Heterogeneous Price Rigidities and Monetary Policy

Christopher Clayton ¹ Xavier Jaravel ² Andreas Schaab ¹

¹Harvard University

 $^2 {
m LSE}$

May 16, 2019

Introduction

- What are the implications of heterogeneity for monetary policy (MP)?
 - Normative perspective
 - ▶ But also positive implications for MP transmission mechanism

Introduction

- What are the implications of heterogeneity for monetary policy (MP)?
 - Normative perspective
 - ▶ But also positive implications for MP transmission mechanism
- Previous work:
 - Savers and debtors
 - Incidence of unemployment
 - Income composition
 - Cash holdings heterogeneity

Introduction

- What are the implications of heterogeneity for monetary policy (MP)?
 - Normative perspective
 - ▶ But also positive implications for MP transmission mechanism
- Previous work:
 - Savers and debtors
 - Incidence of unemployment
 - Income composition
 - Cash holdings heterogeneity
- Does heterogeneity in price rigidities across sectors matter?
 - Price stickiness is source of monetary non-neutrality in NK models
 - Price stickiness is known to be heterogeneous across sectors
 - ▶ What are the implications for distributional and/or aggregate effects of MP?

This paper

- New stylized facts (BLS/CEX/ACS data): prices are more rigid in industries...
 - ... selling to richer/more educated households ("expenditure channel")
 - ... employing richer/more education households ("earnings channel")
 - Example: services and manufacturing

This paper

- New stylized facts (BLS/CEX/ACS data): prices are more rigid in industries...
 - ... selling to richer/more educated households ("expenditure channel")
 - ... employing richer/more education households ("earnings channel")
 - Example: services and manufacturing

- 2. Heterogeneous Agent New Keynesian model with many sectors and household types
 - Quantify the aggregate and distributional implications
 - Consumption of college-educated households is 30% more sensitive
 - Aggregate real effect of a 100bps MP tightening is dampened by 7%

Distributional implications of MP: Doepke and Schneider (2006), Carpenter and Rogers (2004), Albanesi (2007), Williamson (2009), Ledoit (2009), Coibion et al. (2016), Auclert (2017)

Empirical work on price stickiness: Blinder et al. (2008), Bils and Klenow (2002, 2004), Bils et al. (2003), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)

Models with heterogeneous price stickiness: Aoki (2001), Bils and Klenow (2002), Carlstrom et al. (2006), Carvalho (2006), Barsky et al. (2006), Nakamura and Steinsson (2007)

Distributional implications of MP: Doepke and Schneider (2006), Carpenter and Rogers (2004), Albanesi (2007), Williamson (2009), Ledoit (2009), Coibion et al. (2016), Auclert (2017)

Our contribution: We document and study a set of novel *earnings* and *expenditure* channels of monetary policy transmission

Empirical work on price stickiness: Blinder et al. (2008), Bils and Klenow (2002, 2004), Bils et al. (2003), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)

Models with heterogeneous price stickiness: Aoki (2001), Bils and Klenow (2002), Carlstrom et al. (2006), Carvalho (2006), Barsky et al. (2006), Nakamura and Steinsson (2007)

Distributional implications of MP: Doepke and Schneider (2006), Carpenter and Rogers (2004), Albanesi (2007), Williamson (2009), Ledoit (2009), Coibion et al. (2016), Auclert (2017)

Our contribution: We document and study a set of novel *earnings* and *expenditure* channels of monetary policy transmission

Empirical work on price stickiness: Blinder et al. (2008), Bils and Klenow (2002, 2004), Bils et al. (2003), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)

Our contribution: Two novel stylized facts about the cross-sectional exposure of households to price rigidity (and thus monetary policy)

Models with heterogeneous price stickiness: Aoki (2001), Bils and Klenow (2002), Carlstrom et al. (2006), Carvalho (2006), Barsky et al. (2006), Nakamura and Steinsson (2007)

Distributional implications of MP: Doepke and Schneider (2006), Carpenter and Rogers (2004), Albanesi (2007), Williamson (2009), Ledoit (2009), Coibion et al. (2016), Auclert (2017)

