Tokenomics and Platform Finance

Lin William Cong Cornell Johnson Finance

Ye Li Ohio State University Finance Columbia GSB & NBER

Neng Wang

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
 - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
 - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
 - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
 - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
 - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
 - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

- A dynamic model of platform investment/financing and user activities
 - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
 - Users' token demand: transaction and investment value
 - Platform owners' token supply: reward themselves and pay contributors to improve the platform
 - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

- A dynamic model of platform investment/financing and user activities
 - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
 - Users' token demand: transaction and investment value
 - Platform owners' token supply: reward themselves and pay contributors to improve the platform
 - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

- A dynamic model of platform investment/financing and user activities
 - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
 - Users' token demand: transaction and investment value
 - Platform owners' token supply: reward themselves and pay contributors to improve the platform
 - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

- A dynamic model of platform investment/financing and user activities
 - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
 - Users' token demand: transaction and investment value
 - Platform owners' token supply: reward themselves and pay contributors to improve the platform
 - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

Model

Questions

1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?

- What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
- Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
 - Are users' and platform designers/founders' interests aligned?
 - Pitfalls in the value chain? Users ightarrow token price ightarrow founders' token payout
- 3 How can blockchain technology add value
 - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
 - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
 - Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
 - Are users' and platform designers/founders' interests aligned?
 - Pitfalls in the value chain? Users ightarrow token price ightarrow founders' token payout
- 3 How can blockchain technology add value
 - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
 - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
 - Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
 - Are users' and platform designers/founders' interests aligned?
 - Pitfalls in the value chain? Users ightarrow token price ightarrow founders' token payout
- 3 How can blockchain technology add value
 - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
 - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
 - Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
 - Are users' and platform designers/founders' interests aligned?
 - Pitfalls in the value chain? Users \rightarrow token price \rightarrow founders' token payout
- 3 How can blockchain technology add value
 - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
 - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
 - Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
 - Are users' and platform designers/founders' interests aligned?
 - Pitfalls in the value chain? Users \rightarrow token price \rightarrow founders' token payout
- 3 How can blockchain technology add value
 - Why platform currencies rise after blockchain technology matures?

Related Papers

- Platforms without tokens: Rochet and Tirole (2003), Stulz (2019)
- Tokens as platform currency: Brunnermeier, James, and Landau (2019), Cong, Li, and Wang (2018a), Gans and Halaburda (2015)
- Tokens for users and contributors with exogenous supply: Sockin and Xiong (2018), Pagnotta (2018) among others
- Tokens and founders' effort: Garratt and Wallace (2018), Chod and Lyandres (2018), Canidio (2018)
- Dynamic token valuation with fixed supply: Cong, Li, and Wang (2018a), Fanti, Kogan, and Viswanath (2019), evidence in Liu and Tsyvinski (2018)
- Durable-goods monopoly: Coase (1972), Bulow (1982), Stokey (1981)
- Dynamic Corporate finance: Bolton, Chen, and Wang (2011), Li (2017)
- Money: (1) convenience yield in Baumol-Tobin models, Krishnamurthy and Vissing-Jørgensen (2012); (2) demand with inflation expectation in Cagan (1956); (3) financing tools in Bolton and Huang (2016)

Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline Durable-Goods Monopoly
- Token Overhang Corporate Finance
- The Value of Commitment Time Inconsistency
- Conclusion

User *i* settles transactions in tokens, deriving *convenience yield* from token value

• Efficient payment, smart contracting ...

Productivity: ٠ A_t

User *i* settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{it}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ ٠ P_t
 - Token price:
 - Token units: $k_{i,t}$
 - Number of users: N_t
 - User heterogeneity: $u_i \sim G_t(u)$

٠ Productivity: A_t

User *i* settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{it}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ ٠ P_t
 - Token price:
 - Token units: $k_{i,t}$
 - Number of users: N_t
 - User heterogeneity: $u_i \sim G_t(u)$
- Token price appreciation $k_{i,t} \mathbf{E}_t [dP_t]$ ٠

Token price dynamics in equilibrium $\frac{dP_t}{P_t} = \mu_t^P dt + \sigma_t^P dZ_t$

