key features of the hazard function. In this paper, we have attempted to fill this gap, by showing

which moments can be used to estimate this function. In particular, we have emphasized that the re-

lationship between inflation and the shape of the price change distribution provides a great amount

of information on what shape the hazard function can take, and how much aggregate flexibility it

can realistically imply.

We have found that while “Ss” type hazard functions (featuring an inaction region, and a thresh-

old beyond which desired price changes occur with certainty) can successfully match statistics

related to the average frequency and size of price changes, they imply a very strong, and counter-

factual, negative relationship between inflation and price change skewness. Starting from a very

general form for the hazard function, we find one that is able to match both the average size and

frequency moments, and the correlations with inflation. In order to match the correlations, and

the non-negative inflation-skewness correlation in particular, the hazard function has to include

three important properties. First, the probability of a price adjustment at a price imbalance of zero

must be positive. Second, even for relatively large price imbalances (of up to 20%), the probabil-

ity of price adjustment must be considerably lower than 50%. Put differently, this means that the

threshold beyond which price changes are very likely is high. Finally, price increases are overall

somewhat more likely than price decreases, for an equal size of the price imbalance. The first

two properties, in particular, imply that aggregate flexibility is relatively low, and much lower than
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what would be predicted by “Ss” type hazard functions. The degree of aggregate flexibility is,

moreover, broadly consistent with what we find in a random menu cost model in Luo and Villar

(2017).

The main contribution of this paper has been to provide a new estimate for the price adjustment

hazard function using a richer set of data and empirical moments than in Caballero and Engel

(2006), yielding different results on aggregate flexibility. While the hazard function framework

that we have been working under is very flexible, there are several variations to our estimation

procedure that we could attempt. Indeed, a richer set of processes for the idiosyncratic shocks

could be considered, as it would be helpful to know how sensitive the hazard function estimates

are to changes in the shock process. Specifically, we have shown that the skewness of the price

change distribution can provide important information on what shape the hazard function should

take, so it would make sense to work with asymmetric distribution of the desired price change

distribution to see what that could mean for the results. Finally, one could also derive the hazard

functions implied by other sticky price models (in particular imperfect information models other

than the rational inattention model) that have been proposed, and use these to empirically evaluate

the models.

25



References

Alvarez, Fernando, Martin Gonzalez-Rozada, Andy Neumeyer, and Martin Beraja (2011a), “From

hyperinflation to stable prices: Argentina’s evidence on menu cost models.” Working Paper,

University of Chicago.

Alvarez, Fernando, Francesco Lippi, and Luigi Paciello (2011b), “Optimal price setting with ob-

servation and menu costs.” Quarterly Journal of Economics, 126, 1909–1960.

Berger, David and Joseph Vavra (2018), “Dynamics of the u.s. price distribution.” European Eco-

nomic Review, 103, 60–82.

Bils, Mark and Peter J. Klenow (2004), “Some evidence on the importance of sticky prices.” Jour-

nal of Political Economy, 112, 947–985.

Caballero, Ricardo J. and Eduardo Engel (1993a), “Microeconomic adjustment hazards and aggre-

gate dynamics.” Quarterly Journal of Economics, 108.

Caballero, Ricardo J. and Eduardo Engel (1993b), “Microeconomic rigidities and aggregate price

dynamics.” European Economic Review, 37, 697–717.

Caballero, Ricardo J. and Eduardo Engel (2006), “Price stickiness in ss models: Basic properties.”

Working Paper.

Caballero, Ricardo J. and Eduardo Engel (2007), “Price stickiness in ss models: New interpreta-

tions of old results.” Journal of Monetary Economics, 54.

Calvo, Guillermo A. (1983), “Staggered prices in a utility-maximizing framework.” Journal of

Monetary Economics, 12, 383–398.

Caplin, Andrew and Daniel Spulber (1987), “Menu costs and the neutrality of money.” Quarterly

Journal of Economics, 102, 703–725.

Costain, James and Anton Nakov (2014), “Logit price dynamics.” Working Paper.