Our contribution: We document and study a set of novel *earnings* and *expenditure* channels of monetary policy transmission

Empirical work on price stickiness: Blinder et al. (2008), Bils and Klenow (2002, 2004), Bils et al. (2003), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)

Our contribution: Two novel stylized facts about the cross-sectional exposure of households to price rigidity (and thus monetary policy)

Models with heterogeneous price stickiness: Aoki (2001), Bils and Klenow (2002), Carlstrom et al. (2006), Carvalho (2006), Barsky et al. (2006), Nakamura and Steinsson (2007)

Our contribution: We study an enriched HANK model with firm and household heterogeneity.

Outline

1. Conceptual framework

2. Data and stylized facts

3. Quantitative analysis

The simple model

- Two periods: t = 1, 2
- Two sectors: $s \in \{A, B\}$
- Finite household types *i* with different sectoral exposures

The simple model

- Two periods: t = 1, 2
- Two sectors: $s \in \{A, B\}$
- ullet Finite household types i with different sectoral exposures

Household i solves:

$$\max \sum_{t=1}^{2} \beta^{t-1} U[(c_{i,t}^{A})^{1-\alpha^{i}} (c_{i,t}^{B})^{\alpha^{i}}]$$

The simple model

- Two periods: t = 1, 2
- Two sectors: $s \in \{A, B\}$
- Finite household types *i* with different sectoral exposures

Household i solves:

$$\max \sum_{t=1}^{2} \beta^{t-1} U[(c_{i,t}^{A})^{1-\alpha^{i}} (c_{i,t}^{B})^{\alpha^{i}}]$$

subject to

$$\underbrace{c_{i,1}^A + \frac{c_{i,2}^A}{R}}_{\text{Spending on A}} + \underbrace{p_1 c_{i,1}^B + p_2 \frac{c_{i,2}^B}{R}}_{\text{Spending on B}} = \underbrace{\frac{b_{i,1}}{\pi_1^A}}_{\text{Initial wealth}} + \underbrace{\gamma^i(Y_1^A) + \frac{\gamma^i(Y_2^A)}{R}}_{\text{Earnings from A}} + \underbrace{p_1 \gamma^i(Y_1^B) + p_2 \frac{\gamma^i(Y_2^B)}{R}}_{\text{Earnings from B}}$$

where $p_t = \frac{P_t^B}{P_t^A}$ is relative price, α^i expenditure exposure and γ^i earnings exposure.

Simple perturbation: partial equilibrium

 \bullet Consider the general perturbation $\{dR,dY_1^A,dY_1^B,dp,d\pi^A\}$

Simple perturbation: partial equilibrium

- \bullet Consider the general perturbation $\{dR,dY_1^A,dY_1^B,dp,d\pi^A\}$
- Define:

$$MPC_{i,1} \equiv \frac{\partial}{\partial y_i} p^{\alpha^i} c_{i,1}.$$

Simple perturbation: partial equilibrium

- \bullet Consider the general perturbation $\{dR,dY_1^A,dY_1^B,dp,d\pi^A\}$
- Define:

$$MPC_{i,1} \equiv \frac{\partial}{\partial y_i} p^{\alpha^i} c_{i,1}.$$

Proposition: Household *i*'s behavioral consumption response can be decomposed into

$$\begin{aligned} dc_{i,1} &= \overbrace{-\frac{1}{\gamma}MPS_{i,1}c_{i,1}\frac{dR}{R}}^{\text{Substitution effect}} &+ MPC_{i,1}\left\{b_{i,2}\frac{dR}{R} &- \underbrace{\frac{b_{i,1}}{\pi^A}\frac{dP^A}{P^A}}_{\text{Empto}}\right. \\ &+ \underbrace{\gamma_i^A dY_1^A + p\gamma_i^B dY_1^B}_{\text{Empto}} + \underbrace{\gamma_i^B p\bigg(Y_1^B + \frac{1}{R}Y_2^B\bigg)}_{\text{Empto}}\frac{dp}{p} - \underbrace{\alpha^i p^{\alpha^i}\bigg(c_{i,1} + \frac{1}{R}c_{i,2}\bigg)}_{\text{Empto}}\frac{dp}{p} &\right\}. \end{aligned}$$

