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Abstract

Most research on financial systemic stability assumes an economy in which banks are subject
to exogenous shocks, but in practice, banks choose their exposure to risk. This paper studies
the determinants of this endogenous risk exposure when banks are connected in a financial
network. I show that there exists a network risk-taking externality: connected banks’ choices
of risk exposure are strategically complementary. Banks in financial networks, particularly
densely connected ones, endogenously expose to greater risks. Furthermore, they choose
correlated risks, aggravating the systemic fragility. Banks, however, do have incentives to
form networks to protect their charter values. The theory yields several novel perspectives on
policy debates.
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Introduction

Since the 2008 financial crisis, the relationship between financial networks and systemic stability
has been an important subject of research (Glasserman and Young, 2016). Most of the existing
literature assumes exogenous shocks and studies how these idiosyncratic shocks are propagated
across a financial network.! However, banks” exposure to which particular shock is an endoge-
nous choice variable. For example, a bank chooses between safe borrowers and subprime bor-

rowers, or chooses its exposure on asset-backed securities.?

This paper extends the theory of
interbank networks and systemic stability by incorporating endogenous risk exposure. The in-
troduction of a risk exposure choice changes the received intuition about financial stability in an
important way and yields novel policy implications.

Pioneering works by Allen and Gale (2000) and Freixas et al. (2000) show that connected
networks are more resilient to the contagion of exogenous shocks than unconnected ones due
to a co-insurance mechanism. They conclude that a highly connected banking sector promotes
financial stability. In contrast to the conclusions of the above papers, I show that although shocks
are better co-insured in densely connected networks, banks in those networks initially choose
greater risk exposure. Furthermore, they choose correlated risks. In other words, in densely
connected networks, bank-specific endogenous losses are more likely, and they tend to happen
simultaneously. As a result, the banking sector as a whole becomes more fragile.

The basic intuition for this result relies on a network risk-taking externality. Banks in net-
works, if solvent, partially reimburse failed banks through interbank payments, which I dub
as cross-subsidy. The cross-subsidy reduces banks” upside payoffs (the payoffs when their own
assets succeed). On the other hand, banks” downside payoffs are always zero due to limited
liability. The asymmetric distortion disincentivizes banks from being prudent because they be-
come less interested in increasing the probability of success when trading off risk and return.
This risk-taking distortion is higher when each bank anticipates a higher likelihood of having to
cross-subsidize other banks, that is when its counterparties take greater risks. As a result, banks’
choices of risk exposure are strategically complementary.

Moreover, banks in greater connected networks will be more affected by such risk-taking ex-
ternality. In particular, I show that banks in networks with a greater level of connections, in a
maximum connected complete structure, or in networks with more counterparties will choose
greater risk exposure. The model contributes to the debates on the relationship between a fi-

nancial network’s connectedness and systemic stability.> My result stands in contrast to the

IFor example, Allen and Gale (2000), Freixas et al. (2000) and Gai et al. (2011) consider exogenous liquidity shocks.
Shin (2009), Elliott et al. (2014) and Acemoglu et al. (2015) considers exogenous economic shocks.

2Mian and Sufi (2009) empirically documented an unprecedented growth of subprime credit right before the 2008
financial crisis. They also found a concurrent rapid increase in the securitization of subprime mortgages.

3For “connected-stability” view, Allen and Gale (2000) show that a complete network is more robust to the loss
contagion due to a co-insurance mechanism. For “connected-fragility” view, Acemoglu, Ozdaglar, and Tahbaz-Salehi
(2015) argue that the “complete-stability” relationship does not apply to larger shocks due to a propagation mecha-
nism. Elliott, Golub, and Jackson (2014) find similar non-monotonic relationships for equity networks.



“connected-stability” view that argues for financial networks’ co-insurance benefits. I show that
the losses that are better co-insured, as in Allen and Gale (2000)’s complete network, will be more
likely to endogenously evolve in the first place. Nevertheless, I also show that banks” choices of
risk exposure are not monotonically increasing in the network’s degree of connectedness. On
the one hand, greater connectedness increases a bank’s exposure to more counterparties” risk-
taking externalities. On the other hand, the bank becomes less sensitive to particular other banks’
failure. This nonmonotonicity result is similar to the observation of Elliott, Golub, and Jackson
(2014), who use random networks to show that the ex-post contagion is not monotonic to a
financial system’s connectedness.

Notwithstanding the network distortion, banks do have incentives to form a financial net-
work. With valuable expected present value of their future profits (charter values), banks do
not want to risk defaulting on their deposits (Keeley, 1990; Hellmann et al., 2000). This implies
that even though the interbank connection hurts banks” upside payoffs, being in a network can
protect them from losing their valuable charter values as it provides co-insurance to their depos-
itors. It is also worth noting that this paper’s network risk-taking externality is distinct from the
asset substitution problem as in Jensen and Meckling (1976). A conventional asset substitution
model shows that the level of debt can encourage banks’ risk-taking. Using the machinery of net-
works, my model shows that the topology of the financial system also matters for the risk-taking
conditioning on the same level of debt.

This paper’s model builds on a payment equilibrium model by Eisenberg and Noe (2001),
which has later been utilized by Shin (2008, 2009) and Acemoglu et al. (2015). My innovation
is to allow banks to choose their risk exposure endogenously after anticipating the payment
equilibrium and their counterparties’ risk exposure. One important contribution of this model is
to show that the standard intuition about the stabilizing effect of financial networks reverses with

endogenous risk-taking. The theory also yields several novel perspectives on policy debates:

e Central Clearing Counterparty (CCP). According to LCH-Clearnet, the second-largest clear-
inghouse in the world, a CCP reduces risks by insuring members against counterparty
losses.* In this paper, instead, I show that the risk-taking equilibrium with a CCP is equiv-
alent to the outcome of a maximum connected complete network. This is because the CCP
“forces” each member bank to be exposed to the risk-taking externalities of other banks.
That implies, contrary to popular belief, a CCP may instead increase risk-taking incentives
for banks in originally loosely connected networks. This result is echoed by the concern of
a former SEC Chief Economist, stating “the clearinghouse is subject to considerable moral

hazard and systemic risk”.’

e Network-adjusted Capital Regulation: I show that each bank’s equity buffer has a network

4See LCH-Clearnet’s presentation to the New York Fed, https://www.newyorkfed.org/medialibrary/media/
banking/international/11-LCH-Credit-Risk-2015-Lee.pdf

5See Chester Spatt’s statement to the Senate Banking Committee, https://www.govinfo.gov/content/pkg/CHRG-
112shrg71411/pdf /CHRG-112shrg71411 . pdf


https://www.newyorkfed.org/medialibrary/media/banking/international/11-LCH-Credit-Risk-2015-Lee.pdf
https://www.newyorkfed.org/medialibrary/media/banking/international/11-LCH-Credit-Risk-2015-Lee.pdf
https://www.govinfo.gov/content/pkg/CHRG-112shrg71411/pdf/CHRG-112shrg71411.pdf
https://www.govinfo.gov/content/pkg/CHRG-112shrg71411/pdf/CHRG-112shrg71411.pdf

effect on systemic stability. It not only reduces a bank’s risk-taking (Jensen and Meckling,
1976) but also reduces the risk-taking of other connected banks. A failed bank’s equity first
absorbs part of the loss, which may be otherwise propagated to other banks. That implies
every bank in the financial network anticipates a smaller cross-subsidy to failed banks, and
will ex-ante choose to expose to fewer risks. The result suggests that policymakers should
consider banks’ systemic footprint when deciding their regulatory capital. It provides a
rationale for a recently proposed rule by FRB and OCC.°

e Government Bailouts. Conventional wisdom states that a government bailout, or simply
anticipation of it, is harmful to the systemic stability since it encourages excessive risk-
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taking by reducing banks’ “skin in the game”. I show that a government bailout may
instead reduce connected banks’ risk-taking distortion. In presence of the possibility of a
government bailout, every bank will anticipate a smaller cross-subsidy to its failed coun-
terparties. Hence the network risk-taking distortion is reduced and so does every bank’s

choices of risk exposure.

In the final part of the paper, I endogenize banks” decisions to correlate their risk exposure.
I show that in a financial network, banks will choose to expose to a single systemic risk. In
anticipation of counterpart risks, a correlated portfolio reduces the possibility of a bank having
to cross-subsidize others. Hence the correlated portfolios will increase each bank’s expected
profit. As a result of the correlation, a financial crisis (or simultaneous failure of several banks)
will be more likely to evolve in a connected banking system endogenously. This observation
explains the empirical findings of the Financial Crisis Inquiry Commission (2011) on the 2008
financial crisis, stating “some financial institutions failed because of a common shock: they made
similar failed bets on housing.”

The paper makes several contributions to the topic of systemic stability. In contrast to pre-
vious papers that study the ex-post contagion, this paper provides a tractable model to study
banks’ choices of risk exposure in financial networks. It reverses the previous intuition about the
stabilizing effect of a highly connected financial system. The paper also explains the observation
that connected banks tend to make similar bets, especially in the 2008 global financial crisis. Fi-
nally, the theory yields several novel perspectives on policy debates. It appeals to regulators to
consider the financial system’s topology when designing prudential policies.

Related Literature  This paper is related to a recent and growing literature on the relationship
between the interconnectedness of modern financial institutions and systemic stability. Most re-
search focuses on the question do more connections tend to amplify or dampen systemic shocks.
Glasserman and Young (2016) provide a survey of this literature, and here I will summarize a
few related to the present paper. One branch of literature conforms to a “connected-stability”

®The proposed rule calibrates a bank’s enhanced supplementary leverage ratio (eSLR) to its systemic impor-
tance rather than a fixed leverage standard. See https://www.federalreserve.gov/newsevents/pressreleases/
bcreg20180411la.htm


https://www.federalreserve.gov/newsevents/pressreleases/bcreg20180411a.htm
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20180411a.htm

view: a connected network provides better liquidity insurance against some exogenous shocks
to one individual bank. The view is supported by Allen and Gale (2000), Freixas, Parigi, and
Rochet (2000), Leitner (2005). Allen and Gale (2000) argues that the initial loss will be widely
divided in a complete network. Therefore banks will be less likely to default in such a net-
work. In Freixas et al. (2000), depositors face uncertainties about where they will consume. They
also show that the interbank connections enhance the resiliency. Leitner (2005) argues that the
interbank connection is optimal ex-ante due to the probability of private-sector bailouts.

On the other hand, the “connected-fragility" view is supported by Gai, Haldane, and Kapa-
dia (2011), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), and Donaldson and Piacentino (2017).
Using numerical simulations, Gai et al. (2011) demonstrate that a more complex and concen-
trated financial network may amplify the fragility. Acemoglu et al. (2015) use Eisenberg and Noe
(2001)’s model to study the shock propagation. They conclude that a highly connected complete
network becomes least stable under a large exogenous shock. Donaldson and Piacentino (2017)
study the liquidity co-insurance benefits of long-term interbank debts. None of the above papers,
nevertheless, studies how those initial shocks evolved in the first place.

Some recent papers study endogenous network formations and interbank liquidity. Ace-
moglu, Ozdaglar, and Tahbaz-Salehi (2014) study the network externalities of bilateral lending
on other third parties in the same financial system. They show that although banks internalize
the bilateral counterparty risks through the interest rate, they fail to internalize the externalities
on the rest of the network. In this case, banks may “overlend” in equilibrium. The present pa-
per utilizes the same framework to illustrate another financial network externalities: risk-taking
externalities. Di Maggio and Tahbaz-Salehi (2014) study the interbank intermediation capacity
with moral hazard. They show that the collateral’s liquidity may have a huge effect on haircuts
and intermediation capacity due to the moral hazard’s cumulative nature.

There is sparse research on banks’ portfolio choices when they are connected in financial
networks. Brusco and Castiglionesi (2007) study banks’” contracting behaviors in financial net-
works. They utilize the models of Diamond and Dybvig (1983) to study bankers” private benefit
from gambling and their contracting behaviors with depositors. Contemporaneous papers such
as Elliott et al. (2018) and Jackson and Pernoud (2020) also study banks’” choices of correlation
with each other in financial systems. Elliott et al. (2018) use German banks to show that banks
are more likely to form connections with the ones with similar exposures to the real economy.
Jackson and Pernoud (2020) argue that banks do not internalize the inefficiency resulting from
their counterparties” bankruptcy cost. While the conclusions of their papers are complementary
to mine, the structure of the underlying models is very different. The key innovation of this pa-
per is that it provides the first micro-foundation showing how the financial system’s risk-taking

externality is the equilibrium outcome of the network structure of the banking system.



1 Model

The economy consists of N € IN* risk-neutral banks that are interconnected through the cross-
holdings of unsecured debt contracts d_i]- > 0, where d_i]- is the face value of the interbank debt
that bank j owes to bank i. Assume that all interbank liabilities have equal seniority. Denote
dj = Y};d;; as bank j’s total interbank liabilities. Following Acemoglu et al. (2015), I restrict most
of the analysis to reqular network structures in which the total interbank liabilities and claims are
equal for all banks (i.e., >};dij = >};dji = d for all i). In this way, we abstract away the effect of
network asymmetry (e.g. the existence of a dominant player). Define 0;; = d;;/d; as bank i’s share
in j’s total interbank liabilities. By the regularity assumption, we have };0;; = >, 6;; = 1. Denote
© = [0;;] as an N x N matrix, which determines the network connectedness and will be further
discussed in section 3. A topology O is path-connected if every two nodes in the network can
be connected by some path (Jackson, 2010). It is symmetric if each row of @ has the same set of
elements.