Costain, James and Anton Nakov (2015), “Precautionary price stickiness.” Journal of Economic

Dynamics and Control, 58, 218–234.

Davidon, William C. (1991), “Variable metric method for minimization.” SIAM Journal on Opti-

mization, 1, 1–17.

Gagnon, Etienne (2009), “Price setting under low and high inflation: Evidence from mexico.”

Quarterly Journal of Economics, 124.

26



Gagnon, Etienne, David Lopez-Salido, and Nicolas Vincent (2012), “Individual price adjustment

along the extensive margin.” NBER Macroeconomics Annual 2012.

Golosov, Mikhail and Robert E. Lucas (2007), “Menu costs and phillips curves.” Journal of Polit-

ical Economy, 115, 171–199.

Klenow, Peter J. and Oleksiy Kryvtsov (2008), “State-dependent or time-dependent pricing: Does

it matter for recent u.s. inflation.” Quarterly Journal of Economics, 123, 863–904.

Luo, Shaowen and Daniel Villar (2017), “The skewness of the price change distribu-

tion: A new touchstone for sticky price models.” Finance and Economics Discus-

sion Series 2017-028. Washington: Board of Governors of the Federal Reserve System,

https://doi.org/10.17016/FEDS.2017.028.

Midrigan, Virgiliu (2011), “Menu costs, multi-product firms and aggregate fluctuations.” Econo-

metrica, 79.

Nakamura, Emi and Jón Steinsson (2008), “Five facts about prices: A reevaluation of menu cost

models.” Quarterly Journal of Economics, 123, 1415–1464.

Nakamura, Emi and Jón Steinsson (2010), “Monetary-non-neutrality in a multi-sector menu cost

model.” Quarterly Journal of Economics, 125, 961–1013.

Petrella, Ivan, Emiliano Santoro, and Lasse de la Porte Simonsen (2018), “Time-verying price

flexibility and inflation dynamics.” Working Paper.

Sims, Chrisotpher A. (1998), “Stickiness.” Carnegie-Rochester Conference Series on Public Pol-

icy, 49.

Sims, Chrisotpher A. (2003), “Implications of rational inattention.” Journal of Monetary Eco-

nomics, 50.

Woodford, Michael (2008), “Inattention as a source of randomized discrete adjustment.” Working

Paper.

Woodford, Michael (2009), “Information-constrained state-dependent pricing.” Journal of Mone-

tary Economics, 56.

Yang, Ming (2015), “Coordination with flexible information acquisition.” Journal of Economic

Theory, 158, 721–738.

27



Table 7: Calvo Hazard Function

Parameter Value Moments
p 0.107 Avg. frequency 0.107
σε 0.055 Avg. absolute price change 0.074
ρ 0.6

Appendix: The Price Adjustment Hazard Function: Evidence from

High Inflation Periods

Shaowen Luo Daniel Villar

Virginia Tech Federal Reserve Board of Governors

A Estimated Hazard Function of Existing Models

The simplest sticky price model is the Calvo model, which yields a constant hazard function. The

only parameter of the hazard function that needs to be set is the adjustment probability. This can

simply be set equal to the overall price adjustment frequency, which in our data is 0.107. While

this fully describes the hazard function, the shock parameters must also be specified. We set the

aggregate shock process to have a drift parameter (µ) of 0.002 and a standard deviation of 0.0037

(to match the time series properties of U.S. nominal GDP). There is no clear reference to calibrate

the parameters of the idiosyncratic shock process (the persistence ρ, and the standard deviation σε),

so we set them to match the average size of price changes and the ratio between price increases

and decreases. The size of price changes, in particular, is largely determined by σε. In Table 7, we

show the parameter values for the Calvo hazard function, and the moments that they imply.

This hazard function can easily match the overall frequency of price change, and the average

absolute value of all price changes (increases and decreases). However, when the frequency and

average size are decomposed into increases and decreases, the match is no longer as good.

We next consider the hazard function corresponding to the Golosov and Lucas menu cost

model, featuring an inaction region. The parameters to estimate here are the bounds of the inaction

region (L and U), and again the idiosyncratic shock parameters. Table 8 shows the parameters we

set, and the moments obtained.