Heterogeneous earnings channel Relative price effect on real earnings Relative price effect on real expenditures

Simple perturbation: general equilibrium

Proposition: In response to our proposed aggregate perturbation, the change in aggregate demand can be decomposed as

$$\begin{split} dY_1 = & \left[\text{Cov}_I \left(\mu \text{MPC}_{i,1}, b_{i,2} \right) - \frac{1}{\gamma} \mathbb{E}_I (\mu \text{MPS}_{i,1} c_{i,1}) \right] \frac{dR}{R} - \text{Cov}_I \left(\mu \text{MPC}_{i,1}, \frac{b_{i,1}}{\pi^A} \right) \frac{dP^A}{P^A} \\ &+ \underbrace{\sum_s \frac{P_t^s}{P_t^A} \left(\mathbb{E}_I (\text{MPC}_{i,1}) + \text{Cov}_I (\mu \text{MPC}_{i,1}, \gamma_i^s) \right) dY_1^s}_{\text{Heterogeneous earnings effect}} \\ &+ \underbrace{\sum_t \frac{1}{R^{t-1}} p \left(\mathbb{E}_I (\text{MPC}_{i,1}) + \text{Cov}_I (\mu \text{MPC}_{i,1}, \gamma_i^B) \right) Y_t^B \frac{dp}{p}}_{\text{Relative price effect on earnings}} \\ &- \underbrace{\sum_t \frac{1}{R^{t-1}} \mathbb{E}_I \left(\mu \text{MPC}_{i,1} \alpha^i p^{\alpha^i} c_{i,t} \right) \frac{dp}{p}}_{\text{Relative price effect on expenditures}}. \end{split}$$

Outline

1. Conceptual framework

2. Data and stylized facts

3. Quantitative analysis

Data

- Build 3 linked datasets with price rigidities (consumer and producer prices), expenditures and payrolls
 - ► Covers full U.S. economy (except shelter in most cases)
- CPI-ACS sample:
 - merge price rigidity data from Nakamura and Steinsson (2008) (at the ELI level) to earnings data from the ACS (at the industry level)
- PPI-ACS sample:
 - match price rigidity data from Pasten et al. (2016) (at the 6-digit NAICS level) to ACS industries
- CPI-CEX sample:
 - merge price rigidity data from Nakamura and Steinsson (2008) (at the ELI level) to spending data from the CEX (at the UCC level).

New facts

Two empirical findings:

1. Prices more rigid in product categories selling to more educated/richer households (consistent with Cravino-Lan-Levchenko, 2019)

Examples:

- ► Services (frequency: 6.39%, share of sales to College: 37.9%)
- ► Taxi fares (frequency: 4.41%, share of sales to College: 62.3%)
- ► Fast food lunch (frequency: 7%, share of sales to College: 34.4%)

New facts

Two empirical findings:

 Prices more rigid in product categories selling to more educated/richer households (consistent with Cravino-Lan-Levchenko, 2019)

Examples:

- ► Services (frequency: 6.39%, share of sales to College: 37.9%)
- ► Taxi fares (frequency: 4.41%, share of sales to College: 62.3%)
- ► Fast food lunch (frequency: 7%, share of sales to College: 34.4%)

Prices more rigid in product categories employing more educated/richer households

Examples:

- ► Computer electronics (frequency: 28.95%, payroll share to College: 72.15%)
- ▶ Poultry processing (frequency: 35.1%, payroll share to College: 14.43%)

Earnings channel: CPI-ACS

Notes: Includes All Prices Changes

Earnings channel: CPI-ACS

	Share of Payroll to College Graduates (%)		
	(1)	(2)	(3)
Frequency of Price Changes (%)	-0.9330*** (0.2649)	-0.463** (0.2119)	-0.5505** (0.2396)
Excluding industries with price change frequency > p95 2-digit Naics Code F.E.	Yes No	Yes Yes	No No
Sample Size	86	86	94