Besides the interbank liabilities, each bank also owes a more senior outside debt v; = v > 0
that needs to be paid in full before the interbank debt. One example of such outside debt is
banks’ retail deposits. In summary, an economy is characterized by (4, ®, N, v), which is publicly
observable. In the initial date, each bank i simultaneously chooses one project Z; among a set of
available projects [Z, Z]. This project Z; will produce a random return of &;(Z;) with the following
payoff distribution.”

(1)

e =

s Zi Wp P(Zl)
0 wp 1-P(Z)

P(Z) € (0,1) is some deterministic function that denotes the probability of project Z’s success.
In the benchmark model, I assume each bank’s project is independent. This assumption is later
relaxed in Section 5. It's worth noting that P(Z;) denotes the success probability of bank i’s
primitive asset rather than the probability of it being solvent (i.e., able to fully pay back its
deposits). As we will see in section 4.1, the probability that a bank is solvent also depends on
the primitive assets of other banks in the network. To avoid confusion, throughout the rest of
the paper, I use the word “successful” to denote that the primitive asset pays off (i.e. & = Z;)
and the word “solvent” to denote that the bank can fully pay back its deposits. To guarantee a
non-trivial banking sector, a bank will be able to pay off its total liabilities whenever its project
succeeds. That implies Z > v + d, and suppose this condition holds throughout the rest of the

paper.8 Let’s further impose the following assumption.

"The payoff function assumes that a failed project generates a 0 return. In the online Appendix, I show that the
main results of the paper still hold if the downside payoff is positive.

8This condition describes reality well. For example, in Morgan Stanley’s 2020 Q1 call report, the bank has an
interest income of 966 million dollars, of which 51 million dollars is interbank interest revenue. The bank needs to
pay 303 million dollars as its total interest expense. This implies that even if Morgan Stanley receives nothing from its
counterparties, it can fulfill its total liabilities, confirming the assumption Z > v + d. The same observation applies to
all current major banks and even Lehman Brothers before its 2008 crash.



ASSUMPTION 1. P(Z) is decreasing in Z, and P(Z) - Z is concave in Z.

The first part captures the fact that high-return projects come with high risks. Each bank
faces a trade-off between project payoff and project safety. A large Z denotes a project with a
large return along with high risks. Therefore, we can interpret Z; as bank i’s choice of its risk
exposure. The Pareto optimal risk exposure for each individual bank is when [E[¢] is maximized:
Z* = argmax, P(Z)Z. An economy’s total surplus will be later formalized in definition 3. The
second part of the assumption is to ensure a unique interior risk exposure. A sufficient condition
is to let P() be concave: the project risk increases at a growing rate in the project return.

After all banks choose their risk exposure Z = (Z3, ..., Zy), the state of nature w = (wy, ..., wN)
will be independently drawn from the distribution according to equation (1).° For each bank,
w; can take one of the two values: success (w; = s) or fail (w; = f). As a result, w € Q = 2N,
After realization of the state of nature, interbank debts’ reimbursement will be determined from
a payment equilibrium. A bank’s total payments depend on what it possesses, which depends
on the interbank payments from other banks. As a result, the payment equilibrium is solved by
a fixed point system. This notion of the payment equilibrium is introduced by Eisenberg and
Noe (2001) and then utilized by Shin (2008, 2009) and Acemoglu et al. (2015). The current paper
differs from theirs in that the payment vector of my model is now parametrized by a vector of
risk exposure Z and a vector of states w. Definition 1 formally defines the payment equilibrium.

DEFINITION 1. For a network structure (d,®, N) and given a risk vector Z, the payment equilibrium
is a vector of functions d*(w; Z) = [d} (w; Z), ..., dy(w; Z)] that solves

.
d* (w; Z) = { min [Z 6% (w; Z) + ei(w;, Zi) — v, d_]} VieN YweQ 2)
j

d¥(w; Z) denotes bank i’s total payments of its interbank liabilities in state w after banks
choosing risk exposure Z. On the right hand side, Zj Gijd;"(w; Z) +ei(Z,w) is bank i’s available
resources for payments to its total liabilities (deposits and interbank debts). The function min|., d|
captures banks’ limited liabilities, so they pay either what they owe or what they have, whichever
is smaller. {.}* = max{.,0} denotes the fact that banks’ interbank payments are non-negative.
It binds when the bank is not solvent (i.e., cannot fulfill its deposits). A bank starts to pay its
interbank liabilities only after it fully fulfills its deposits.

We observe that the payment d7(w;Z) is a function of w. For each state of nature w, we
will have a separate fixed-point system. Therefore, given a risk vector Z, we need to solve 2N
fixed-point systems, one for each state of nature. Before we proceed, one immediate task is to

show that the above payment equilibrium exists and is unique.

LEMMA 1. [Eisenberg-Noe] For any risk vector Z, the payment equilibrium exists and is generic
unique.

9For the remaining text, I refer a vector as in bold letters. For example, x = (xq,..xy) and x_; =
(xl,..,xi,l,xiJrl,..xN)



The proof is a simple utilization of the Brouwer fixed point theorem and is identical to Eisen-
berg and Noe (2000) and Acemoglu et al. (2015). Part of the proof is subsumed in the proof
of proposition 2. Hence, it is omitted here to conserve space. Acemoglu et al. (2015) show
that for each ¢, the fixed point exists and is generic unique. It is identical to say that for every
combination of (w,Z), the fixed point exists and is generic unique. Hence lemma 1 naturally
follows.

After the realization of w and the interbank payments d*(w; Z), each bank’s profit at the final
date becomes

(Zew )+ ei(Z,w) — v~ 4 (@;2)) 3)

The profit I1;(w; Z) depends on the risk exposure of all other banks. In Equilibrium, each
bank choose its own risk exposure Z; to maximize the expected payoff E,[I1;(w; Z)]. The follow-

ing figure summarizes the timeline.

Figure 1: Timeline

choose risk exposure Z; state w € Q) realized payment d*(w; Z) I(w; Z) realized

! ! ! ! [\
T T T T

date 1 date 2 date 3(a) date 3(b)

From equation 3, we can derive each bank’s expected profit as

IE[Hl-(w; Z)] = Y Mi(w; Z) - Pr(w) = Y [Hi(w; 2)-I] Pr(wj)]
we) we) j
The last equality is due to the assumption that each bank’s project outcome is independent.
Each bank chooses its risk exposure to maximize the expected profit. Therefore, the Nash Equi-

librium for banks’ risk exposure can be expressed as the solution of the following fixed-point
system:

Z; we)

¥ = argmax Y [ w; Zi, Z% ) HPr(w]-)] Vie N @)
j

We observe that Z_; enters bank i’s expected profit in two ways: first through the distribution
of the state of nature, Pr(w; = s) = P(Z;), and second through the payment equilibrium d*(w, Z).
In the next section, I will show that the second channel has no effect and bank j’s risk choice

affects bank i’s expected profit only through the distribution of w.



2 Risk-Taking Equilibrium and Network Distortion

It's immediate that we can define a risk-taking equilibrium as every bank chooses its risk expo-
sure simultaneously, anticipating other banks” optimal risk exposure and the resulting payment

equilibrium.

DEFINITION 2. The risk-taking equilibrium in a financial network (d, ®, N) is a pair (d*(w; Z), Z*)
consisting of a vector of payment functions d*(w; Z) and a vector of risk exposure Z* such that:

1. The vector of functions d*(w; Z) is a payment equilibrium for any Z.
2. Foreachie N, Z¥ is optimal and solves equation 4, given d*(w; Z) and Z* .

We first observe that the above risk-taking equilibrium is the solution of two intertwined sys-
tems of equations (equation 2 and 4): when choosing the risk vector Z;, each bank anticipates the
payment equilibrium. When determining the interbank debt payment d*(w;Z), banks’ chosen
risk vector is a parameter.

At first glance, the fixed point solutions to the two intertwined systems look complicated to
derive. Thanks to the following lemma 2 and proposition 1, the existence and analytical solutions
for the risk-taking equilibrium can be obtained.

LEMMA 2. The payment equilibrium d*(w; Z) is constant in the risk exposure vector Z.

Proof. In the Appendix

As a result, we can rewrite d*(w) = d*(w; Z). The idea is that when a bank’s project succeeds,
its total interbank payment is the face value d, independent of any bank’s chosen risk exposure.
On the other hand, when a bank’s project fails, its contribution to the payment system is 0,
also independent of any bank’s chosen risk exposure.!’ Therefore, the payment equilibrium is
independent of the risk exposure vector Z.

As a result of lemma 2, we can disentangle the two intertwined fixed-point systems. We first
solve the fixed-point vectors for the payment equilibrium (equation 2), and then use them to
derive the fixed-point solution for the risk-taking Nash Equilibrium (equation 4).

We also observe that a bank will earn a positive profit only if its project succeeds. Suppose a
bank’s project fails, at most its available resource will be max,, Zj Gijd;‘(w) = d, that is when its
interbank claims get paid in full. That implies this bank will default on its interbank debts (i.e.
2 Gijd]’."(w) — v < d). Therefore the bank with a failed project will earn a zero profit at the final

date. Hence, we can rewrite bank i’s expected profit as:

—i

E|[(w;Z)| = P(2) Y |Zi— 0= (d= Y by (@) | - Pr(w-0)
]

10Although a failed bank’s contribution to the payment system is zero, its interbank payments may be positive.



where w_; € 2N~1 denotes the vector of states for all banks except bank i. With a slight abuse of

notation, I denote w'~* = (wj...,wj_1, s, W1, ...wnN) as the vector that appends bank i’s success to
other banks’ states of nature w_;. Define the function D(Z_;) as

D(Z-j) =), (67— > 9ijd}"(wizs)) -Pr(w-;) (5)
j

w_j

Note that D(Z_;) is non-negative and is parameterized by the network structure (d, ®, N). Plug-
ging D(Z_;) into the bank’s expected profit, we have

E [Hi(w; Z)] — P(Z))(Z; — v) — P(Z)D(Z_;) 6)

Equation 6 consists of two parts. The first term P(Z;)(Z; — v) is the expected payoff of a
stand-alone bank. The second term D(Z_;) is bank i’s expected net interbank payment (or “cross-
subsidy”) to other banks when its project succeeds. This cross-subsidy D(Z_;) can be interpreted
as a risk-taking distortion as it will become clear in the next proposition. Since Z_; enters bank
i’s expected payoff through this distortion, we will be interested to know how it affects bank i’s

choice of risk exposure. Proposition 1 provides the answer.

PROPOSITION 1. The choice of risk exposure Z is strategically complementary among all banks in the
same financial network.

Proof. In the Appendix

The proposition states that a bank’s optimal risk exposure is increasing in the risk exposure
of any other bank in the network. To see the intuition, suppose a counterparty bank, say bank
m, increases its risk exposure. As a result, bank m’s project becomes more likely to fail. When it
does fail, bank i’s cross-subsidies to other banks will increase. This will decrease bank i’s upside
payoff (the payoff when its project succeeds). As a result of this distortion, bank i will be less
interested in increasing the probability of success when trading off risk and return. In other
words, bank i will optimally choose a greater risk exposure in response to bank m’s increased
risk exposure. As a result, banks’ choices of risk exposure are strategically complementary.

Proposition 1 conveys the first important message of this paper. It assigns a new meaning to
the view of the “too connected to fail” in the sense that a bank not only affects other connected
banks through an ex-post loss contagion, as in Allen and Gale (2000), Elliott et al. (2014), or
Acemoglu et al. (2015). It also creates an ex-ante moral hazard problem due to a risk-taking
externality.

With the supermodular property for banks’ choices of risk exposure at hand, we are now able
to establish the existence of the risk-taking equilibrium.

PROPOSITION 2. In any network structure ( d,0,N), the risk-taking equilibrium exists.



Proof. In the Appendix

The proof is a simple application of the Tarski (1955) fixed point theorem to a supermodular
game. In general, the equilibrium is not unique. For the remaining text, let’s focus on the
Pareto-dominant equilibrium when Z is the smallest among the set of fixed points.!!

After establishing the existence of the risk-taking equilibrium, we can now compare connected
banks’ choices of risk exposure with that of a stand-alone bank. The following proposition shows

that the interconnectedness indeed encourages banks to expose to more risks.

COROLLARY 1. A bank in any network structure (d, ®, N) will choose a greater exposure to risks than
a stand-alone bank.

Proof. In the Appendix.

In financial networks, a bank with a successful project pays a net positive amount of cross-
subsidy to failed banks’ depositors. This cross-subsidy is reflected in the network distortion
D(Z_;) of a bank’s upside payoff. As argued by proposition 1, every bank in the financial
network, anticipating this distortion, will increase its exposure to risks. This leads to an amplifi-
cation mechanism for banks’ risk exposure as the increased risk, in turn, increases the distortion.
In equilibrium, no bank will internalize the effect of its risk exposure on other banks” payoffs.
There exists a risk-taking externality, and connected banks will endogenously expose to greater
risks than stand-alone banks.

It’s worth noting that a bank’s risk-shifting incentive in a financial network is distinct from
the asset substitution problem as in Jensen and Meckling (1976), who argue that the level of debt

can encourage risk-taking. To see this, let’s first define the total social welfare.

