Empricial Properties of Inflation Expectations and the Zero Lower Bound

Mirko Wiederholt

Discussion by P. Andrade (Federal Reserve Bank of Boston)

FRB Cleveland Conference on Inflation: Drivers and Dynamics May 16-17, 2019

The views expressed here are my own and do not necessarily represent those of the Federal Reserve Bank of Boston or the Federal Reserve System.

#### Main message

At the ZLB, imperfect information is a blend of blessing and curse

- It stabilizes the economy and helps avoiding a deflation spiral
  - Great Recession would have been worse with perfect information
  - Helps explain the missing deflation
- It mitigates the impact of policies relying on expectations
  - Great Recession would have been less persistent with perfect info
  - Helps explain the forward guidance (FG) puzzle

# Key building blocks

3-equation NK model with imperfect information

► Euler eq.: 
$$c_{i,t} = E_t^i(c_{i,t+1}) - \gamma^{-1}[E_t^i(r_t - \pi_{t+1}) - \underbrace{E_t^i(\xi_{i,t+1} - \xi_{i,t})}_{\text{Preference shock}}]$$

- Phillips' curve:  $\pi_t = \beta \int_0^1 E_t^i(\pi_{t+1}) di + \kappa \int_0^1 c_{i,t} di$
- Taylor rule with ZLB:  $r_t = \max[-\log R, \phi \pi_t]$
- Individual preference shock (see paper for a more general case)

• 
$$t = 0: \xi_{i,0} \in {\xi_L, \xi_H}$$
 with  $\xi_H > \xi_L$ 

► 
$$t \ge 1$$
:   
 $\begin{cases} \xi_{i,t} = \xi_{i,t-1}, & \text{with proba } \mu \\ \xi_{i,t} = 0, & \text{with proba } 1 - \mu \end{cases}$ 

- Macro shock: fraction  $\lambda_s$  of HHs gets  $\xi_H$ 
  - $\lambda_s \in \{\lambda_{\text{bad}}, \lambda_{\text{good}}\}$  with  $\lambda_{\text{good}} > \lambda_{\text{bad}}$
- Transfers ensuring no HHs heterogeneity at steady-state

# Key building blocks

Higher order beliefs

- Given shock process, Euler equation and Phillips' curve rewrite:
  - $C_{i,t} = \mu C_{i,t} \gamma^{-1} \left[ E_t^i (r_t \mu \pi_t) (\mu 1) \xi_{i,t} \right]$
  - $\blacktriangleright E_t^i(\pi_t) = \beta E_t^i \left[ \int_0^1 \mu E_t^i(\pi_t) dt \right] + \kappa E_t^i \left[ \int_0^1 C_{i,t} dt \right]$
  - HHs need to infer others HHs' beliefs on inflation
- Agents only need to estimate the fraction of HHs being optimistic
  - Amounts to the probability of being in a good state
  - Update common prior θ once and for all based on their idiosyncratic signal ξ<sub>i,0</sub> (see paper for a more general case)

• 
$$p_H^{\text{good}} = E_0(p_{\text{good}}|\xi_{i,0} = \xi_H); p_L^{\text{good}} = E_0(p_{\text{good}}|\xi_{i,0} = \xi_L)$$

## Key building blocks

Effect of imperfect information on aggregate consumption

• Aggregating individual decisions  $c_s = \int_0^1 c_{i,s} di$ :

• 
$$c_s = \mu c_s - \gamma^{-1} [\int_0^1 E^i (r_s - \mu \pi_s) di - (\mu - 1) \overline{\xi}_s]$$

•  $\overline{\xi}_s = \lambda_s \xi_H + (1 - \lambda_s) \xi_L$  (same under perfect & imperfect info)

$$\int_0^1 E^i [r_s - \mu \pi_s] di = \overline{\rho}_s^{\text{good}} (r_{\text{good}} - \mu \pi_{\text{good}}) + \overline{\rho}_s^{\text{bad}} (r_{\text{bad}} - \mu \pi_{\text{bad}})$$