Earnings channel: PPI-ACS

Notes: Includes All Prices Changes

Earnings channel: PPI-ACS

	Share of Payroll to College Graduates (%)		
	(1)	(2)	(3)
Frequency of Price Changes (%)	-0.9823*** (0.2149)	-0.2027 (0.1306)	-0.3771* (0.1978)
Excluding industries with price change frequency > p95 2-digit Naics Code F.E.	Yes No	Yes Yes	No No
Sample Size	163	163	169

Expenditure channel: CPI-CEX

Notes: Includes All Prices Changes

Expenditure channel: CPI-CEX

	Share of Sales to College Graduates (%)		
	(1)	(2)	(3)
Frequency of Price Changes (%)	-0.2108** (0.0824)	-0.1904* (0.0977)	-0.1256** (0.0376)
Excluding industries with price change frequency > p95 Expenditure Category F.E.	Yes No	Yes Yes	No No
Sample Size	242	242	254

Interaction between Earnings / Expenditure channels

Notes: OLS Coeff. 0.5416*** (s.e. 0.2264), N=88

New facts

- Implications for monetary policy tightening:
 - NK model prediction for sector with more rigid prices: less deflation, but bigger output gap
 - More educated households suffer more: preferred goods relatively more expensive, stronger labor demand contraction
 - ► Feedback loop on consumption of more educated households: demand for goods in more rigid sector falls even more (→ relative price, labor demand)
 - Monetary policy has relatively larger effect on richer, low-MPC households
 → dampened aggregate effect

New facts

- Implications for monetary policy tightening:
 - NK model prediction for sector with more rigid prices: less deflation, but bigger output gap
 - More educated households suffer more: preferred goods relatively more expensive, stronger labor demand contraction
 - ► Feedback loop on consumption of more educated households: demand for goods in more rigid sector falls even more (→ relative price, labor demand)
 - Monetary policy has relatively larger effect on richer, low-MPC households
 → dampened aggregate effect

Robustness

- Excluding sales
- Different measures of income and education
- ▶ Broad sector fixed effects (e.g. within goods)

Outline

1. Conceptual framework

2. Data and stylized facts

3. Quantitative analysis

• Start from one-asset heterogeneous-agent New Keynesian model

- Start from one-asset heterogeneous-agent New Keynesian model
- Four intermediate goods sectors s
 - Different price rigidity: δ^s
 - ► Sectors employ two types of workers: $N_{C,t}^s$ and $N_{NC,t}^s$
 - Each sector has its own, fully segmented labor market (business cycle frequency)

- Start from one-asset heterogeneous-agent New Keynesian model
- Four intermediate goods sectors s
 - Different price rigidity: δ^s
 - ► Sectors employ two types of workers: $N_{C,t}^s$ and $N_{NC,t}^s$
 - Each sector has its own, fully segmented labor market (business cycle frequency)
- Two household types $i \in \{C, NC\}$: college and non-college
 - Within type heterogeneity: uninsurable earnings risk (standard incomplete markets model)
 - ▶ Different sector-specific productivities: Z_e^s (equivalent to γ_i in simple model)
 - ▶ Different tastes: α_C^s and α_{NC}^s

- Start from one-asset heterogeneous-agent New Keynesian model
- Four intermediate goods sectors s
 - Different price rigidity: δ^s
 - ► Sectors employ two types of workers: $N_{C,t}^s$ and $N_{NC,t}^s$
 - Each sector has its own, fully segmented labor market (business cycle frequency)
- Two household types $i \in \{C, NC\}$: college and non-college
 - Within type heterogeneity: uninsurable earnings risk (standard incomplete markets model)
 - ▶ Different sector-specific productivities: Z_e^s (equivalent to γ_i in simple model)
 - ▶ Different tastes: α_C^s and α_{NC}^s
- Policy experiment: contractionary 100bps monetary policy shock

Model details

CES consumption baskets

$$c_{i,t} = \left[\sum_{s}^{N} (\alpha_{i}^{s})^{\frac{1}{\eta}} (c_{i,t}^{s})^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