DEFINITION 3. The social welfare is the sum of the expected returns to all agents in the economy,
namely banks and retail depositors. Formally,

{Z (ZGUd* )+ ei(Z,w)—v—d (w; Z) ) +me [01,291](1* )+ei(Z, w)— d;‘(w)] }

J J

expected return to banks expected return to depositors

The first part is the expected return to banks’ shareholders, and the second part is the ex-
pected return to their depositors. We can rewrite u as

u =1E{Z (ei(Z,w)+Z(9ijd;‘(w)—df‘(w;2)>} :]E{Zel (Z, w } ZP
j i

i

MFocusing on the least exposure equilibrium is to abstract away a self-fulfilling failure. See Elliott et al. (2014)
for more details. They also consider the “best-case” equilibrium, in which as few organizations as possible fail.
Furthermore, all of the following results are robust to any stable equilibrium.
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Comparing the social welfare u with each individual bank’s objective function (equation 6),
we notice that there exist two risk-taking distortions in a financial network: (i) friction between
banks and depositors, and (ii) a risk-taking externality among connected banks, which is the
main focus of this paper. The first distortion is known as the asset substitution problem of Jensen
and Meckling (1976), who show that the level of debt financing can encourage risk-taking. In the
next section, I will show that the topology of the debt also matters for banks” risk-taking even
with the same level of total debt.

3 Network Structures

3.1 Size of interbank liabilities

So far, we have seen that a connected bank will endogenously expose to greater risks due to
a network risk-taking distortion. Let’s now examine the extent of this network distortion for
different network structures. To begin with, I study in this section the effect of the interbank
liabilities” size d on the network risk-taking distortion D(Z_;) and the subsequent equilibrium
risk exposure Z*. I do so by fixing the network topology ©. Lemma 3 shows the result.

LEMMA 3. In any network structure ( d,0, N), the network risk-taking distortion D(Z_;; d) is increas-

ing and concave in the size of interbank liabilities d.

Proof. In the Appendix.

To understand the intuition behind lemma 3, it is helpful to first notice that there are three
types of bank outcomes at the final date. The first type contains banks with successful projects.
Denote them S, = {i : w; = s}. The second type contains banks that failed its project but are still
“solvent” (can fully fulfill their deposits). Denote them F} = {i : w; = f, Zj Gijd;"(w) > v}. Since
those banks can fulfill their deposits, they will contribute back to the interbank payment system.
The third type contains banks that failed its project and cannot fully fulfill their deposits. Denote
them F; = {i: wi = f, 3 Gijd;»“(w) < v} and call them “insolvent” failed banks. The depositors
of those banks will incur losses.

In a network with larger interbank liabilities, successful banks S will expect larger net inter-
bank payments (cross-subsidies) to failed banks (¥~ u FT). Those cross-subsidies are due to the
difference between what a successful bank pays, d, and what it receives, 2 Oijd;‘(w). They are
naturally increasing in the size of the interbank liabilities. As argued earlier, those cross-subsidies
are the causes of the network risk-taking distortion. Therefore, the network risk-taking distortion
is increasing in the size of interbank liabilities.

On the other hand, the larger cross-subsidies also increase the likelihood for a failed bank
to be solvent (F~ — F™*). A solvent failed bank will contribute back to the payment system,
which in turn partially lowers the cross-subsidies that a successful bank needs to pay. As a

result of the above two countervailing effects, the network risk-taking distortion is increasing
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(due to larger interbank payment) and concave (due to more solvent failed banks) in the size of
interbank liabilities. We can then apply lemma 3 to obtain the following equilibrium result on
banks’ choices of risk exposure.

PROPOSITION 3. In any network structure (d,®, N), each bank’s choice of risk exposure Z} is increas-

ing in the size of interbank liabilities d.

Proof. In the Appendix.

Proposition 3 is an equilibrium result stating that banks will choose greater risk exposure if
the network has larger interbank liabilities. The proof is a simple application of the monotone
selection theorem. Lemma 3 shows that each bank will experience a larger risk-taking distortion
resulting from a larger d. This will directly increase each bank’s choice of risk exposure. From the
strategic complementarity result, every bank’s counterparties will also take greater risks, which
in turn feedback to its risk-taking incentives. In equilibrium, a larger size of interbank liabilities
will induce every bank in the network to expose to greater risks.

From the concavity result of lemma 3, we know that the size of interbank liabilities has a
diminishing marginal effect on connected banks’ risk-taking distortion. This implies that d will

eventually cease to have an additional effect on D(Z_;; d) after a certain threshold. The following

corollary formalizes this fact.

COROLLARY 2. In a network with N banks,

(a) For any network topology ©, the network distortion D(Z_;) is bounded from above.

(b) If the network © is path-connected and symmetric, the upper bound is

ez ) - N;l N Gy | L) R B E @)

-

Proof. In the Appendix.

Part (a) states that there exists an upper bound for the network risk-taking distortion. We
have shown that the network risk-taking distortion is the result of a bank’s expected “cross-
subsidy” to failed banks” depositors. That implies the distortion will stop increasing when the
“cross-subsidy” can cover every connected bank’s deposits in every state of nature.

Part (b) gives the analytical solution for this upper bound when the network is path-connected
and symmetric. The maximum distortion in equation 7 has a clean interpretation. Suppose in
some state of nature w, there are f number(s) of banks with failed projects and (N — f) number(s)
of banks with successful projects. The maximum amount of money that needs to be bailed out
is f - v, the total amount of deposits from failed banks. Because of the symmetry, a successful

bank is expected to cross-subsidize an amount of f-v/(N — f). The probability with which f
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banks fail is (Nf_l) [P(Z_)]N"17/[1 — P(Z_,)}f. Taking the expectation, we will have equation 7.
It’s worth mentioning that D™**(Z_;) is independent of the network topology O if the network

is symmetric (e.g. ring or complete networks).

3.2 Complete and Ring Networks

Let’s now turn our attention to two particular network structures: the complete network and
the ring network. The ex-post contagion of those two networks has been studied by Allen and
Gale (2000) and Acemoglu et al. (2015) among others. Here we will study their effects on banks’
ex-ante risk-taking incentives. In a ring network, every bank is connected only to its direct
neighbors. In a complete network, every bank is connected to every other bank. Definition 4
formalizes the above description.

DEFINITION 4. In a financial network with N banks, a ring network and a complete network are defined
as
0, 1

In-1 On-—1

oF =

1
] and @C - m(]l]\]’]\] - IN)

where Oy_1 is a vector of N — 1 zeros, 1y y is a matrix of ones with a dimension (N, N), and

I is an identity matrix. Figure 2 illustrates a complete and a ring network with 5 banks.

Figure 2: a complete and a ring network with 5 banks

750

o Q.fo; @

@ﬁ | @ \
\

o o
@/
(4) \-v@

a) complete network ) ring network
% g

\\

-

We observe that the total debt levels of banks in a complete and a ring network are identical:
d +v. This implies that the conventional asset substitution model, as in Jensen and Meckling
(1976), is not suited to study connected banks’ risk-taking incentives. With the help of my model,
the following proposition compares banks” equilibrium risk exposure in a complete and a ring
network.

PROPOSITION 4. In any network structure (d, N), each bank’s choice of risk exposure Z} is larger in
a complete network than in a ring network.
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Proof. In the Appendix.

The above proposition states that banks in a complete network choose greater risk exposure
than banks in a ring network. The result stands in sharp contrast to the view of Allen and Gale
(2000). They argue that a complete network is better at co-insurance and hence more resilient.
Instead, I show that such co-insurance also creates an ex-ante risk-taking distortion. Banks with
successful projects will anticipate a greater amount of “cross-subsidy” to failed banks” depositors.
As argued earlier, due to such distortion, every bank will have an ex-ante incentive to expose to
greater risks. As a result, in equilibrium, every bank in a complete network chooses a greater
risk exposure.

The same intuition can also be applied to networks with greater numbers of banks. Because
the dimension of @y varies with N, the topology @1 may not be well defined from an arbitrary
On. I hence focus on the maximum risk-exposure of symmetric networks, which, according to

corollary 2.(b), is independent of the network topology.

PROPOSITION 5. In any symmetric financial network, the upper bound for each bank’s risk exposure
Z} is increasing in the number of banks, N, in the network.

Proof. In the Appendix.

Figure 3: Numerical Analysis
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Proposition 5 confirms our conjecture. Figure 3 illustrates the numerical analysis summariz-
ing the effects of network topologies we have studied so far. Figure 3.(a) displays the benchmark
case where N = 10, v = 1, and P(Z_;) = 0.3. It plots the network risk-taking distortion against
the size of interbank liabilities for a complete and a ring network. We observe that the network
distortion is increasing and concave in the size of interbank liabilities, confirming proposition 3.
We also see that the distortion is larger in a complete network (red) than a ring network (blue),
confirming proposition 4. In figure 3.(b), I decrease the number of banks from 10 to 5, and we see
that the maximum risk-taking distortion decreases for both the ring and the complete network,

confirming proposition 5.
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3.3 Other Regular Networks

The machinery of networks also allows us to study the financial structures that are widely ob-
served in the current financial systems, for example, central clearing counterparties (CCP). Ac-
cording to LCH-Clearnet, the world’s leading multinational clearinghouse, a CCP nets down
payment obligations across all the cleared contracts to one payment obligation to the CCP per
member. In other words, it acts as interbank debts’ buyer to all sellers and seller to all buyers.!?
This is equivalent to a core-periphery structure where the core acts as the clearing party with
no asset and no outside liability. In this network, every bank has interbank claims and liabilities
of size d to the core. Figure 4.(a) illustrates such a structure. The next proposition studies the

risk-taking incentives for banks in networks with a CCP.

Figure 4: Other Regular Networks
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PROPOSITION 6. In any network structure (d, ®, N) with a central clearing counterparty, the risk-
taking equilibrium is equivalent to that of a complete network with (N1d, €, N).

Proof. In the Appendix.

From proposition 6, we observe that a CCP has two opposite effects on member banks’ risk-
taking incentives. First, a CCP increases banks’ risk-taking incentives by increasing the network’s
completeness. Through central clearing, each bank is “forced” to connect to every other bank and
become exposed to their risk-taking externalities. This “CCP-riskier” effect is greater for a loosely
connected ring network than a complete network, on which a CCP has no effect. Second, a CCP
reduces banks’ risk-taking incentives by netting out some ex-post payment of interbank debts;
N3

it reduces the size of the connection from d to This effect is equivalent the netting

12Gee LCH-Clearnet’s presentation to the Federal Reserve Bank of New York, https://www.newyorkfed.org/
medialibrary/media/banking/international/11-LCH-Credit-Risk-2015-Lee.pdf
1370 illustrate this point, suppose there are four banks. In one state of nature, three succeed, and one fails. Suppose
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efficiency considered by Duffie and Zhu (2011).}% Summing up the two forces, the effect of a
CCP on banks’ risk exposure depends on the banking system’s original network topology.

Figure 3.c illustrates the effects of a CCP on a complete and a ring network. We obverse
that the effect depends on the original network’s topology. For a complete network, a CCP
can decrease the network risk-taking distortion. This is because banks in a complete network
enjoy more of CCP’s netting efficiency. However, for a ring network with a modest d, a CCP
increases the network risk-taking distortion. This is because the CCP “forces” each member bank
to be exposed to every other bank’s risk-taking externalities. This implies, for loosely connected
networks, the “CCP-riskier” dominates. In those cases, a CCP can create systemic instability, in
contrast to conventional wisdom.

Notwithstanding greater risk exposure, banks still have incentives to join a CCP if they care
sufficiently about their charter values. That is because a CCP can increase the likelihood of their

depositors being paid in full. Section 4.1 will discuss this point in greater detail.

Figure 5: Intermediately Connected Networks

(a) A networks (b) generalized ring networks

d=34
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We have studied the risk-taking externalities for banks in two extreme networks: a fully-
connected complete network and a loosely-connected ring network. Proposition 4 shows that
banks in a complete network will choose greater risks than banks in a ring network. One may
think that banks in an intermediately-connected network will choose a risk-exposure somewhere
between the risk exposure of a complete and a ring network. The basis for this conjecture relies
on the fact that the payment equilibrium of an intermediately-connected network is between that
of a complete and a ring network, as shown by Eisenberg and Noe (2001) and Acemoglu et al.
(2015).1> However, this is not true for the network risk-taking externalities.

d.

Q=

the failed bank is “insolvent”. In this case, the distortion for a successful bank in a complete network is d—2- %J =
However, the distortion for a successful bank in a network with a CCPis d — 3 - %d_ = %J

14Duffie and Zhu (2011) study the CCP’s ex-post netting efficiency by treating banks’ defaults as unrelated events.
The netting efficiency in my model is a (generalized) version of theirs after considering the joint determination of
defaults using the technique of Eisenberg and Noe (2001).

15Gee Eisenberg and Noe (2001) lemma 6 and Acemoglu et al. (2015) proposition 4. To see why, suppose an
intermediately-connected network has a @ that is the A-convex combination of a ring and complete network. Because
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There are two ways to define an intermediately-connected network. A A network is the
convex combination of a ring and a complete network: ®* = (1 — A)@R + A@F. According to
Elliott et al. (2014), A can be interpreted as a financial network’s degree of diversification. From
this definiteness, A = 0 is a ring network and A = 1 is a complete network. Another way to define
an intermediately-connected structure is from the generalized ring network: each bank connects
to r number of adjacent neighbors. From this definiteness, r = 1 is a ring network and r = N — 1
is a complete network. Figure 4.(b) and (c) displays a A = 0.2 network and a r = 2 generalized
ring network. To illustrate the relationship between a network’s degree of connectedness and the
risk-taking distortion it induces, Figure 5 displays the distortion for different parameter values
of A, 7, and d for an 8-bank network. Online Appendix provides a numerical example.