٠ Productivity: A_t

User *i* settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{it}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ ٠ - Token price: P_t Token units: k_{i,t} N_t
 - Number of users:
 - User heterogeneity: $u_i \sim G_t(u)$
- Token price appreciation $k_{it} E_t [dP_t]$ ٠
- ϕdt , if $k_{it} > 0$ Participation cost ٠

$$N_t = 1 - G_t(\underline{u}_t)$$

Objective

 $\int_{t=0}^{+\infty} e^{-rt} [\max\{0, convenience + net \ token \ return - participation \ cost \}] dt$

$$k_{i,t} = \frac{F(E_t[dP_t], A_t)}{P_t} u_i$$
$$\frac{\partial F}{\partial E_t[dP_t]} > 0$$
$$\frac{\partial F}{\partial A_t} > 0$$

Token Market Clearing $M_{t} = \int_{u=\underline{u}_{t}} \frac{F(E_{t}[dP_{t}], A_{t})}{P_{t}} u dG_{t}(u)$

Token Market Clearing $M_{t} = \frac{F(\mathbb{E}_{t}[dP_{t}], A_{t})}{P_{t}} \int_{u=\underline{u}_{t}} u dG_{t}(u)$

- P_t decreases in supply M_t , increases in A_t
- 1st, 2nd order derivatives in $E_t[dP_t]$ by Itô's lemma \rightarrow Differential equation for $P_t = P(M_t, A_t)$

• Productivity: A_t

User *i* settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

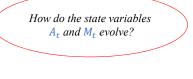
- Convenience yield: $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$
 - Token price:
 - Token units:
 - Number of users:
 - User heterogeneity: $u_i \sim G_t(u)$
- Participation cost
- Token price appreciation $E_t[dP_t]$
- ϕdt , if $k_{i,t} > 0$

 P_t

 $k_{i,t}$

Nt

- Token Market Clearing $M_{t} = \frac{F(\mathbb{E}_{t}[dP_{t}], A_{t})}{P_{t}} \int_{u=\underline{u}_{t}} u dG_{t}(u)$
- P_t decreases in supply M_t , increases in A_t


• Productivity: A_t

User *i* settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$
 - Token price:
 - Token units:
 - Number of users:
 - User heterogeneity: $u_i \sim G_t(u)$
- Participation cost
- Token price appreciation $E_t[dP_t]$

 ϕdt , if $k_{i,t} > 0$

 $k_{i,t}$ N_t

$$M_{t} = \frac{F(E_{t}[dP_{t}], A_{t})}{P_{t}} \int_{u=\underline{u}_{t}} udG_{t}(u)$$
• P_{t} decreases in supply M_{t} , increases in A_{t}

• Productivity:
$$\frac{dA_t}{A_t} = L_t dH_t$$

- $\frac{dA_t}{A_t} = L_t dH_t$ endogenous L_t Productivity: •
- **Contributor** resource: ٠

- $\frac{dA_t}{A_t} = L_t dH_t$ endogenous L_t Productivity: •
- Contributor resource: •
- **Entrepreneur** contribution: $dH_t = \mu^H dt + \sigma^H dZ_t$ ٠

• Productivity:

$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

endogenous L_t

• Platform investment:

- Productivity: $\frac{\mu A_t}{\Lambda} = L_t (\mu^H)$
- Platform investment:

 $\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$ endogenous L_t

Tokens paid
$$\frac{F(L_t, A_t)dt}{P_t}$$

Token Supply
$$dM_t = \frac{F(L_t, A_t)dt}{P_t}$$

- $\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$ endogenous L_t Productivity: •
- Platform investment: ٠
- Tokens paid to owner (cumulative): D_t ٠