Household budget constraint (assumptions on profit rebate important)

$$\dot{a}_{i,t} = \underbrace{(i_t - \pi^N_t)a_{i,t}}_{\text{Interest income}} + \underbrace{z_{i,t}n_{i,t}w_{i,t}p_{i,t}}_{\text{Labor income}} + \underbrace{\tau_{i,t}p_{i,t}}_{\text{Transfer income}} - \underbrace{c_{i,t}p_{i,t}}_{\text{Consumption}}, \quad a_{i,t} \geq \underline{a}_{i,t}$$

Intermediate goods producer production function

$$Y_t^s(j) = \left[\sum_{e \in C, NC} (Z_e^s)^{\frac{1}{\kappa}} N_{e,t}^s(j)^{\frac{\kappa - 1}{\kappa}}\right]^{\frac{\kappa}{\kappa - 1}}$$

Two Phillips Curves (under Rotemberg pricing)

$$\dot{\pi}_t^s = \pi_t^s \left(i_t - \pi_t^s - \frac{\dot{Y}_t^s}{Y_t^s} \right) - \frac{\epsilon - 1}{\delta^s} \left(\frac{\epsilon}{\epsilon - 1} M C_t^s - 1 \right)$$

Kolmogorov forward equation Channel decomposition

Calibration strategy

- \bullet Heterogeneous expenditure shares: α_i^s
- \bullet Heterogeneous sectoral skill intensities: Z_e^s
- ullet Heterogeneous sectoral price stickiness: δ^s

Summary of quantitative exercise

• Consider two cases: baseline (homogeneous price rigidities) and full model

• Cross-sectional effect: Compute distributional effects between C and NC as

$$\Delta = \frac{\Delta C^C}{C_{SS}^C} - \frac{\Delta C^{NC}}{C_{SS}^{NC}},$$

then difference full model from baseline, $\Delta - \Delta^{baseline}$ and normalize by aggregate consumption response

 Aggregate effect: change in aggregate consumption response in full model relative to baseline

 $\frac{\Delta C}{\Delta C^{baseline}}$

Summary of quantitative exercise: cross-sectional

Summary of quantitative exercise: aggregate

Conclusion

- This paper re-evaluates the implications of heterogeneous price stickiness for the transmission and the distributional effects of monetary policy
- Establish new facts using micro data:
 - 1. Richer/more educated households purchase in more rigid sectors
 - 2. Richer/more educated households work in more rigid sectors
- Quantitative model to assess implications of these new facts
 - Real effects of MP dampened in the presence of heterogeneous price stickiness
 - Consumption of college households 30% more sensitive to MP shocks
 - ► Aggregate effects of monetary policy muted by 5 10% due to novel earnings and expenditure channels

Calibration

Table 1: Parameters for Calibration

		Value	Source
φ	Curvature of (relative) labor supply curve	1.5	Smets and Wouters (2007)
θ_C	P(Non-College College)	0.45/35	Ferrare (2016)
θ_{NC}	P(College Non-College)	0.22/35	
ϵ	Elasticity of substitution between intermediates	11	Basu and Fernald (1997)
γ	CRRA for upper-level utility function	1. 5	N/A
$\begin{aligned} 1 - \alpha^{NC} \\ 1 - \alpha^C \end{aligned}$	Non-college spending in A College spending in A	41.5% 58.5%	CEX
Z_A^{NC}	Non-college prod in A	0.33	
Z_A^C	College prod in A, normalized	1.14	QCEW
Z_B^{NC}	Non-college prod in B	0.47	
Z_B^C	College prod in B	0.66	
δ^A	Price adj. cost in A	190	N-1 1 (u-' (2000)
δ^B	Price adj. cost in B	10	Nakamura and Steinsson (2008)

Baseline with 1 household type, 1 sector

Introducing sectoral price rigidity heterogeneity

Comparison calibration: add symmetric productivity differences

Full calibration: asymmetric productivity differences and tastes

Differenced IRFs (Full – Comparison)

Back

Marginal propensities to consume (MPC)