We notice that when d is low, the network distortion is increasing in both A and r. This is
because a higher degree of connectedness increases a bank’s exposure to more counterparties’
risk-taking externalities. This is consistent with the findings of Eisenberg and Noe (2001) and
Acemoglu et al. (2015), who show that the payment equilibrium is increasing in A. However,
when d is large, the network distortion is not monotone in either A or r. In this case, a A network
or a r generalized ring network may have a lower network distortion than a ring network. This
is because as A or r increases, banks become less sensitive to particular other banks’ risk-taking
externalities. This non-monotonicity result is consistent with the observation of Elliott et al.
(2014), who show that contagion is most likely to occur when integration (similar to d) and
diversification (similar to A) are in the middle range. Finally, if d is large enough such that all
failed banks” depositors can be repaid, the degree of connectedness A or 7 is irrelevant (corollary
2.b).

3.4 Non-regular Network: European Debt Cross-Holding Example

So far, the analysis has focused on regular networks where all banks’ total interbank liabilities
and claims are equal. Nevertheless, the model’s tractability allows us in addition to study other
types of networks, including those observed in the real world. In this section, I use the European
debt cross-holding of Elliott et al. (2014) as an example to illustrate the risk-taking equilibrium
when countries are interconnected. The example serves to give conceptual insight and is based on
simplified estimates. The objective of this section is to show how systemic risks can endogenously
evolve in a financial network.

The financial network consists of six European countries” banking systems: France, Germany,
Greece, Italy, Portugal, and Spain. The data on the countries” cross-holdings of debt is directly
taken from Elliott et al. (2014), who collected the information from the BIS Quarterly Review.
I also use their estimate that a country’s debt held internally is two-thirds of its total debt. To

normalize the scale of the economy, I use 20 years of each country’s GDP as the denominator.'®

the RHS of equation 2 is monotone in A, the fixed point solution is monotone in A.
16The GDP is measured in 2011, to be consistent with the cross-holding data. They are $2.861 trillion, $3.744 trillion,
$287.8 billion, $2.292 trillion, $244.8 billion, and $1.479 trillion, respectively.
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The idea is to let each country choose a safe or risky economy with a 0.95 discount factor. The

resulting network structure is given by

[ 0 041 047 066 0.16 0.37] [0.004 | [0.009 |
070 0 039 027 023 047 0.007 0.013
©_ |001 001 0 000 000 000| . 0015 0029
0.16 047 003 0 0.02 0.09 0.011 0.022
0.03 0.00 0.0 000 0 0.07 0.027 0.054
011 011 001 006 059 0 | 0.011 | 0.021 |

To interpret the above matrices, ®;; = 0.70 means that France owes Germany 70% of France’s
total interbank debt, which is d; = 0.438% of France’s 20-year GDP. This means that France owes
Germany $175 trillion ($2.861 trillion x20 x 0.438% x 70%). It's worth noting that the network
is non-regular in that a country’s total inter-country debt does not equal to its inter-country
liability. To study the risk-taking incentives of each banking system, let each country choose a

risk structure consisting of one of the two following choices.

1 wp 11 wp Py

safe economy = { risky economy = {

0 wp O 0 wp 1-—Pigy

There are two choices for each country’s banking system. Choosing a safe economy guar-
antees the country no economic shock. Choosing a risky economy will increase the country’s
output by 10% but reduces the certainty to Py;s,. By construction, if a country is debt-free, it will
choose a safe economy if P,;s, < 1/1.1. For different values of Py;s,, I will explore each country’s
choice of the economy on scenarios when they are (i) interconnected; (ii) stand-alone, or (iii)
debt-free. To construct the counterfactual scenario where each country is stand-alone, I net-out
each country’s inter-country debt and add this to its internal debt v. The following table displays
the identity of countries that choose the safe economy for different values of Py, ranging from
90.2% to 91%.

Countries that Choose Safe Economies

P risky
90.20% 90.60% 90.90% 91.00%
(i) interconnected All All except Greece and Portugal None  None
(ii) stand-alone All  All except Greece and Portugal France None
(iii) debt-free All All All None

We first observe that, as Py;s, grows, it becomes less attractive for countries to choose safe
economies for every scenario. This is because the risky choice’s fundamental becomes better.
We also see that countries choose safer economies when they are debt-free. This reflects the
canonical asset substitution problem that arises from debt financing (Jensen and Meckling, 1976).

Greece and Portugal are more subject to this risk-shifting due to their large amount of debt.
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More interestingly, countries choose riskier economies if they are connected compared with if
stand-alone, confirming corollary 1. If P,s, = 90.90%, France chooses a safe economy when it is
stand-alone, but a risky economy when it is connected. Intuitively, France anticipates its cross-
subsidies to Greece and Portugal and optimally increases its own risk exposure. This illustrates
the concept of endogenous systemic instability resulting from the network risk-taking distortion.

4 Extension and Policy Implications

In this section, I will first illustrate why banks have incentives to form a network in the first
place. In other words, I will show why banks do not want to net out of their interbank claims
and liabilities.!” Then I will extend the benchmark model to study several widely adopted pru-
dential policies that aim at stabilizing the financial system. Understanding the network effects of
those government policies is particularly important in the current growingly connected financial

systems.

4.1 Banks’ Incentives to Form Networks

A natural question is why banks have incentives to form a network in the first place. In fact,
in the benchmark model, a successful bank pays D(Z_;) as cross-subsidies to its counterparties.
It does not benefit from those cross-subsidies when it fails. In this section, I will illustrate that
banks, possessing valuable expected present value of their future profits (charter values), do
have incentives to form interbank connections, notwithstanding the risk-taking distortion. The
introduction of banks’ charter values is relevant to their risk-taking incentives.'® It also describes
reality well: in financial systems with deposit insurance, regulators (e.g., the FDIC in the U.S.)
seize insolvent banks and put them into receivership.19 As a result, banks do not want to risk
defaulting on their deposits to protect their continuation values.

To model this, let ¢; € R* denote bank i’s charter value.”’ The bank can preserve this charter

value if and only if its depositors get paid in full, either through its own project or other banks’

7The literature has proposed several reasons. Acemoglu et al. (2014) argue that banks may form interbank claims
and liabilities because they have heterogeneous investment opportunities. Donaldson and Piacentino (2017) argues
that the interbank debts embed the option to dilute with new debt to a third party. In this section, I will show that
banks have incentives to form networks for co-insurance purposes.

8For example, Hellmann, Murdock, and Stiglitz (2000) show that reducing banks’ charter values can create insta-
bility.

9During the global financial crisis of 2008, FDIC seized over 500 banks. For example, Washington Mutual, the
sixth-largest bank in the United States at the time, ceased to exist after FDIC placed it into receivership.

20For expository purpose, c; is assumed to be exogenous. One can micro-found ¢; as bank i’s discounted future
payoff streams: ¢; = B/(1 — B) - E[I1;]. The result is not driven by this abstraction.
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cross-subsidies. From here, we can rewrite bank i’s expected payoff as

IE[HZ-(w; Z)] = P(Z)) [zi - D(z,i)] +ei— [1 - P(Zi)]Pr(i e Folwi = f) ¢ 8)

"

expected charter value

- p(zi)[zi —v-D(Z_;) +Pr(i e Folwi = f) -ci] +o —Pr(i e Folw: = f) o

where F, = {i : w; = f, Z]' Gijd;"(w) < v} denotes the set of insolvent banks — the ones that
cannot adequately reimburse their depositors. Thus Pr(i € F_|w; = f) is the probability that
bank i is insolvent given that its project fails. For example, if it is in a “fully” connected financial
network as in corollary 2.(b), Pr(i € Fglw; = f) = [];;1— P(Z;). It means that bank i will
become insolvent and lose its charter value only when all of its counterparties fail in addition
to its own failure. In contrast, if bank i is stand-alone, it will lose its charter value simply
when its own project fails. This implies that a stand-alone bank has an expected payoff of
E [HfL(w; Z)] = P(Z;)(Zi —v) + P(Z;) - ¢;. Comparing this with equation 8, we observe that being
in a financial network can increase the probability of a bank being solvent, hence protecting its
charter value.

Because —D(Z_;) + Pr(i € F,|w; = f)-c¢; < c¢;, we can verify that corollary 1 still holds:
connected banks choose greater risk exposure than stand-alone banks. Intuitively, there are two
forces that make a connected bank choose greater risks: (i) a network risk-taking distortion as in
the benchmark model, and (ii) a downside protection from the financial network’s co-insurance.
The second force is new here due to the introduction of banks’ charter values. Both forces induce
banks to become less interested in increasing the probability of success, hence creating systemic
instability.

Let’s now examine whether banks have incentives to form interbank connections in the face
of the network risk-taking distortion. From bank i’s expected payoff, it will prefer to form the

connection (over stand-alone) if

P(Z) [z;* —u— D(Zii)] Yo [1 — P(Z?‘)]Pr(i e Folwi = f) c¢i > P(Z)) [z;k* ot ci] )

where ZF is equilibrium risk-taking of a bank in the network: Z¥ = argmaxlE[Hi(w; Z*)], and
ZF* is the optimal risk-taking of a stand-alone bank: Z#* = argmax P(Z;)(Z; — v + ¢;). The next
proposition shows that condition 9 is possible if banks care sufficiently about their charter values.

PROPOSITION 7. There exists ¢ € R*, such that if min{c;} > ¢, banks have incentives to form a
network.

Proof. In the Appendix.

To decide whether to form a network, banks face three considerations : (i) protection of their
charter values, (ii) cross-subsidy D(Z_;), and (iii) distorted investment Z*. On the one hand,

being in a network can protect banks from losing their valuable charter values, as it provides
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co-insurance to their depositors. On the other hand, due to this co-insurance, banks expect to
cross-subsidize other banks, decreasing their upside payoffs. This also distorts investment and
results in systemic instability. Proposition 7 states that banks will form an interbank network if
they care sufficiently about their charter values.

The proposition is silent on the optimal topology that banks want to connect. A natural
direction for further research is to fully endogenize the network formation while taking into
account the risk-taking externalities.

4.2 Capital Requirement

So far, we have been studying banks” risk-taking equilibrium in financial networks where banks
do not hold any equity. Since the 1980s, regulators began using capital adequacy requirements
to ensure that banks do not take excessive risks (Gorton, 2012). With more “skin in the game”,
banks are less willing to gamble with their equity (Jensen and Meckling, 1976). In this section, I
will extend the benchmark model to study the network effects of banks’ capital when connected
in financial networks.

Now suppose each bank is required to hold equity of size r; = r. The amount of deposits that
a bank needs to borrow decreases to v —r. Let’s assume equity is junior to both deposits and
interbank liabilities. That implies when a bank’s total cash flow is smaller than its total liabilities,

equity holders will be the first to incur a loss. As a result, the payment equilibrium becomes

n
di (w;r) = { min [Z 0id} (w;r) +e(Z,w) —v+r, d_] } Vi (10)
j

The expected profit becomes
E|I1(w; 2)| = P(Z)(Zi =0+ 1) = P(Z)D(Z ;1) (1)
where

D(Z_;;r) = 2 (J—ZQijd]*(w; r)) -Pr(w_;)
j

w_i

We notice that equity enters a bank’s expected payoff in two ways: the upside payoff (Z; — v +
r) and the network risk-taking distortion D(Z_;; ). The next proposition studies how an equity
buffer will affect the network risk-taking distortion.

LEMMA 4. In any network structure (d,®,N;r), the network risk-taking distortion D(Z_;;r) is de-
creasing and concave in the size of equity buffers r.

Proof. In the Appendix.
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If a bank fails, its equity holders will first incur the loss before its depositors or interbank
counterparties. The loss that may be otherwise propagated to other banks will now be absorbed
by this equity buffer. In other words, the equity buffer decreases the cross-subsidy that suc-
cessful banks pay to failed counterparties. The network risk-taking distortion is hence reduced.
Moreover, with greater equity, failed banks are more likely to become solvent, hence contributing
back to the payment system. This further reduces successful banks’ cross-subsidy to other failed
banks. As a result, the network risk-taking distortion is decreasing at a growing rate in the size
of an equity buffer. Figure 6 plots the network risk-taking distortion against the size of the equity
buffer. Lemma 4 immediately implies that banks’ equilibrium risk exposure will be reduced by

an equity buffer.

Figure 6: Equity Buffer
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PROPOSITION 8. In any network structure (d,®,N;r), each bank’s choice of risk exposure Z¥ is
decreasing in the size of equity r.

Proof. In the Appendix.

There are two effects of an equity buffer on banks’ choices of risk exposure. First, an equity
buffer has a direct impact on a bank’s risk-taking. A bank will choose to expose to fewer risks if it
has a higher equity ratio: it is unwilling to gamble if there is more “skin in the game” (Jensen and
Meckling, 1976). More interestingly, lemma 4 shows that equity buffers have a network effect on
reducing systemic risks. An equity buffer curbs failed banks’ loss at the origin, hence mitigating
the network risk-taking distortion. This implies that one bank’s equity can reduce the risk-taking
incentives of its counterparties. Moreover, the strategic complementarity implies that reducing a
bank’s risk-taking will, in return, reduce other banks’ risk-taking.