Token Supply
$$dM_t = \frac{F(L_t, A_t)dt}{P_t}$$

- Productivity: $\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$
- Platform investment: $endogenous L_t$
- Tokens paid to owner: $dD_t > 0$
- Tokens burnt by owner: $dD_t < 0$

$$Token Supply$$
$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + dD_t$$

- Productivity: $\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$
- Platform investment: endogenous L_t
- Tokens paid to owner: dD_t
- Tokens burnt by owner:

$$A_t$$
endogenous L_t

$$dD_t > 0$$

$$dD_t < 0$$

$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + dD_t$$

$$max_{\{L_t, dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

• Token buy-back financing cost: χ

$$max_{\{L_t, dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

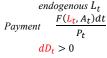
• $V_t = V(M_t, A_t), \frac{\partial V}{\partial M} < 0 \quad \frac{\partial V}{\partial A} > 0$

• HJB is differential equation for $V(M_t, A_t)$

$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + \frac{dD_t}{A_t} \qquad \frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

$$max_{\{L_t, dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

• $V_t = V(M_t, A_t), \frac{\partial V}{\partial M} < 0 \quad \frac{\partial V}{\partial A} > 0$


• P_t decreases in supply M_t , increases in A_t

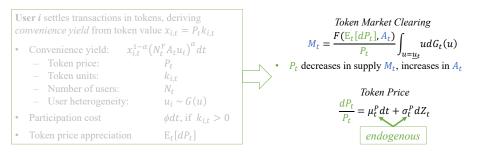
$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + \frac{dD_t}{A_t} \qquad \frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

A platform supports a unique set of transactions

- Productivity:
- $\frac{dA_t}{A_t} = \frac{L_t}{\mu^H} (\mu^H dt + \sigma^H dZ_t)$ Contributor resource:

Tokens paid to owner:

 $dD_t < 0$ Tokens burnt by owner:


$$Objective$$

$$\int_{t=0}^{+\infty} e^{-rt} P_t dD_t \Big[I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \Big] dt$$

$$\cdot \quad V_t = V(M_t, A_t), \frac{\partial V}{\partial M} < 0 \quad \frac{\partial V}{\partial A} > 0$$

$$Token \ Supply$$

$$dM_t = \frac{F(L_t, A_t) dt}{P_t} + dD_t$$

Transform the State Space

State space: $(M_t, A_t) \rightarrow (m_t, A_t)$, where $m_t = \frac{M_t}{A_t}$

Transform the State Space

State space: $(M_t, A_t) \rightarrow (m_t, A_t)$, where $m_t = \frac{M_t}{A_t}$ $V(M_t, A_t) = A_t v(m_t)$, and $P(M_t, A_t) = P(m_t)$ Solve ODEs of $v(m_t)$ and $P(m_t)$

Transform the State Space

State space: $(M_t, A_t) \rightarrow (m_t, A_t)$, where $m_t = \frac{M_t}{A_t}$ $V(M_t, A_t) = A_t v(m_t)$, and $P(M_t, A_t) = P(m_t)$ Solve ODEs of $v(m_t)$ and $P(m_t)$ $\frac{\partial V}{\partial M_t} = v'(m_t) < 0$ $P'(m_t) < 0$

Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion

Coase (1972): • Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost

- **Coase (1972):** Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable dD_t > 0 permanently increases M_t and no resources are needed to produce tokens (MC = 0)

- **Coase (1972):** Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable dD_t > 0 permanently increases M_t and no resources are needed to produce tokens (MC = 0)
 - · Consumers wait for the lowest price

- **Coase (1972):** Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable dD_t > 0 permanently increases M_t and no resources are needed to produce tokens (MC = 0)
 - Consumers wait for the lowest price
 - Consumers rationally form expectation of token price

- **Coase (1972):** Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable dD_t > 0 permanently increases M_t and no resources are needed to produce tokens (MC = 0)
 - Consumers wait for the lowest price
 - Consumers rationally form expectation of token price
 - · Producers sell all goods immediately at price equal to MC

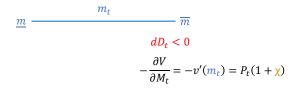
- **Coase (1972):** Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable dD_t > 0 permanently increases M_t and no resources are needed to produce tokens (MC = 0)
 - Consumers wait for the lowest price
 - Consumers rationally form expectation of token price
 - Producers sell all goods immediately at price equal to MC
 - Producers sell ∞ tokens immediately at price equal to 0?