This hazard function matches the overall frequency and average size of all increases quite

closely. The frequency and size of price decreases are slightly too high, but the fact that price

increases are considerably more frequent and slightly smaller on average is captured. Note that in
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Table 8: Ss Hazard Function

Parameter Value Moments
L(lower bound) -0.0827 Avg. frequency of increases 0.077
U(upper bound) 0.0485 Avg. frequency of decreases 0.032

σε 0.028 Avg. size of increases 0.07
ρ 0.7 Avg. size of decreases 0.1

Avg. frequency 0.108
Avg. absolute price change 0.07

Table 9: CalvoSs Hazard Function

Parameter Value Moments
L (left bound) -0.09 Avg. frequency 0.106

U (right bound) 0.044 Avg. absolute price change 0.074
pz 0.037 Fraction of small changes 0.128
pε 0.15 Avg. frequency of increases 0.075
σε 0.071 Avg. frequency of decreases 0.032
ρ 0.7 Avg. size of increases 0.067

Avg. size of decreases 0.093

order to achieve this, the inaction region is very asymmetric around zero, which is also a common

feature in the solution to menu cost models.

We also present the CalvoSs hazard function. This function has one additional parameter rel-

ative to the previous one, as the function features a positive probability of price adjustment for

small price imbalances, which will lead the model to predict the occurrence of small price changes.

Another extension introduced in Midrigan (2011)’s model is that the idiosyncratic variable (firm

productivity, in the model) follows a Poisson process. We introduce this modification by using the

following process for the idiosyncratic component of the desired price:

zit =

ρzi,t−1 + εit, Probability = pε

zi,t−1, Probability = 1− pε
.

This extension allows the model to match the fact that the distribution of price changes in the data

has fat tails, and extending the hazard function set-up in this way has the same effect. This also

adds one parameter to set: the probability of a shock occurring (pε). Table 9 shows the parameter

values resulting from our calibration, and the implied moments.

This hazard function matches the frequency of price increases and decreases quite closely, and
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the fraction of price changes that are small (less than 1% in absolute value). In order to achieve

this, the bounds beyond which price changes are certain to occur are asymmetric around zero. The

difference between the average size of price increases and decrease is again larger than in the data,

but the average size of all price changes is as in the data. In addition, the kurtosis of price changes

(around 4 on average) is closer to the empirical value than the Golosov and Lucas simulations.

Next, we consider the hazard function corresponding to the rational inattention model by

Woodford (2009). An infinite cost of information corresponds to a Calvo-like hazard function,

while free information leads to a trough-shaped one, as in the standard menu cost model (firms

must also pay a fixed cost to conducting price reviews, which means that even when processing

information is free, they will not change prices every period, and there will be an inaction region).

Intermediate values for the cost of information yield smooth functions increasing in the absolute

value of the price imbalance, as illustrated in Figure fig: woodford HF. It is also noteworthy that

these functions are asymmetric around zero, so that for a given size of the price imbalance, a price

increase is more likely than a decrease. In this model, this is due to the asymmetry of the profit

function, which makes it more costly to the firm to have its price be too low. This is consistent

with the hazard function estimated by Caballero and Engel (2006).

Figure 6: Rational Inattention Hazard Functions
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The parameters to estimate are the menu cost variable κ, a cost per unit of information θ and

the standard deviation of the idiosyncratic shock σε. Table 10 shows the estimated parameters and

the moments obtained. While the overall frequency of price change is matched quite closely, the

moments related to the size of price changes are not.

Finally, we re-visit the hazard function estimate of Caballero and Engel (2006). Their approach

was to use the frequency and average size of price increases and decreases to estimate a simple
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Table 10: Woodford Hazard Function

Parameter Value Moments
Information cost θ 1 Avg. frequency 0.104

Menu cost κ 0.6 Avg. absolute price change 0.152
σε 0.07 Fraction of small changes 0.04

Table 11: Caballero-Engel Hazard Function

Parameter Value Moments
λn 10.2 Avg. frequency 0.107
λp 131.5 Avg. absolute price change 0.077
σε 0.065 Avg. frequency of increases 0.077
ρ 0.7 Avg. frequency of decreases 0.03

Avg. size of increases 0.07
Avg. size of decreases 0.10

asymmetric, quadratic hazard function:

H(x)CE =

λnx2 , if x ≤ 0

λpx
2 , if x > 0

.