The finding suggests that when deciding banks’” capital requirement, policymakers should
consider not only its effect on a bank’s own “skin in the game” but also the network effect on
the bank’s counterparties. A recently proposed rule by FRB and OCC steps in this direction
by tailoring leverage ratio requirements to banks’ systemic footprint. The result is also related
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to Erol and Ordofiez (2017), who also study the network response of capital regulation. They
show that a capital requirement can discontinuously discourage interbank connections, hence
reducing the ex-post co-insurance benefits. Combining our results, a tighter regulation can, on
the one hand, decreases the interbank network’s risk-taking externalities. On the other hand, it
can also break the interbank connections if beyond a tipping point. This implies that the effect of
capital requirement on systemic stability may exhibit a phase transition.

4.3 Government Bailout

The 2008 bailout of Bear Stearns and the subsequent Troubled Asset Relief Program (TARP) have
sparked continuing debates among both policy-makers and academics. Government bailouts
have been widely argued to incentivizes harmful ex-ante behaviors (Gale and Vives, 2002; Farhi
and Tirole, 2012; Erol, 2019). In this section, I will study the effect of a government bailout on
banks” ex-ante risk-taking incentives when connected in financial networks.

Similar to Erol (2019), I assume government bailouts only occur in crisis when a large number
of banks have failed.?! I define a government bailout (1, t) as a transfer ¢ from the government to
each failed bank if the number of failed banks exceeds n. With the government bailout in place,
the payment equilibrium becomes

n
df(w;Z) = { min [Z 0ijd; (w; Z) + ei(wi, Z;) + ti(w) — v, d_,]} Vie N YweQ (12)
j

where the transfer is state-contingent and is defined as
ti(w) =t -1(w; = f) - 1(# failed banks > n)

The rest of the definition for the network risk-taking equilibrium remains unchanged from equa-
tion 4. The following proposition shows that a government bailout can contribute to systemic
stability by reducing the network risk-taking distortion.

PROPOSITION 9. In any financial network (d,®,N), each bank’s network risk-taking distortion and

equilibrium risk exposure is reduced if there exists a government bailout.

Proof. In the Appendix.

In contrast to the conventional wisdom, proposition 9 states that a credible government
bailout can instead discourage ex-ante risk-taking. During Crises, a government bailout can
curb the loss before spreading to successful banks. The network risk-taking distortion result-
ing from cross-subsidy is hence reduced. This will encourage connected banks to reduce their
choices of risk exposure.

2IThis definition is consistent with section 101 of the 2008 Emergency Economic Stabilization Act (EESA). It states
“TARP was only part of the government’s response to the crisis” and is “to restore liquidity and stability to the
financial system”. See https://www.treasury.gov/initiatives/financial-stability /about-tarp.

23


https://www.treasury.gov/initiatives/financial-stability/about-tarp

Proposition 9 stands in contrast to Erol (2019), who show that a government bailout can
create systemic instability by encouraging excessive network formation. In his model, banks will
not worry about contagion during network formation if there exists a government bailout. In
contrast, this paper shows that because banks do not worry about the cross-subsidy, they will be
subject to less network risk-taking externalities. While both effects (excessive network formation
and less risk-taking externalities) are reasonable, the net effect of a government bailout is an

empirical question.

5 Correlated Risk Exposure

In previous sections, we assumed that banks’ project outcomes are independent. While this is
a reasonable assumption for local banks serving mortgages in different regions, large national
banks” portfolios may be well correlated. In this section, I model each bank’s decision whether
to expose to correlated risks and explain why a systemic crisis can endogenously evolve due to
interbank connectedness.

Suppose each bank, besides choosing its project outcome’s marginal distribution P(Z;), also
chooses its conditional distribution A; = [A4,...., Any] on the project outcomes of other connected

banks in the network. Define the matrix A = [A;;] as
)\i]' = Pr(wi = s|w] = S)

where 0 < A; < 1. We can interpret A;; as bank i’s choices of correlation with bank j. This notion
of pairwise conditional probabilities matrix was proposed in the IMF’s Global Financial Stability
Review (2009) and later utilized by Bisias et al. (2012).

From the above definition, the pairwise correlation between bank i and j’s projects is

o AijP(Z;) — P(Z;)P(Z;)
P = P(Z)2P(Z,)2[1 — P(Z,)]2[1 - P(Z;)]'"2

In contrast to the benchmark model, each banks’ project outcomes are no longer independent.

Bank i’s expected profit becomes

IE[Hi(w; Zi, Ai)] = P(Z)(Zi —0) = )] <d_— Z9ijd;-k(wi=5)) Pr(w_;) - Pr(w; = s|w_;)
w_; ]

1

The above equation uses the property Pr(w'=°) = Pr(w_;) - Pr(w; = s|lw_;). The dependence

vector A; enters the last term.

DEFINITION 5. The correlated risk-taking equilibrium in a financial network (d,®,N) is a triplet
(d*(w; Z), Z*, A*) consisting of a vector of payment functions d*(w; Z), a vector of risk exposure Z*, and
a matrix of conditional distribution A* = [Al’-"j] such that:
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1. The vector of functions d*(w; Z) is a payment equilibrium for any Z.

+
df (w; Z) = {min [Zéijd]’-“(w; Z) +ei(wji, Zi) — v,d_,]} VieN YweQ
j

2. For each bank i € N, (Z¥,A}) is optimal and solves the following equation, given d*(w;Z), Z*
and A¥,

(ZF,Af) = argmaxlE[Hi(w; Zfi,)\ii)] Vie N
2<Z;<Z
0<Ai<1

3. The pairwise correlations are compatible among all banks. ie. p = [p;;] is symmetric and positive
semi-definite.

Part 2 of the above definition implies that banks are unrestricted in choosing their conditional
dependence with their counterparties. Any bank can choose a project that is arbitrarily correlated
with any other bank: a notion similar to Denti (2018). However, part 3 of the above definition
states that the conditional dependence has to be mutually and jointly compatible in equilibrium.??
Part 3 also implies Al”;/)\;“l = P(Z}) /P(Z]?") for all 7, j. This shows a dependence between A and Z.

In equilibrium, the marginal and conditional distribution should also be compatible.

PROPOSITION 10. In any network structure (d,®,N), the correlated risk-taking equilibrium exists
and every bank’s risk exposure is perfectly correlated: Aj; = 1 for all i, j € N.

Proof. In the Appendix.

Proposition 10 states that connected banks will coordinate to expose to one single systemic
risk. In anticipation of the interbank transfers (cross-subsidy) to failed banks, each bank will
optimally align their project outcomes with other connected banks, for any chosen risk exposure.
By doing so, there will be no downward distortion when the bank’s project succeeds, and hence
each bank will enjoy a higher expected profit. The perfect correlation, however, will be harmful
to the economy as a whole. Since every bank chooses to exposure to one single systemic risk,
there is no co-insurance among economic agents.

Proposition 10 predicts that a financial crisis will be more likely to endogenously evolve in a
highly connected banking system. It confirms the empirical findings of International Monetary
Fund (2009) and Bisias et al. (2012) that there existed a large distress dependence among major
banks before the 2008 financial crisis when the banking system became unprecedentedly con-
nected. The result is also consistent with the observation of Acharya (2009), who argues that

22For example, pij = 1 and pj; = 0 is not compatible because (1) is not symmetric. For another example, pij =1,

. ) 111\, e C e
pjk =1, pix = 0 is not compatible because (% (1) (1)> is not positive semi-definite.
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banks choose correlated investments due to a pecuniary externality: a failed bank reduces coun-
terparties” profitability through an increase in the market-clearing rate for deposits. The result is
also related to recent papers such as Elliott et al. (2018) and Jackson and Pernoud (2020). Using
data on German banks, Elliott et al. (2018) illustrate banks” incentive to form partners with sim-
ilar portfolios. Jackson and Pernoud (2020) show that banks have incentives to minimize the set
of states where they pay debts and have have their values diluted.

6 Discussion and Concluding Remarks

This paper studies banks” incentives to choose their risk exposure in financial networks, where
banks are connected through cross-holdings of unsecured debts. In contrast to previous literature
that focuses on the co-insurance mechanism for exogenous shocks, I show that connected banks
ex-ante choose to expose to greater risks. In addition, they choose to expose to correlated risks,
aggravating the systemic fragility. Nevertheless, banks do have incentives to form a network as
it provides co-insurance to their charter values.

This paper brings about several testable empirical predictions. For example, the strategic
complementarity result suggests that an individual bank’s risk-taking is positively related to
the risks of the entire financial system. This is exactly what Mink, Ramcharan, and van Lelyveld
(2020) have found. Using granular bond portfolio of EU banks, they find that regulatory solvency
shocks (proxied by the banking system’s tier 1 capital ratio) can induce banks to shift into riskier
assets (higher-yielding sovereign debt) and correlated assets (domestic bonds).

Another interesting real-world example of financial networks is the credit union industry.
Individual natural person credit unions (NPCU), like community banks, make loans to and take
deposits from local consumers. Geographically proximate NPCUs often form interbank networks
through a corporate credit union (CCU), commonly referred to as “the credit union’s credit
union”.?> One empirical prediction of this paper is that the NPCUs in highly connected CCUs
choose riskier loan portfolios.

By studying banking networks, this paper sheds new insights on several government policies.
For example, the paper formalizes the conjecture that a CCP, although providing co-insurance
to its member banks, can create moral hazard and systemic instability. The model also suggests
that capital regulation should consider banks” systemic footprint. However, the paper does not
aim to design actual government policies or provide a holistic study of each particular policy. A
natural step for further research is to examine how interbank connectedness can affect different
aspects of government policies.

23In 2005, there were around 7500 NPCUs and 26 CCUs. For more details about NPCUs and CCUSs, see Ramcharan
et al. (2016). They also document that geography proximity is an important factor in explaining the topology of CCUs,
lending variations for empirical identification.
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PROOFS

PROOF OF LEMMA 2: From the assumption Z > v + d, a successful bank’s interbank payment is d; = d,
independent of its choice of risk exposure Z;. A failed bank’s cash flow that will contribute to the interbank
payment system is e; = 0, also independent of its choice of risk exposure. Reordering equation 2 gives us,

df(w;Z) =d Vw; = s

+
d¥ (w; Z) = { D655 (w; Z) — v} Vw; = f 13
j

We can see that the vector of risk exposure Z does not enter the system of equations. As a result, the fixed
point (d (w), ...d% (w)) is constant in Z. O

Before proving proposition 1, it is useful to have the following auxiliary lemma.

AUXILIARY LEMMA: the payment vector d* is weakly increasing in any bank’s cash flow ¢é;. In particular, d* (w)
is higher when any bank’s project succeeds (w; = s) compared with when it fails (w; = f ).24

Proof. The above lemma is identical to Eisenberg and Noe (2000) Lemma 5. The payment equilibrium
(equation 2) is a fixed point solution of a function d* = ®(d*;¢;). Since both min and max operator
preserve monotonicity, ® is increasing in ¢;. By monotone selection theorem (Milgrom and Roberts, 1990
Theorem 1), the fixed point d* is increasing in éj.

O

PROOF OF PROPOSITION 1: Taking the first- and second-order conditions of the equation 6, we have

F(Zi;Z_;) = P'(Z;)(Zi —v) + P(Z;) — P(Z;) D(Z_;) = 0
S(Zi;Z_;) = P"(Z;)(Zi —v) + 2P"(Z;) — P(Z;)"D(Z_;) <0

From assumption 1, we obtain S(Z;; Z_;) < 0. From the total derivative of the FOC, we have

Z_)/0D(Z_) _ P'(Z) 20 (14)
Z;2_3)/0Z; S(Zi;Z_;)

dZ 6P(Z~

Dz o

The above inequality implies that whatever increases D(Z_;) will increase bank i’s optimal Z;. Intuitively,
the distortion D(Z_;) decreases bank i’s upside payoff (the payoff when its project succeeds). As a result,
it will make bank i care less about the probability of success when trading off risk and return.

To see the effect from bank m’s risk exposure Z,, on bank i’s risk-taking distortion D(Z_;), let’s vary
it from Z,, to Z/, with Z!, > Z,,. Let Z" ; denote the new risk-exposure vector that differs from Z_; only

2Throughout this paper, whenever the ordering of a vector is mentioned, it refers to a pointwise ordering. i.e
x>y < x; = y; for all i. For the following text, all orderings are weakly.
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in Z,,. We have

D(Z.;) - D(Z-;)

= 3 Priw i )| Pr(z;)(d Zeljd* =) + (1-Pr(z, )(_—2917"1* w")]

= 3 Pr(w-iw)|Pr(Zu) (d 291]] m=5)) + (1= Pr(Zy) ) (d 29 a@n)]
= Z Pr(w,i,m)[(Pr(Z’) Pr(Zy) )(Zez]d* m= f Zgl] b )] >0

With slight abuse of notation, w_;_,, denotes a vector of w without the element i and m, w™~*° denotes a
vector that appends w_;_,, with w;;, = s and w; = 5, and w™=f denotes a vector that appends w_;_,, with
wm = f and w; = s. The last inequality is from the auxiliary lemma. The inequality states that bank i’s
risk-taking distortion is increasing in bank m’s risk-exposure. To see the intuition, suppose bank m has a
greater risk exposure Z,,, its project becomes more likely to fail. When bank m’s project fails, bank i’s net
interbank payments to other banks will increase due to a greater amount of cross-subsidy. Finally, joining
equation 14 and 15, we have

dz;, = dz; dD(z_;)

iz —dD(Zy) dz_ >0 Vi and —i

O

PROOF OF PROPOSITION 2: The payment equilibrium in any state of nature is the fixed-point solu-
tion to a system of equations (equation 13). Denote the fixed point as d* = ®(d*), where ® a continuous
mapping with a convex and compact domain [0,d]N. By the Brouwer fixed point theorem, the payment
equilibrium d*(w; Z) exists for all w and Z (Eisenberg and Noe, 2001). This establishes the existence of
the payment equilibrium for all w and Z. From proposition 1, dZ;/Z_; = 0 for all i and —i. It implies the
Nash equilibrium is a supermodular game. The domain for the risk-exposure vector [Z, Z]V is a complete
lattice. By Tarski’s theorem, the fixed-point solution to the first order conditions F(Z};Z*;) = 0 exists.
The equilibrium risk exposure Z* = (Z7, ..., Zy;) is this fixed point. O

PROOF OF CORROLARY 1: Denote ZN and Z° as the equilibrium risk exposure of a bank in a financial
network and a stand-alone bank respectively. Formally, they are the solutions to their respective first order

conditions, i.e.