- **Difference:** Token demand is *not stationary* A_t grows geometrically, so future demand is stronger users cannot expect P_t falls to 0
 - Bulow (1982), Stokey (1981)

- **Difference:** Token demand is *not stationary* A_t grows geometrically, so future demand is stronger users cannot expect P_t falls to 0
 - Bulow (1982), Stokey (1981)
 - Real option concern: A_t grows stochastically, and increasing token supply can only be reversed costly due to χ

- **Difference:** Token demand is *not stationary* A_t grows geometrically, so future demand is stronger users cannot expect P_t falls to 0
 - Bulow (1982), Stokey (1981)
 - Real option concern: A_t grows stochastically, and increasing token supply can only be reversed costly due to χ

Platform resists excess supply

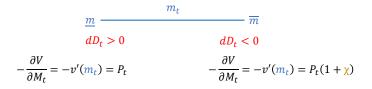

$$m_t = \frac{M_t}{A_t} \in \left[\underline{m} \,, \overline{m} \,\right]$$

Incentive to buyback and burn tokens

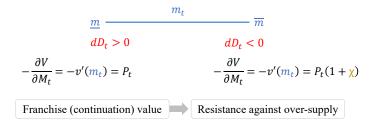
Optimal Platform Payout and Buy-back (burn) dD_t

 $\underline{m} \longrightarrow \overline{m}$

Optimal Platform Payout and Buy-back (burn) dD_t



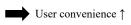
THE **TIMES**



Luxury brands including Burberry burn stock worth millions

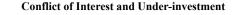
Optimal Platform Payout and Buy-back (burn) dD_t

Optimal Platform Payout and Buy-back (burn) dD_t

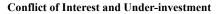


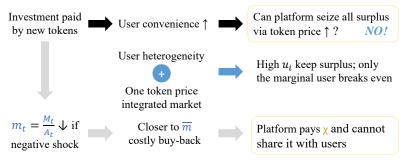
Outline

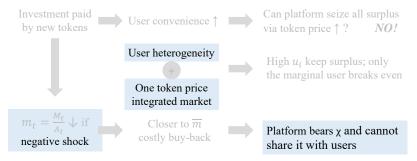

- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion


Conflict of Interest and Under-investment

Investment paid by new tokens




Conflict of Interest and Under-investment

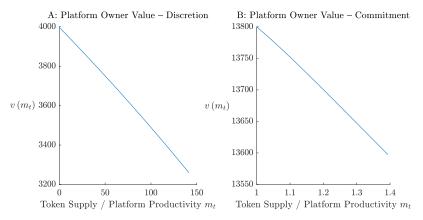


Conflict of Interest and Under-investment

Equations and Graphs

Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion


Time Inconsistency

A rule of investment set at $t = 0 \rightarrow higher V$ in every state

$$\frac{dM_t}{M_t} = \mu^M dt \text{ at } m_t \in \left(\underline{m}, \overline{m}\right), \text{ s.t.}, \tilde{L}(m_t) > L_t$$

Higher token value dominates the cost of more frequent token burning

Value Function: Discretion vs. Commitment

Time Inconsistency

A rule of investment set at $t = 0 \rightarrow higher V$ in every state

$$\frac{dM_t}{M_t} = \mu^M dt \text{ at } m_t \in \left(\underline{m}, \overline{m}\right), \text{ s.t.}, \tilde{L}(m_t) > L_t$$

Commitment via Blockchain

- A model of token-based ecosystem
 - Endogenous token supply and platform development
 - Endogenous token price and user-base formation
- $1\,$ Platform franchise value \rightarrow discipline on token supply ("dilution")
 - eq Durable-good problem, because of endogenous platform development
 - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)
- 2 Token overhang
 - Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction
- 3 The value of commitment under token overhang
 - Blockchain enables token as means of payment and financing tools

- A model of token-based ecosystem
 - Endogenous token supply and platform development
 - Endogenous token price and user-base formation
- 1 Platform franchise value ightarrow discipline on token supply ("dilution")
 - \neq Durable-good problem, because of endogenous platform development
 - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)

2 Token overhang

- Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction
- 3 The value of commitment under token overhang
 - Blockchain enables token as means of payment and financing tools