• drives the difference btw perfect and imperfect info:  $c_s^{\text{per}} - c_s^{\text{imp}}$ 

|                    | $(C_s^{per} - C_s^{imp})$ |          |
|--------------------|---------------------------|----------|
|                    | s = bad                   | s = good |
| $r_s = \phi \pi_s$ | > 0                       | < 0      |
| $r_s = -\log R$    | < 0                       | > 0      |

### Imperfect info. as a source of infl. persistence

- Provides a story of missing deflation
  - HHs entered the trap with memory of the pre-ZLB which stabilized inflation expectations hence inflation
  - This is reinforced if HHs have to learn the persistence of the trap
- Potential story of why inflation remains low after end of trap
  - HHs exited the trap with memory of the ZLB which drags inflation expectations hence inflation down
- Better identify what is key to account for the missing deflation
  - Reaction of inflation when simulating same model under perfect information
  - Reaction of inflation when simulating same model under imperfect information but knowledge of persistence of the shock

### Challenges in CB communication

- Do HHs react to communication (despite imperfect information)?
  - Andrade-Gaballo-Mengus-Mojon (2015): yes (SPF, HHs' survey)



Fraction of HHs expecting interest rate will stay constant, increase or decline in the Survey of Consumers—University of Michigan

# Challenges in CB communication

- Trade-off: revealing bad state is good outside the ZLB but detrimental at the ZLB
- State-contingent communication?
  - Limiting communication at the ZLB would be detrimental as it would signal bad state
  - Changing the nature of communication by moving to Odyssean FG (commit to future accommodation) as opposed to Delphic FG (reveal information on the outlook) would be effective (Eggertsson-Woodford, 2003)
- However, implementing Odyssean FG is challenging because commitment is time inconsistent
  - Andrade-Gaballo-Mengus-Mojon (2015): interest rates announcements aiming at being Odyssean can be interpreted as Delphic hence make people more pessimistic
- Less discussed trade-off: revealing good state is bad outside the ZLB but improving at the ZLB

# Effect of inflation expectations on consumption

- Euler equation holds at individual level:
  - Consumption perfectly adjusts to imperfect inflation expectations
  - No financial constraints, no limits in cognitive abilities / understanding of GE effects
- Empirical debate on whether this is true
  - Bachmann-Berg-Sims (2015): inflation expectations have no or a negative effect on durable consumption decisions
  - D'Acunto-Huoang-Weber (2018): announcing large inflationary VAT shocks has a positive effect on durable consumption decisions
  - Crump-Eusepi-Tambalotti-Topa (2018): inflation expectations have a negative impact on expected consumption growth
  - Vellekoop-Wiederholt (2018): inflation expectations have a negative impact on savings
  - D'Acunto-Hoang-Paloviita-Weber (2018): inflation expectations have a positive impact on consumption only for high-IQ men

# Effect of inflation expectations on consumption

Andrade-Gautier-Mengus (2019)

Table: Effects of 12M Inflation Expectations on Durables Consumption Outlook

|                          | (1)            | (2)                  |
|--------------------------|----------------|----------------------|
| $\pi^{e}$ Quantitative   |                |                      |
| All                      | -0.000**       |                      |
| $\pi^{e}$ Qualitative    | (0.011)        |                      |
| By intervals:            |                | 0.000                |
| same/go up               |                | (0.935)<br>0.010***  |
| same/no infl             |                | (0.005)<br>Ref.      |
| go down                  |                | -0.037***<br>(0.000) |
| Observations<br>controls | 189,078<br>Yes | 200,456<br>Yes       |

Survey of Consumers—University of Michigan

# Effect of inflation expectations on consumption

Andrade-Gautier-Mengus (2019)

- Emphasize interaction of imperfect information and lumpy consumption decisions
  - Evidence that individual consumption reacts to imperfect inflation expectations (consistent with Mirko's paper)
  - But only for large changes in expected inflation
  - Consistent with costs of adjusting consumption
    - Reis (2006), Alvarez-Guiso-Lippi (2015)
  - Another way of making the expectation channel less powerful



- Very elegant model
- Illustrates how imperfect information can help explain recent empirical puzzles
- Helps thinking about important and topical policy questions
- Very nice paper!