P'(zN)(ZN —v) + P(zN) - P(ZNYD(zZN) =0
P'(Z5)(Z° —v) +P(Z%) =0

By equation 14, dZN/dD(ZN) > 0. We also know that the distortion D(ZV) is positive because P(zZj) <1
for all Z . Therefore, ZN > 75. O

PROOF OF LEMMA 3: For any state of nature w, conjecture that there exists two vectors, a(w) and b(w),
such that d¥ (w) = {a;(w)d — bj(w)v}*. By definition, they should satisfy equation 13. After plugging a(w)
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and b(w) into equation 13, we have (a;,b;) = (1,0) Yw; = s, and

4
d,*(w) = { Z Gi]‘d_-i- Z 91']' (a]-(w)d_— b](w)v) — U}

jeFs

+

= {( Z 6,]61](&)) + Z 9,]>d_7 ( Z GZ]bJ((A)) + 1)0} Yw; = f
jeFd wj=s jeFs

where Fl = {i : w; = f,a;d — bjv = 0}. We call it “solvent” failed banks. Similarly, define F,, = {i :

w; = f,a;d — bjv < 0} as the “insolvent” failed banks, and S, = {i : w; = s) as successful banks. Per the

conjecture, we need VYw; € f,

ai(w) = Z 91]a](w) + Z 91']' (16)
jeFd wj=s

bi(w) = > Oibj(w) +1 (17)
jEFd

Since the RHS of above equations are increasing in a(w) and b(w) respectively, the fixed points exist
by the Tarski’s theorem. The conjecture is hence verified. Let’s rewrite the above equations in a matrix
form for banks in F.

ay(w) =04 a4 (w)+ Ol (18)
by(w)=044by(w)+ 1y (19)

where a4 (w) and b (w) are truncated vectors of a(w) and b(w) with rows that belong to F;. Simi-
larly, @4 4 is a truncated matrix of @ with rows and columns that belong to F, and @ is the truncated
matrix of ® where each row belongs to F,} and each column belongs to S . 1. and 1 are column vectors
of ones with appropriate dimension. Note that @41, ®4, 1, and 1; are all state-contingent. To conserve
space, I suppress their underscript w.

By the Markovian property of @ (row-sum equals to one), wehave @, 1, +O, _1_+ 0,1 =1,.
By equation 18

ay(w)= (I —0, 1) '@ 1 < 1, (20)

After plugging (a,b,) into the network risk-taking distortion, We can rewrite D(Z_;) in a matrix

form as

D(Z_) = Y Pr(w_;) [d‘ - (@isllsd_ + O (asd—byv) + O - o)]

w_

= 3 Pr(w- )@ (14— as)d +b40) + ©; 1-d+ Oyl 0] 1)

w_

Each part of the above definition has a clean interpretation: @;, [(1+ — a)d + b v] is bank i’s subsidy
to “solvent" failed banks , ®;_1_d is bank i’s subsidy to “insolvent” failed banks, and @;;1; - 0 is bank i’s
subsidy to successful banks.

To prove lemma 3, compare three financial networks with same ® and N but different interbank
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liabilities d1, dy, and d3, with d3 —d, = d —d; = e. To prove the monotonicity and concavity, it suffices
to prove D3(Z_;) = D*(Z_;) = D (Z_;) and D*(Z_;) - DY (Z_;) = D3*(Z_;) — D*(Z_;) with inequality
happens somewhere.

Observe that Ff = {i : w; = f,a;d — bv > 0} is a function of d. We hence denote 7' (w), 7, (w),
and F; (w) the set of “solvent” failed bank in state w for network (dy, ®,N), (d»,®,N), and (d3,®, N)
respectively. By monotone selection theorem (see auxiliary lemma), d3*(w) > d?*(w) > d}*(w),Vi e N
and w € Q). That implies ]:f(w) c Ff(w) < F3 (w) for all w € Q. It means that increasing d can make
more failed banks “solvent”.

Let’s consider the following four cases: (1) }T(w) = Ff (w) = Fi (w) for all w. (2) ]-"fr(w) c
Ff (w) = F5 (w) for some w. (3) Fi" (w) = F; (w) = F5 (w) for some w. (4) F} (w) = F) (w) = F5 (w)
for some w.

Case I | (w) = F) (w) = F5 (w) for all w

From equation 18 and 19, it’s easy to see that a’, = 4% = a3 and b'. = b% = b>.. We also have ©;, 1,
0;_, and 1_ unchanged for the three networks. Therefore,

DNZi) = DHZ i) = Y, Pr(w )| @ (14 — a4) (s — ) + ©;_1_(d — )| > 0

DXZi) = DUZ i) = Y, Pr(w )| @ (14 — a4) (o — dy) + ©;_1_(d — dy)| > 0

The last inequality is due to equation 20. With d3 —dp = d» —d; = ¢, we have D3(Z_;) — D*(Z_;) =
D%(Z_;) — DY(Z_;) > 0. Intuitively, this case means that the network risk-taking is linearly increasing in
d, if the change of d does not make additional “insolvent” banks “solvenet”.

Case II: F{" (w) « F) (w) = F; (w) for some w.

We first compare the interbank liabilities d, with d. In some state of nature w, some otherwise “insolvent”
failed banks for (d,®, N) become “solvent” for (d>, ®, N). Denote those banks t1,t5, ..., t7, where T > 1.
Due to continuity of the payment equilibrium in terms of d (equation 2). There exists d; < di < dy... <
. <dg <dy(wherel < S < T), such that when the interbank liabilities d = ds, some bank # is exactly
“solvent”, or ﬁt(w)zfs — Et(w)v = 0. In other words, this margin bank ¢ is “solvent” when de [d;, Js+1) and
“insolvent” when d € (d,_1,ds] respectively. Denote D¥(Z_;) the network risk-taking distortion at those
cut-offs d;. We have

DXZ_;)-D3(Z_;) = Y Pr(w_;) [@,ﬂ(m —a?)(dy—ds) + 0% 1_(d, — JS)] >0

DN Z ) = DY (Z i) = 3 Pr(w )| 85, (14 — 35)(days — ) + 51— (dyy1 —do)| > 0

(22)

where each column of ©} , corresponds to an “solvent” failed bank at the state w in a network with
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d € [d1,d,]. Each column of C:)lS . corresponds to an “solvent” failed bank at the state w in a network with
d € [ds,ds;1]. Each column of o? . corresponds to an “solvent” failed bank at the state w in a network
with d € [ds,dp]. The same notation applies to a4 and ©®;_ as well. They are state-contingent, and to
conserve space we suppress the underscript.

The above inequalities show that D2(Z_;) > DS(Z_;) > ... > D*(Z_;) > DY(Z_;) > DY(Z_;) and

hence the monotonicity result follows. To prove the concavity, we observe that éf i @i]l, = 0,1y

for all s and w. By definition, éf , and % are sub-matrix of éfil and &fl respectively. Hence we have

O, (14 —a5)+0 1_ >0 "1y —ah)+0e5M_  vs=1,.,5-1

After summing every difference in equation 22 and replacing all of RHS with the first line, i.e. the
smallest, we have

DX(Z_;) ~DNZ_;) > . Pr(w_;) [@$+(11+ —a?)(dy—dy) + @2 1_(dy— d‘l)]

Since F," (w) = F5 (w), we have the following identity as in case I,

DXZ_;) - D*(Z_i) = Y. Pr(w_;) [@$+(11+ — @) (ds—dy) + ©2 1_(ds — d‘z)]

w_j

Hence D3(Z_;) — D*(Z_;) < D*(Z_;) — DY(Z_;) and the concavity follows.

Intuitively, this case means that the network risk-taking distortion is increasing in d, but at a slower
rate. This is because the change of d (from d; to dy) makes some “insolvent” banks “solvenet” in some
state of nature.

Case II: 7} (w) = F,f (w) = F; (w) for some w.

The proof is identical to case II with a slight twist. Instead of replacing all RHS of equation 22 with
the first line, we replace it with the last line. Hence, we obtain,

DXZ_;) ~DAZ_;) < Y. Pr(w_;) [@$+(]1+ —d2)(dy—dy) +©2 1_(ds — d‘z)]

DX(Z_;) ~DNZ;) = ). Pr(w_;) [@$+(]1+ —d2)(d,—dy) +©2 1_(d, — d‘l)]

w_j

The monotonicity and concavity result follows.
Case IV: I}t (w) « F)f (w) = F (w) for some w.
The proof is a combination of case 2 and case 3:
DNZ) -~ DAZi) < Y, Pr(w )| @2, (11 — a3 )(ds — o) + ©F 1_(ds — )
w_
DX(Z_;) - DNZ_;) > . Pr(w_,) [@,ﬂ(h — a2y —d) +©2 1_(dy— cz})]
The monotonicity and concavity result follows.
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Because _7_-1+ (w) € Ff (w) € F5 (w) for all w € O, Case I-IV (or some combination of them) exhaust
all the possibilities. Intuitively, the proof shows that the network risk-taking distortion is increasing in d,
but at a slower rate. This is because the change of 4 makes some “insolvent” banks “solvenet” and this
decreases the marginal effect of d. O

PROOF OF PROPOSITION 3: By lemma 1, the Nash Equilibrium for risk exposure Z* is a supermod-
ular game. By lemma 3, bank’s expected profit exhibits an increasing difference in Z; and d. Then the
Pareto-dominant equilibrium risk exposure is increasing in d (Milgrom and Roberts 1990, theorem 6). [

PROOF OF COROLLARY 2:
Part (a): Let © denote the largest path-connected sub-network of ® where bank i belongs to. Suppose
when d = dj, all failed banks in this sub-network are “solvent” in any state of nature. This means
O, 1, +0O 1, = 1,. As a result, equation 20 becomes a4 (w) = (I; — 0,4.) 1041, = 14 for all w.
If this is the case, equation 21 implies D(Z_;;d>) — D(Z_;;dy) = 0 for all dp > d;.

To show the upper bound exists, it remains to prove that d; exits: i.e. there exists a d; such that all
failed banks in © are “solvent” in any state of nature. Because 0 is path-connected by construction, there
is a chain {j,a,b,c, ..., i} from any failed bank j to the successful bank i. Then consider

=

1
(== 0j+0a) +0p) +0c + ...

ja

d‘]mux — (

1
be eab

>
D>

Clearly, d_]’.”“x is finite because the network is path-connected (5],1, Oup, Opc.. are all strictly positive). Suppose
d= d}””x, then even when any bank outside this chain failed and “insolvent” (i.e. unable to contribute to
the chain), bank j can fulfill its deposits and become “solvent”. Intuitively, that means d is so large that
bank i can itself bail out bank j even though they may not be directly connected. Then let’s define

d‘max — maX d_]T'VlﬂX

J

When d; = d"%%, then in any state of nature, all failed bank are “solvent”. This completes the proof. [

Part (b): From path-connectedness, ® = ©. From part (a), D(Z_;) reaches the maximum when ev-
ery failed banks are ‘solvent” in all possible states of nature. In this case, we can rewrite failed banks’
equilibrium payment (equation 13) as

d}’é(w) = Offd;'i(w) + @fs]lsd_— ]lfU Vw
It implies
d;’i(w) = (If - @ff)_l(gfs]lsd_— ﬂf’(’)) = ]lfd_— (If — @ff)_l]lf’() Vw
The interbank payments received by the successful banks are
®sfd;(w)+®ss]lsd_: ]lsd_—@sf(lf—@ff)_l]lfv Vw

That means successful banks’ network distortion vector in state w is D(w) = O rIf—© ff)_lll £0. By the
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network symmetry, the expected distortion conditional on the set f fails will be the ratio of column sum
of D(w) and the number of columns. That is

ﬂé@sf(lf — G)ff)_l]lfv _ ]l}]lf

E[D™** fails] = =
[ |set f fails] 1, i,

0

1,1
Then a bank’s unconditional expected network distortion is > ¢ ]lff—]lfv -Pr(F = f). Again due to the
sts
symmetry, the permutation among the failed banks is irrelevant. Therefore, the maximum network risk-
taking distortion is

mari, \_ v f (N-1 REE I N
D7) ;N_f v ( P )[P(Zl)] [1 P(Z,Z)]

It’s worth mentioning that D™**(Z_;) is independent of the network topology ® when it’s symmetric (e.g.
ring or complete networks). O

PROOF OF PROPOSITION 4: Let’s separately analyze the two types of networks.
Complete Network

In A complete network, failed banks are either altogether “solvent” or “insolvent". That means we have
either F1(w) = F(w) or F(w) = &. Let’s solve the payment equilibrium (equation 16 and 17) in those
two types of states of nature.
1. For w where F1(w) = F(w) (i.e. failed banks are “solvent”),
If w; = f, then aj(w) = 1 and bj(w) = 1/(1 = Xic 7, 0ij)-
2. For w where F T (w) = ¢ (i.e. failed banks are “insolvent”),

If w; = f, then 4;(w) = ij:s 0;; and b;(w) = 1.