This form of the hazard function is estimated using the relevant moments from Table 2 (the

values are slightly different than in their paper because their values were based on a shorter time

period), and the results are in the table below. As the previous hazard functions, this one is reason-

ably successful in matching the frequency and size statistics. It is clear that the function has to be

very strongly asymmetric around zero (with price increases being more likely) in order to match the

considerably higher fraction of price increases. Caballero and Engel (2006) had obtained similar

results with their original estimate.

B Key Parameters

Figure 7 shows how various moments change when the value of apos (the linear term in the hazard

function for the positive region) varies from 0 to 2. The other parameters of the hazard function

are held constant at the values recovered from the estimation.

The patterns displayed are intuitive. A larger apos raises the probability of price adjustment

of price adjustment for positive values of x, which raises the frequency of price increases (and
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Figure 7: Effect of varying apos
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of overall price changes). However, a higher apos also raises the slope of the hazard function,

leading to a stronger selection effect (the extent to which larger price imbalances have a higher

probability of adjustment is greater). That is why a smaller share of price changes are smaller than

1% in absolute value. However, the average size of price changes falls because the density of price

gaps (x) is highest for relatively small values. This means that as apos rises, there are proportionally

more small and intermediate price changes (and larger than 1% in absolute value). Finally, a greater

slope clearly lowers both the dispersion and skewness correlations. For the dispersion correlation,

the effect is greatest at relatively small values for the slope parameter (the correlation becomes

almost perfectly negative at around apos = 1), while for the skewness correlation the effect is quite

consistent throughout the region considered.

Figure 8: Effect of varying aneg
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In Figure 8, the same patterns can generally be seen for the slope of the hazard function in

the negative region (aneg). As the absolute value of aneg rises, the frequency of price change and

decreases rise, while the fraction of small price changes falls. In addition, the skewness correlation

falls sharply, and only very small values of aneg are consistent with a non-negative correlation.

Figure 9 below shows the patterns for the parameter setting the probability of price adjustment
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Figure 9: Effect of varying p0

0 0.05 0.1
0.04

0.06

0.08

0.1

0.12

0.14

F
re

qu
en

cy

0 0.05 0.1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

F
re

qu
en

cy
 U

p

0 0.05 0.1
0.06

0.07

0.08

0.09

0.1

0.11

0.12

si
ze

0 0.05 0.1
0

0.05

0.1

0.15

0.2

F
ra

ct
io

n 
S

m
al

l

0 0.05 0.1
-1

-0.95

-0.9

-0.85

-0.8

-0.75

C
or

r(
IQ

R
,P

i)

0 0.05 0.1
-1

-0.5

0

0.5

C
or

r(
S

ke
w

,P
i)

34



at 0 (p0). As expected, the frequency of price change and fraction of small price changes rise with

p0, while the average size of price changes falls. There is also a very strong positive relationship

with the skewness correlation, indicating that p0must be above 0.05 to attain a positive correlation

as in the data. The relation with the dispersion correlation is less clear, and this correlation remains

significantly negative for all values of p0.

Figure 10: Effect of varying bpos
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Figure 10 focuses on the effect of varying the quadratic coefficient bpos in the positive region.

The relations here are not as clear, but it can still be seen that the frequency of price change rises,

and that the size of price change and the moment correlations fall as bpos rises. This parameter

raises the slope of the hazard function, but more so for larger values of x. Since the density of x

is concentrated around relatively small values of x, bpos does not have such a strong effect on most

observable moments. However, since it affects the probability of large price changes occurring,

the skewness correlation is quite sensitive to it.

For bneg (Figure 11, these patterns come out somewhat more clearly. That is because the linear

parameter for the negative region (aneg) is set to be close to zero (a the value that we estimate), so

raising bneg makes a greater difference to the slope of the hazard function in the negative region.