Asset holdings and borrowing constraints

Disposable income and its decomposition

Households' recursive optimization problem

• We collect households' state variables in the vector $x_{i,t}$ with law of motion

$$\begin{pmatrix} da_{i,t} \\ dz_{i,t} \end{pmatrix} = \begin{pmatrix} r_t a_{i,t} + \sum_s z_{i,t}^s n_{i,t}^s w_{i,t}^s p_t^{\alpha^i} - p_t^{\alpha^i} c_{i,t} + \frac{T_{i,t}}{P_t^A} \\ \mu(z_{i,t}^s) \end{pmatrix} dt + \begin{pmatrix} 0 \\ \sigma(z_{i,t}^s) \end{pmatrix} dB_t.$$

This gives us the recursive, continuous-time Bellman equation

$$\rho v_{i,t}(x_{i,t}) = \partial_t v_{i,t}(x_{i,t}) + \max_{c_{i,t}, n_{i,t}} u(c_{i,t}, n_{i,t}) + \theta_i \left(v_{-i,t}(x_{-i,t}) - v_{i,t}(x_{i,t}) \right)$$

$$+ \partial_a v_{i,t}(x_{i,t}) \left(r_t a_{i,t} + \sum_s z_{i,t}^s n_{i,t}^s w_{i,t}^s p_t^{\alpha^i} - p_t^{\alpha^i} c_{i,t} + \frac{T_{i,t}}{P_t^A} \right)$$

$$+ \mu(z_{i,t}^s) \partial_z v_{i,t}(x_{i,t}) + \frac{1}{2} \sigma(z_{i,t}^s)^2 \partial_{zz} v_{i,t}(x_{i,t})$$

• FOCs:

$$\begin{split} c_{i,t}^{-\gamma} &= p_t^{\alpha^i} \partial_a v_{i,t}(x_{i,t}) \\ c_{i,t}^{\gamma} (n_{i,t}^s)^{\phi} &= z_{i,t}^s w_{i,t}^s. \end{split}$$

The Taylor rule

- Assumptions on the Taylor rule are important
- For now, we assume equal weighting:

$$i_t = i_t^* + \sum_s \left(\phi_\pi^s \pi_t^s + \phi_y^s (Y_t^s - Y) \right) + \xi_t,$$
 (1)

Back

Aggregation in our model

- We write Kolmogorov forward (KF) equations separately for each household type
- The KF equations characterizing the evolution of these density functions are given by

$$\begin{split} \partial_t g_{i,t}(x_{i,t}) &= -\partial_a \bigg(\big[r_t a_{i,t} + \sum_s z_{i,t}^s n_{i,t}^s w_{i,t}^s p_t^{\alpha^i} - p_t^{\alpha^i} c_{i,t} + \frac{T_{i,t}}{P_t^A} \big] g_{i,t}(x_{i,t}) \bigg) \\ &- \partial_z \bigg(\mu(z_{i,t}^s) g_{i,t}(x_{i,t}) \bigg) + \frac{1}{2} \partial_{zz} \bigg(\sigma(z_{i,t}^s)^2 g_{i,t}(x_{i,t}) \bigg) \\ &- \theta_i g_{i,t}(x_{i,t}) + \theta_{-i} g_{-i,t}(x_{-i,t}). \end{split}$$

Back

Channel decompositions

- Consider a perturbation $\{\xi_t\}$ that corresponds to a 100bps MP shock.
- We can decompose the effect on consumption as follows.

For College:

$$\begin{split} &C_{C,0}\left(\{r_t, w_{C,t}, p_{C,t}, T_{C,t}\}_{t \in [0,\infty)}, g_0\right) \\ &= \int_{\underline{a}}^{\infty} \int_{\underline{z}}^{\overline{z}} c_C\left(a, z, \{r_t, w_{C,t}, p_t, T_{C,t}\}_{t \in [0,\infty)}\right) g_0 d(z, a) \end{split}$$

$$dC_{C,0} = \int_0^\infty \frac{\partial C_{C,0}}{\partial r_t} dr_t + \frac{\partial C_{C,0}}{\partial w_{C,t}} dw_{C,t} + \frac{\partial C_{C,0}}{\partial p_t} dp_t + \frac{\partial C_{C,0}}{\partial T_{C,t}} dT_{C,t} dt$$