By definition, a bank is “solvent” if a;d — b;v > 0. Plugging the solution in case 1, we know F(w)" = F(w)
if and only if d > 1/(1 — 2jer, bij) - v. We can hence solve the payment equilibrium as

. d YV w;=s
d: (w) = 7 +
i ( ) (d— Zw.les%'v) A w; = f
j
where 1/ ij:s 0;j = (N —1) / # of successful banks. We observe that conditioning on m numbers of

banks fail, dl.c(w) is independent of w. We can rewrite the network risk-taking distortion as

DYZ_;) = pa (J— (J— g__:nv)+ : Nni T 1 N]:]1__1 e ) - Pr(m banks failed)
payment from failed banks payment from
successful banks
= N min (M M) - Pr(m banks failed) (23)
2 AN N1
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where
. N -1 m N—1-m
Pr(m banks failed) = ( - ) (1 - p(z_i)) (p(z_i))
Ring Network

For a failed bank, there are three scenarios: (1) its debtor succeeds, (2) its debtor failed but “solvent”, and
(3) its debtor failed and “insolvent”. Let’s solve the payment equilibrium (equation 16 and 17) in those
three types of states of nature.
1. Forie F with w;_1 € S(w),
g;(w) =1and b;(w) = 1.
2. Forie F with w;_ € FH(w),
ai(w) = a;—1(w) and b;(w) = b1 (w) + 1.
3. Forie F with wj_1 € F~ (w),
a;(w) = 0 and b;(w) = 1.

By induction, we have

R d V w;=s
i (W) B (d_—Ki(w)v>+ vV w; f

where K;(w) = min{o : w;_, = s} is the number of failed debtors in the chain before reaching the first
successful bank. Conditioning on m number(s) of banks failed, the total interbank payments received by
bank i is

d
- + _ _
Z Gzl]d]R(w) - (d - U) w.p. (NIXZEm)/(Nm 1) (24)
j

Equation 24 has a clean interpretation. The first line corresponds to the scenario where i’s direct debtor

succeeded. In this case, bank i will receive an interbank payment of d. Conditioning on m number of bank
N-2 N—-1

N —2—m) ( m

scenario where i’s direct debtor failed but its debtor’s debtor succeeded. In this case, bank i will receive an

interbank payment of (d — v)*. The probability of this scenario is ("5°,,) / (N-1). The same logic applies

failed, the probability of this scenario is ( ). Similarly, the second line corresponds to the

till all m banks failed. It is easy to confirm by Hockey-stick identity (emma I.A) that the total probability
in equation 24 is one. Taking the expectation, the network risk-taking distortion of a ring network is

N-1 oom _2_] . .
DR(Z_,) = mZ:l ld - 1; (d-10)" @I B 22_ m) / (N - 1)1 . Pr(m banks failed)

To compare it with the network distortion of a complete network,
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i< 5 [i- (S E-m () () o ) e ]

m=1 1=0
- Pr(m banks failed) (By lemma 1.B)
N-1
- — —_ Jr _ _ _
S o (d - (d B %0) ' Nri T NNl_ I m) -Pr(m banks failed)  (By lemma LA)
ZDC(th)

It's worth noting that DR(Z_;) = DY(Z_;) = D"™(Z_;) if d —mv > 0 for all m. A necessary and
sufficient condition is d > (N — 1)v. It confirms Corollary 2. Finally, by monotone selection theorem, the

equilibrium risk exposure of banks in a complete network is larger than that of banks in a ring network.
O

PROOF OF PROPOSITION 5: By binomial theorem, we can rewrite equation 7 as

_1-PZy)-[1-PZ )N
B P(Z_)

pmax (Z_)) v

It is immediate that dD"™**(Z_;)/dN > 0. By monotone selection theorem, each bank’s maximum risk
exposure Z is increasing in the number of banks N in the network. O

PROOF OF PROPOSITION 6: Denote the central clearing counterparty (CCP) as bank 0. Because the
CCP has no outside liability, it's always “solvent”. Hence, the payment equilibrium when m banks fail can

be solved by
df =d
a3 = (d§/N o)t
dy = (N —m)-di +m-dj

The above fixed point system is solved as

d V w;=s
diCCP(w) = { (d__ N U)+ Vo — f
N—m P

As a result, the risk-taking distortion of a successful bank is

z

-1
7 : N + m - N—m
DECP(Z_,) = (d - (d - mv) - A== ) - Pr(m banks failed)
1 —
payment from failed banks payment from
successful banks

3
I

N-1 -
= El min (Z\rlniz,)n, de) - Pr(m banks failed) (25)
Compare equation 25 with 23, it’s easy to see that D“P(Z_;;d) = D“(Z_;; % d). 0

PROOF OF PROPOSITION 7: Consider a network (d,®, N) where d > v. From definition of the Nash
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equilibrium, the LHS of equation 9 is greater than

A= P(z;k*)[zgk* - D(zi,-)] Yo — [1 - P(zj‘*)]Pr(i e Folw; = f) ¢
Define the RHS of equation 9 as B = P(Z;*) [Zl** —v+ ci]
A—B-=— [1 - P(Z;"*)] [1 - Pr(z’ e Folwi = f)] . — P(ZF*) - D(Z*))

The condition d > v implies Pr(i € F, |w; = f) < 1. This means that it is possible that bank i’s deposits
get fully fulfilled from counterparties’ cross subsidies. Since Z* and Z** are bounded, there exists ¢ € R*
such thatifall¢c; >¢, A— B > 0. O

PROOF OF LEMMA 4 The proof is similar to that of lemma 3. In any state of nature w, the payment
vector for “solvent” failed banks is d* = @, d* + @, s1,d+ 14 (r—0), or

A% = (14 —044) 1 (@4sld + 14 (r —0))

To conserve space, I suppress the state w in d% (w), @4 (w), O4s(w), 15(w) and ]lf(w). We can again
write the risk-taking distortion in a matrix form as

D(Z_;) = . Pr(w_) [@H(LJ —d)+ @i_ﬂ,d‘] (26)

To prove the lemma 4, compare three financial systems with different sizes of equity buffers ry, 72, 13,
with 73 — 7, = 7 — 71 = €. Similar to the proof of lemma 3, we need to consider the following four cases.

Case I: F (w) = F)f (w) = F; (w) for all w

For all w, d* is linearly increasing in r: d3* — d%* = d%* — d'* = (I; — @44 ) '11e > 0. Then it is easy to
see that the network risk-taking distortion is linearly decreasing in r.

DXZ_j) = DXZ_i) = DAZ) - DNZ ) = 3 Prlw )| @i (4 —d3)| <0

Case I: 7} (w) = F) (w) = F; (w) for some w.

We first compare the equity rp with r1. In some state of nature w, some otherwise “insolvent” failed banks
for (d,©, N; 1) become “solvent” for (d3, ®, N; ;). Denote those banks t1, t, ..., t7, where T > 1. Due to the
continuity of the payment equilibrium in terms of r (equation 10), there exists r] <7 < ... < ... <Fg <1y
(where 1 < S < T), such that when the equity buffer r = 7s, some banks t; are exactly “solvent”. As
a result, those margin banks t; are “solvent” when r € (7s,7s41) and “insolvent” when r € (75_1,7;)
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respectively. Denote Ds (Z_;) the network risk-taking distortion when r = #;. We have

DXZi) - DNZ ) = Y, Priw;)| @ (d5F - d%)| <0

DTNZ_) =D (Z_i) = ) Pr(w,,-)[C:)er(tﬁ* - d"j“*)] <0  V¥s=1,.,5-1 27)

w_j
DYZ_;)-DYZ_i) = ) Pr(w—i)[@)h(d}r* - &*)] <0
w_;
Summing above equations, it is easy to see that D*(Z_;) — DYZ_;) < 0. It then remains to prove the
concavity. By construction, @f , is a submatrix of (:)fil We also know b5, = (I, — @5 )71 is a
submatrix of l;f:“l. This is due to the construction that at the cutoff » = 7, bank t can be treated either as
solvent or insolvent. With those two facts, we have

67, (1}, —©%,) 7117 < &5 - @) !

After summing every difference in equation 27 and replacing all of RHS with the ©? i (-2, ) 112
(the largest), we have

DX(Z_;)-DY(Z2_) > Pr(w,i)[@%+ (2 - ®1+)—1112+(—s)]

w_
Since F," (w) = F5 (w), we have the following identity as in case L,
DXZ_) = DHZj) = Y, Pr(w-)| 0}, (1} — ©%,) 113 (~¢)|
o
Hence D3(Z_;) — D*(Z_;) < D*(Z_;) — D'(Z_;) and the concavity follows.
Case IIl: 7} (w) = F,f (w) = F; (w) for some w.

The proof is identical to case II with a slight twist. When comparing r3 with r,. Again replacing all
RHS of equation 27 with ®l-2 Jr(I%r - @i +)’111i, the smallest, we obtain

DXZ_i) - DHZ ) < Y, Pr(w )| 0}, (1B - ©2,) 13 (~¢)| = D*(Z) - D'(Z)
o
Case IV: I}t (w) « F)f (w) « F (w) for some w.
The proof is a combination of case 2 and case 3:
DXZ_)~DUZ ) > Y, Pr(w )| 0} (1B - ©2,) 13 (~o)]
w_;i

DX(Z_;) - D(Z_i) < Pr(w,i)[@%+ (2 - ®1+)—1ni(—s)]

The monotonicity and concavity result follows.
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Because ;" (w) € F, (w) € F; (w) for all w € Q, Case I-IV (or some combination of them) exhaust
all the possibilities. O

PROOF OF PROPOSITION 8: The first and second order conditions of maximizing bank’s expected
profit (equation 11) over its choice of risk exposure Z;:

F(Zi;Z_i,1) = P'(Z;)(Zi + 1 —v) + P(Z;) — P(Z;)'D(Z_;; 1)
S(Zi;Z_i,r) = P"(Z;)(Zi +r —v) + 2P'(Z;) — P(Z;)"D(Z_;;7)

Taking the total derivative of FOC, we have

dzy  gkdb k4 dD

=— = — | -P(Z)—— +P(Z Z_;

dr S(Zi; Z_;,7) —S[ (Z:) ar * ( l)] <0 VZi

where P'(Z;) < 0 is the direct effect of an equity buffer and dD/dr < 0 is the network effect. O

PROPOSITION 9: The proof is similar to the proof of lemma 4. The payment vector for “solvent” failed
banks is

0 (w) = (I —O44) N (O4slsd + 14 (t—v)) if #{ljwy=f}=n
+ Iy =0, ) 1 (O4sld+1,(0—0) if #{l|lw =f}<n

The first line corresponds to the state of nature where a bailout occurs. The second line corresponds to
the other cases. Compare two bailout amount t; and ¢, with t;, —t; = ¢ > 0. We again have two cases: (1)
Fy (w) = Fif (w) for all w. (2) F; (w) = F; (w) for some w.

Denote the bailout event indicator 1[#{l|w; = f} > n] as B(w). Since n < N, B(w) = 1 for some w.
For case 1,

¥ (w) —dV¥ (w) = B(w)(I4 —O14) 1ie YweQ
From equation 26,
D*(Z_i) - DNZ )
= 3 Pr(w )| @ (4 — %) | = 3 ~B(w'™)Pr(w)| @i (L ~ ©+1)ie| <0
w_; w_:
The proof of case 2 is identical to case 2 of lemma 3 and 4. I omit here to avoid repetition. From
monotone selection theorem, banks” equilibrium risk exposure is lower if t = t, compared with ¢;. In-

tuitively, the proof shows that a government bailout decreases the cross-subsidy a successful bank pays
during crises. O

PROOF OF PROPOSITION 10: From equation 13, the payment vector d* is still independent of the risk
vector Z or the correlation matrix A. Let’s compare bank i’s expected profit when it chooses between A;;
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and 7\1] with 7\1] > /\1‘]‘
]E[Hi(w; Zi//N\ij)] —E[Hi(w/‘ Z;, Aij)] =

-] (J—Z9izd7(wi:s’j:s)> Pr(w_i_jlw; = s,wj = 5) - P(Z)) - (Aij — Ay)
1

w_,-_j
+ Z (d_— Z Qﬂd;k (wi=s,j=f)) . Pr(w_,‘_]'|w,‘ =5,w; = f) : P(Zj) : (7\1] - /\,])
w_ij—j 1

Suppose A]’?jk =1 for all k # i. That implies Pr(w_; jlw; = s,w; = s) = 1 if and only if every element
of w_;_jis s. Similarly, Pr(w_;_j|w; = s,w; = f) = 1if and only if every element of w_;_; is f.

By Auxiliary Lemma in the appendix above, 3, 0;d} (w'=571=%) > 3, 0;d} (w'=%~"=/). This implies
bank i’s expected profit is increasing in its project’s dependence A;; with other banks. Therefore, for all Z,
bank i’s choices of conditional dependence with bank j won’t deviate from /\;‘jj = 1. With perfect correla-
tion, the network risk-taking distortion disappears: D(Z*;,1) = 0 for all Z*,. Hence, the equilibrium is
characterized by

As=1 VijeN
P/(Z¥)(ZF —v)+ P(ZF) =0 VieN

And p;"]. =1foralli,j. O
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Online Appendix

A. Omitted Proofs

LEMMA LA [Hockey-stick Identity]
For all n > r, we have

(i) Z(ﬁ)=(’:ﬁ) and (i) j(ﬁ)(n_z)=(’:ﬁ)f;2’

I=r I=r

PROOF
We proceed by induction. For an initial n = r + 1

R
(ii) (:) £l <rt1) £0 = (:ﬁ) *riz ~1

The above equations are to confirm the initial conditions hold. Now suppose that for n = k, the two equality holds.