- A model of token-based ecosystem
 - Endogenous token supply and platform development
 - Endogenous token price and user-base formation
- 1 Platform franchise value ightarrow discipline on token supply ("dilution")
 - \neq Durable-good problem, because of endogenous platform development
 - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)
- 2 Token overhang
 - Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction
- 3 The value of commitment under token overhang
 - Blockchain enables token as means of payment and financing tools

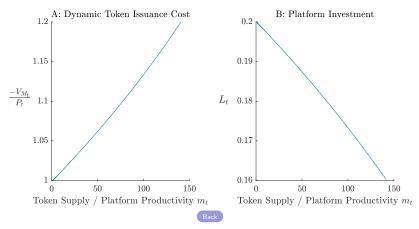
- A model of token-based ecosystem
 - Endogenous token supply and platform development
 - Endogenous token price and user-base formation
- 1 Platform franchise value ightarrow discipline on token supply ("dilution")
 - \neq Durable-good problem, because of endogenous platform development
 - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)
- 2 Token overhang
 - Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction
- 3 The value of commitment under token overhang
 - Blockchain enables token as means of payment and financing tools

Optimal Platform Investment L_t

$$\frac{\partial V}{\partial A_t} A_t \mu^H + \frac{\partial^2 V}{\partial A_t^2} A_t^2 (\sigma^H)^2 L_t = \frac{\partial F}{\partial L_t} \left(\frac{\partial V / \partial M_t}{P_t} \right)$$
(Marginal contribution to V) (Marginal cost)
(Marginal cost of investment: $\frac{\partial F}{\partial L_t}$

Optimal Platform Investment L_t

$$\frac{\partial V}{\partial A_t} A_t \mu^H + \frac{\partial^2 V}{\partial A_t^2} A_t^2 (\sigma^H)^2 L_t = \frac{\partial F}{\partial L_t} \left(\frac{\partial V / \partial M_t}{P_t} \right)$$


$$Marginal \ contribution \ to \ V \qquad Marginal \ cost$$

$$Marginal \ cost \ of \ investment: \quad \frac{\partial F}{\partial L_t}$$

$$Dynamic \ token \ issuance \ cost: \quad \frac{-\partial V / \partial M_t}{P_t} > 1, \ \text{at} \ \overline{m}, -\frac{\partial V}{\partial M_t} = P_t (1 + \chi)$$

Underinvestment !

Token Overhang

Users and Token Demand

- Price-taking, in equilibrium $dP_t = P_t \mu_t^P dt + P_t \sigma_t^P dZ_t^A$
- Maximize the NPV, given r, the cost of capital

$$\mathbb{E}\left[\int_{t=0}^{\infty} e^{-rt} dy_{i,t}\right],\tag{1}$$

where

$$dy_{i,t} = \max \left\{ 0, \max_{k_{i,t}>0} \left[\left(P_t k_{i,t} \right)^{1-\alpha} \left(N_t^{\gamma} A_t u_i \right)^{\alpha} dt + k_{i,t} \mathbb{E}_t \left[dP_t \right] - \phi dt - P_t k_{i,t} r dt \\ \text{price change} \quad \text{participation cost} \quad - \left[P_t k_{i,t} r dt \\ \text{financing cost} \right] \right\}$$

• Deadweight access cost ϕdt : cognitive, application integration etc.

Users and Token Demand

- Price-taking, in equilibrium $dP_t = P_t \mu_t^P dt + P_t \sigma_t^P dZ_t^A$
- Maximize the NPV, given r, the cost of capital

$$\mathbb{E}\left[\int_{t=0}^{\infty} e^{-rt} dy_{i,t}\right],\tag{1}$$

where

$$\begin{aligned} dy_{i,t} &= \max\left\{0, \max_{k_{i,t}>0}\left[\left(P_{t}k_{i,t}\right)^{1-\alpha}\left(N_{t}^{\gamma}A_{t}u_{i}\right)^{\alpha}dt + \right. \\ & \left. \begin{array}{c} k_{i,t}\mathbb{E}_{t}\left[dP_{t}\right] - \left. \begin{array}{c} \phi dt \\ \mathsf{price change} \end{array} \right. \\ \left. \begin{array}{c} \varphi dt \\ \mathsf{participation cost} \end{array} \right. \\ \left. \begin{array}{c} P_{t}k_{i,t}rdt \\ \mathsf{financing cost} \end{array} \right] \right\} \end{aligned}$$

• Deadweight access cost ϕdt : cognitive, application integration etc.