35



Figure 11: Effect of varying bneg
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Figure 12: Effect of varying cpos
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The final set of parameters to consider are the thresholds at which the probability of price

adjustment jumps to 1 (cpos&cneg). Figure ?? shows the results for the positive threshold. What

stands out is the fact that most moments are fairly constant until the value of cpos reaches 10-20%,

after which there are sharp movements. This is again due to the fact that the values of the price

gap are concentrated below these values. As expected, the frequency of price change rises sharply

once the threshold goes below 15%, and the skewness correlation becomes sharply negative. The

patterns for the negative threshold (cnegative) are generally the same.

Figure 13: Effect of varying cneg
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C The Value of Using Moment Correlations

As discussed in section 3, using the inflation-skewness correlation as a target moment in the esti-

mation provides considerable information on the shape of the hazard function. Using this moment

in the estimation prevents us from estimating a hazard function for each time period, as is done

by (Berger and Vavra, 2018; Petrella et al., 2018), as we cannot estimate the value of the correla-

tion period by period. In this appendix, we illustrate an important benefit of using the inflation-
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Table 12: 1984Q2 Moments

Moment Data Quadratic CalvoSS
targeted moments

Avg. Frequency 9.2% 9.0% 8.9%
Avg. Dispersion (IQR) 0.077 0.080 0.075

Avg. Skewness -0.15 -0.15 -0.12
Avg. absolute price change 7.2 7.1% 7.3%

Avg. Frequency of Increases 6.5% 6.4% 6.2%
Avg. Frequency of Decreases 2.3% 2.6% 2.6%

untargeted moment
Corr(Skewness,π) 0.36 0.10 -0.88%

skewness correlation, namely that it allows us to discriminate between different hazard functions

that would appear plausible in a generic period if we only relied on other moments.

We estimate two different types of hazard function: a flexible quadratic function as in equation

2, and a CalvoSS-type function that features a discrete jump in the probability of adjustment be-

yond an inaction region. These two functions are estimated using the same set of target moments

from one particular period in our sample13. The moments used are: the average frequency of price

change, the frequency of price increases, frequency of price decreases, average absolute value of

price changes, and the average (over time) inter-quantile range and skewness of price changes.

These moments are similar to the ones used by (Berger and Vavra, 2018; Petrella et al., 2018), and

their values (in the data, and the values implied by the two different hazard functions) are shown

below:

The two hazard functions estimated with these target moments are shown in figure 14.

Although the two hazard functions have similar values for small price gaps, the probability

of price adjustment according to the CalvoSS-type function rises rapidly for smaller values of the

price gap. An important reason why the estimated functions are different, despite matching the

same static moments, is that the CalvoSS function implies a negative inflation-skewness correla-

tion, while the flexible quadratic function implies a flat inflation-skewness correlation14. All of this

is consistent with the logic laid out at the end of section 3: that a flat or non-negative inflation-

skewness correlation is not consistent with a hazard function with rapidly increasing probability of

13The period is 1984Q2, and it was chosen for this exercise because its values for the selected moments were
broadly similar to those of the average over time.

14Although the inflation-skewness correlation is not one of the target moments in this estimation, the estimated
quadratic hazard function implies a flat inflation-skewness hazard function because the function is quite similar to the
one estimated in section 3 based on all the moments, and the function estimated in 3 implies a flat inflation-skewness
correlation.
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Figure 14: Alternative Hazard Functions for 1984Q2
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Table 13: Monetary Non-Neutrality for 1984Q2 Hazard Functions

Hazard Function V ar(ct)× 104

Quadratic 0.420
CalvoSS 0.332

price adjustment for small values of the price gap.

This exercise illustrates how not considering the inflation-skewness correlation can result in

different estimates for the hazard function. This is quantitatively important, because these func-

tions imply different degrees of monetary non-neutrality, as suggested by the difference in their

shape.

The values of non-neutrality implied by each function are shown in table 13. Although these

differences are not as large as those between the different types of hazard functions shown in our

main results (Table 5), the differences are still substantial.
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