For n = k + 1, we have
k+1 k
. ) l k+1 k+1 k+1 k+2
o X() =20+ ()= (0)-C1)
k+1 k
.. ) ) k+I1\k—r k+1 k+2\k+1—7r
(i) <r)(k+1*l)*2<r)(k”*l)’(r+1>r+2+<r+1)*(r+1> r+2

Q.E.D by induction. O

LEMMA LB [Triangle Inequality]
For any sequence {A;} and B € R with B < max;(4;), we have

S(4) > (Sa-s) -

1

PROOF Without loss of generality, let Ay = max;(A4;)

Z(Ai)Jr—B =3 (Ai>+ +(Ag—B)" = (ZAI-—B)Jr

i i#0

43



B. Numerical Example: intermediately-connected networks

We consider a ring, a A = 0.5, and a complete net-

o
©
T

o
[ee]
T

o
3
T

(=}
(&)}
T

I
'S
T

network distortion for risk taking, D
o
(2]

o
w

: Ring Network
i — A = 1/2 Network
s Complete Network |

I 1 I 1 I

work with four banks. Let the bank of interest be
bank i = 4. The purpose of this section is to numer-
ically solve the network risk-taking distortion for the
three kinds of networks. Let P(Z;) =05 Vj#1i.

0 0 0 1 0 1/6 1/6 2/3
ok _ |1 0 00 A_ |23 0 16 1/6
‘ 0100 1/6 2/3 0 1/6
0 0 1 0 1/6 1/6 2/3 0
o0 13 1/3 1/3
oc_ |13 0 1313
13 1/3 0 1/3
113 13 1/3 0

1 1.5 2 2.5 3
size of interbank liabilities, d

(i) Small d (d = 1.5)

=(s,s,s,s)
DR(w) = (15 15 15 15)~9£§+1.5:0
DMw) = ( 15 1.5)-64A+1.5=0
P(w) = — (15 15 1.5)~6§+1.5=0
w=(s,f,s,59)
DR(w) = — 05 15 15)-0f+15-0

05 15 15)-0} +15-1/6
05 15 15)-0+15-1/3

05 0 15)-68+15-15
025 0 15)-0} +15=29/24
0 0 15)-65+15=1

(@=-(05 0 15 15)-68+15-0
DMw)=~(025 0 15 15)-0}+15=11/24
(@-=-(0 0 15 15)-6§+15-1

3.5

define BR BA, and BC as vectors that represent the
last row of each ©.

w = (s,s,f,s):

DR(w) = (15 15 05 1.5)~e}f+1.5:1
DMw) = (15 15 05 1.5)-94A+1.5=2/3
DC(w) = (15 15 05 1.5)~6§+1.5=1/3
w = (f,s,s,5):

DR(w)=—(o.5 15 15 1.5)-6§+1.5=0
D/\(w)=—(05 15 15 1.5)~6§+1.5=1/6
Dc(w):f(O.S 15 15 1.5)-9§+1.5:1/3
w = (f,s,f,s):

DR(w):—(O.S 15 05 1.5)~6}}+1.5:1
D/\(w)=—(03 15 03 1.5)-92+1.5=1
DCw)==(0 15 0 15)-6§+15=1
w=(ff fs):

DRw)=—-(05 0 0 15)-0f+15-15
DMNw) = (0 0 0 15)-0}+15=15
DC(w) (0 00 15)-95+15_15

Let m denotes the number failed banks. Conditioning on bank i succeeds, Pr(m = 0) = %, Pr(m =1) = %, Pr(m =

2) = 8, and Pr(m

DR =Pr(m =0)-0+Pr(m=1)- 1 +Pr(m =
DA =Pr(m=0)‘0+Pr(m=1)~%+Pr(m=
DC:Pr(m:0)~O+Pr(m:1)~%+Pr(m:
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=3)= 1. From here we can calculate the network risk-taking distortion as
2)-2 +Pr(m=3)-
2) - g + Pr(m =
2)-1+Pr(m=3)-

3)-
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= —
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(i) Large d (d = 2.5)

w = (s,8,5,5)

DR(w) = — (1.5 15 15
DMw) = — (1.5 15 15
PCw) =~ (15 15 15
w=(s,f,s,59):

DR(w) = — (2.5 15 25
DMw) = — (2.5 15 25
D (w) = — (2.5 15 25
w = (S, ,f,S)

DR(w) = — (25

DMw) = — (25

DC(w) = — (25

w = (f,f,s5s):

DR(w) =

0
DA = Pr(m = 0) -0+ Pr(m

As we see from this example, if d = 2.5, bank 4’s risk-taking distortion is not monotonic to the degree of connect-

1.5
1.5
1.5

2.5
25
25

1)~%+Pr(m
:Pr(m:0)~O+Pr(m:1)~%+Pr(m: )-1+Pr(m

)

——

)

S———

R +25=0
0} +25=0
0 +25=0
OR+25=0
-0} +25=1/6
05 +25=1/3

15 05 25)-08+25-2
19/16 5/8 25)-0% +2.5 = 47/32
11 25)-6§+25-1

(@) = —(
DMw) = — (19/16 5/8 2.5 2.5) 0} +25=17/32
(@-=-(1 1 25 25)-6§+25-1

w=(s,s, f,s)

DR(w)=— (25 25 15 2.5) OR425=1
DMNw) = — (2.5 25 15 2.5) 0} +25=2/3
DC(w) = — (2.5 25 15 2.5) 0$ +25=1/3
w = (f,s,s,5):

DR(w) = — (1.5 25 25 2.5) R +25=0
DMw) = — (1.5 25 25 2.5) ) +25=1/6
D (w) = — (1.5 25 25 2.5) 0§ +25=1/3
w = (f,s,f,s):

DR(w) = — (1.5 25 15 2.5) OR4+25=1
DPMw) = — (1.3 25 13 2.5) 0} +25=1
DC(w) = — (1.5 25 1 2.5) 0$ +25=1
w=(ff f9):

DR(w) = — (1.5 05 0 2.5) R +25 =25
DMw) = — (2/3 0 0 25)-6}+25=43/18
PC(w) = — (o 00 2.5) 0§ +25=25

)0+ Pr(m =1)- § +Pr(m =2) -1+ Pr(m = 3)-25 = 3

43
) 14+Pr(m=3)- 15 =
2

edness A: the distortion of a A = 0.5 network is lower than that of a complete and a ring network.
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C: Robustness

Relax the Assumption of zero downside payoff

In this section, I will show that the network risk-taking externality is not dependent on the assumption that a
failed project generates 0 gross return. To do so, let’s assume a project Z; will produce a random return of ¢;(Z;) with
the following payoff distribution.

s -1 Zi wp P(Z)
! e wp 1-P(Z)

where € < Z; is a constant. Consider the following two parameter specifications.

(a) Suppose € < v
The payment equilibrium (equation 13) becomes

df (w;Z) =d Yw; =s
+
df (w;Z) = {Zéijd;“(w;Z) +sv} Vw; = f
j

This implies Lemma 2 still holds: the payment equilibrium d*(w; Z) is constant in the risk exposure vector Z.
Equation 6 is the same as before because any failed bank will default on its interbank debts (i.e. Z]- 0; jd;-" (w)+e—v<
d). As a result, the proof of corollary 1 will be the same as before.

(b) Suppose € = v
From equation 2, we know that the payment equilibrium will be

df(w;Z)=d YieN YweQ

All banks are solvent in all states of nature. Then there is no risk-taking externality resulting from banks’ cross-
subsidy. However, this also implies that financial networks will not exist in the first place. To see why, consider the
setup in Section 4.1. The following equation displays each bank’s payoff regardless of whether it is connected.

max P(Z)(Z—-v)+[1-P(Z)|(e—v) +c

As a result, this is no incentives for banks to form networks.

Endogenizing Deposit Rate

In the main text, the deposit rate v is assumed to be constant. In this section, I model depositors’ rational decisions
to lend to a bank while being aware of the interbank connections. In other words, I endogenize the deposit rates.
To be more specific, each bank in the network (d,®, N) needs to borrow M; = 1 (normalized to 1) from atomistic
depositors to finance a productive project Z;. The borrowing takes the form of a standard debt contract with a face
value v;, which will be determined in equilibrium. v; can be interpreted as the gross interest rate. For expository
purposes, I assume depositors are risk neutral and have time discount rate . After each bank receives the deposits,
they simultaneously choose their project choices. The subsequent timeline follows figure 1. A competitive market
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results in a zero profit for atomistic depositors. The equilibrium (4} (w), v*, Z*) is hence characterized by

+
df (w) = {mm[ZGU H(w; 2) +el(wl,Zl)—v;",J,]} VieN, Ywe
ZF = argmaxIE[H?(w;Z, v} )} Vie N
Z;
0= —Mi+/3-IE[HiD(w;v;",Z*)] Vie NV

where T18(w) is bank i’s payoff in state w, which is the same as equation 3, and IIP (w) is bank i’s depositors’
payoff in state w. With deposit insurance, HiD (w) = v¥ for all w. In this case, the return to depositors are guaranteed
by the government. Without deposit insurance, I1P (w) = min[0*, }; Gijd;“(w) +€i(Z*, w) — d} (w)] as a debt contract.
It's worth noting that, in this case, HiD (w) is a function of ® and Z*: depositors perfectly observe the network
structure and perfectly anticipate banks” optimal risk exposure. The following results show the equilibrium for the
two cases.

a) Without deposit insurance, (i) banks’ equilibrium risk exposure is identical in any network structure: 7C* —
1% q P y
ZR* — 75% (ii) banks’ equilibrium deposit rates are higher in a ring network than in a complete network:

* * *
5% > pR* > o€,

(b) With deposit insurance, (i) banks” equilibrium risk exposure is higher in a complete network than in a ring
network: Z€* > ZR* > 75%  (ii) banks’ equilibrium deposit rates are identical in any network structure:

* * *
o€ R S*.

=70 =0

(where the superscript C denotes complete network, R denotes ring network, and S denotes stand-alone)

Part (a) states that without deposit insurance, banks’ choices of risk exposure are identical in any network struc-
ture, in contrast to proposition 3 of the benchmark model. The benchmark model assumes fixed deposit rates and
shows that banks in highly connected networks expose to greater risks due to a network risk-taking distortion. To
understand the difference, let’s first recall that this network risk-taking distortion is the result of “cross-subsidy” from
successful banks to failed banks” depositors. Without deposit insurance, depositors in highly connected networks will
feel more co-insured from the interbank connections and will demand lower interest rates. Both the lowered deposit
rates and the “cross-subsidy” affect connected banks’ upside payoffs. Their countervailing effects will equalize banks’
choices of risk exposure in any network structure.

Part (b) considers financial systems where depositors are fully insured by the government. The result is identical
to the benchmark model with a fixed deposit rate. With a government’s guarantee, depositors are “informative in-
sensitive” to banks’ financial structures. As a result, the deposit rates are constant across all network structures and
equal to depositors” time cost (1/8). Without deposit rates’ price disciplining, banks in highly connected networks will
face greater network risk-taking distortion and choose greater exposure to risks (proposition 3 to 5).

Proof Suppose there is no deposit insurance. Bank i’s depositors’ the expected return is
]E[HZD(w; vg,Zg)] = ]E{ min [08,2 0;;d* (@) + ei(Z§, w) — d;"(w)]}

+
—IE{ei(Z(f), }—&-]E{ZG” i ( } {(29,] () + e (Z§, w )—d;"(w)—v(f)) }
|
=P(Z%)-2§ =0 =P(ZE)(ZE —0%)—P(2¥)Do (2X)

— P(Z8) - (06 + Do (25))

With a slight abuse of notation, the subscript ® represents the full network structure (d, ®, N). The second line follows
the first line because for all x,y € R, min(x, y) = y — (y — x) 7. From the symmetry assumption, ]E[d]* (w)] = E[d¥(w)],
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Vi # j. Hence E[}; Oi]-d]’." (w) — d¥(w)] = 0. Plugging E[I1P (w; v}, Z%)] to the equilibrium condition
B-P(ZE)- (z;;g + D@(zg,)) ~M=0 (28)
where bank’s risk exposure Z§ is the result of a Nash equilibrium defined by equation 4. Explicitly,
P'(ZE)- (z;; - D@(zg)) +P(ZE) =0 (29)
Equation 28 and 29 jointly determine banks” equilibrium risk exposure as

P(z8)- (25 - )+ P(Z8) =0 (30)

M
B-P(Z§)
It is easy to see that the equilibrium risk exposure Z% = Z* is independent of the network structure (4, ®, N). From
equation 28, the equilibrium deposit rates are determined by

M
E _ *
Yo = ,BP(Z*) D@(Z )
From proposition 4, Dg < Dr(Z) < D¢(Z) for all Z. Finally, we have o€ < oR* < 5%,

With deposit insurance, HI-D (w) = v¥ for all w. The equilibrium condition becomes:
B-vE—M=0

Or v§ = v* = M/, independent of the network structure. Plugging into equation 29, we have

M
P(zg) (25 -5

5 Dg(zg)) +P(ZE) =0

It’s identical to the benchmark case with fixed deposit rates. Corollary 1 and proposition 4 implies ZC* > ZR* 5 78%
O
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