Users and Token Demand (con't)

• Agent i's optimal holding of tokens is given by

$$k_{i,t}^* = \frac{N_t^{\gamma} A_t u_i}{P_t} \left(\frac{1-\alpha}{r-\mu_t^P}\right)^{\frac{1}{\alpha}}.$$
 (2)

It has the following properties:

- (1) $k_{i,t} \uparrow$ in N_t , user base.
- (2) $k_{i,t} \downarrow$ in token price P_t .
- (3) $k_{i,t} \uparrow$ in A_t , platform usefulness, and agent-specific u_i .
- (4) $k_{i,t} \uparrow$ in the expected token price change, μ_t^P .
 - Determine N_t : if profits > 0, agents participate

• Adoption: maximized profit
$$N_t^{\gamma} A_t u_i \alpha \left(\frac{1-\alpha}{r-\mu_t^{\mathcal{P}}}\right)^{\frac{1-\alpha}{\alpha}} > \phi$$

• A threshold value of *u_i* above which users adopt

Users and Token Demand (con't)

• Agent i's optimal holding of tokens is given by

$$k_{i,t}^* = \frac{N_t^{\gamma} A_t u_i}{P_t} \left(\frac{1-\alpha}{r-\mu_t^P}\right)^{\frac{1}{\alpha}}.$$
 (2)

It has the following properties:

- (1) $k_{i,t} \uparrow$ in N_t , user base.
- (2) $k_{i,t} \downarrow$ in token price P_t .
- (3) $k_{i,t} \uparrow$ in A_t , platform usefulness, and agent-specific u_i .
- (4) $k_{i,t} \uparrow$ in the expected token price change, μ_t^P .
 - Determine N_t : if profits > 0, agents participate
 - Adoption: maximized profit $N_t^{\gamma} A_t u_i \alpha \left(\frac{1-\alpha}{r-\mu_t^P}\right)^{\frac{1-\alpha}{\alpha}} > \phi$
 - A threshold value of u_i above which users adopt

Token Valuation

- Users' aggregate transaction need: $U_t := \int_{u \ge \underline{u}_t} ug(u) \, du$, where \underline{u}_t is the indifference threshold
- Token market clearing, $M_t = \int_{i \in [0,1]} k_{i,t}^* di.$
- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left(\frac{1-\alpha}{r-\mu_t^P}\right)^{\frac{1}{\alpha}}.$$
(3)

• μ_t^P is the expectation of *risk-adjusted* token appreciation

Token Valuation

- Users' aggregate transaction need: $U_t := \int_{u \ge \underline{u}_t} ug(u) \, du$, where \underline{u}_t is the indifference threshold
- Token market clearing, $M_t = \int_{i \in [0,1]} k_{i,t}^* di.$
- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left(\frac{1-\alpha}{r-\mu_t^P}\right)^{\frac{1}{\alpha}}.$$
(3)

• μ_t^P is the expectation of *risk-adjusted* token appreciation

Token Valuation

- Users' aggregate transaction need: $U_t := \int_{u \ge \underline{u}_t} ug(u) \, du$, where \underline{u}_t is the indifference threshold
- Token market clearing, $M_t = \int_{i \in [0,1]} k_{i,t}^* di.$
- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left(\frac{1-\alpha}{r-\mu_t^P}\right)^{\frac{1}{\alpha}}.$$
(3)

• μ_t^P is the expectation of *risk-adjusted* token appreciation

Optimal Token Supply

- Two controls: L_t (investment) and D_t (payout/buy-back)
- Two state variables: Mt and At

$$V_t = \max_{\{L_t, D_t\}_{s \ge t}} \int_{s=t}^{+\infty} \mathbb{E}_t \left[e^{-r(s-t)} P_s dD_s \left[\mathbb{I}_{\{dD_s \ge 0\}} - (1+\chi) \mathbb{I}_{\{dD_s < 0\}} \right] \right],$$

• Continuation value: the present value of seigniorage

Calibration

Parameter	Value	Model	Benchmark
Panel A: Key Parameters			
(1) α	0.3	Comovement: $N_t \& P_t$	Cong, Li, and Wang (2018a)
(2) μ ^H	50%	Productivity growth	Cong, Li, and Wang (2018a)
(3) σ ^H	200%	Productivity volatility	Cong, Li, and Wang (2018a)
(4) θ	1e4	Investment variation	Illustrative purpose
(5) ξ	2	The Distribution of u_i	Illustrative purpose
(6) κ	0.8	The Distribution of u_i	Illustrative purpose
(7) θ	5e5	The Distribution of u_i	Comparative Statics – Competition Effects
(8) χ	20%	Token buyback cost	Comparative Statics – Financial Frictions
(9) γ	1/8	N_t in total productivity	Parameter restriction
Panel B: Other Parameters			
(10) r	5%	Risk-free rate	
(11) φ	1	Scaling effect on A_t	
(12) <i>ρ</i>	1	Shock correlation: SDF & A_t	
(13) η	1	Price of risk	

Table 1: Calibration

Back

Parametric Assumption of u_i Distribution

• u_i follows a Pareto distribution on $[\underline{U}_t, +\infty)$ with c.d.f.

$$G_t(u) = 1 - \left(\frac{\underline{U}_t}{u}\right)^{\xi}, \qquad (4)$$

where $\xi \in (1, 1/\gamma)$ and $\underline{U}_t = 1/(\omega A_t^{\kappa})$, $\omega > 0$, $\kappa \in (0, 1)$.

- The cross-section mean of u_i is $\frac{\xi U_t}{\xi 1}$
- \underline{U}_t decreases in A_t : (1) to capture competition effects; (2) for analytical convenience

Endogenous User Base

Proposition

Given μ_t^P , we have a unique non-degenerate solution for N_t under the Pareto distribution of u_i given by Equation (4):

$$N_{t} = \left(\frac{A_{t}^{1-\kappa}\alpha}{\omega\phi}\right)^{\frac{\zeta}{1-\zeta\gamma}} \left(\frac{1-\alpha}{r-\mu_{t}^{P}}\right)^{\left(\frac{\zeta}{1-\zeta\gamma}\right)\left(\frac{1-\alpha}{\alpha}\right)},$$
(5)

if $A_t^{1-\kappa}(\frac{1-\alpha}{r-\mu_t^{\rho}})^{\frac{1-\alpha}{\alpha}} \leq \frac{\omega\phi}{\alpha}$; otherwise, $N_t = 1$.

• Why hold token? (1) Usage A_t . (2) Investment μ_t^P

Optimal Control

HJB equation:

$$rV(M_t, A_t) dt = \max_{L_t, dD_t} \frac{V_{M_t}}{Insider's \text{ value}} \left[\frac{F(L_t, A_t)}{P_t} dt + dD_t \right] + V_{A_t} A_t L_t \mu^H dt + \frac{1}{2} V_{A_t A_t} A_t^2 L_t^2 \sigma^2 dt + P_t dD_t \left[\mathbb{I}_{\{dD_t \ge 0\}} - (1+\chi) \mathbb{I}_{\{dD_t < 0\}} \right],$$

with

$$dM_t = \frac{F(L_t, A_t)}{P_t} dt + \frac{dD_t}{P_t}, \text{ and } \frac{dA_t}{A_t} = \left(\mu^L dt + \sigma^L dZ_t\right) L_t$$

Proposition

The optimal token supply is given by (1) the optimal choice of L_t ,

$$L_t^* = \frac{V_{A_t} \mu^H + V_{M_t} \frac{1}{P_t}}{-V_{M_t} \frac{\theta}{P_t} - V_{A_t} A_t \sigma^2},\tag{6}$$

and (2) the optimal choice of dD_t – the platform pays out token dividends $(dD_t^* > 0)$ if $P_t \ge -V_{M_t}$, and the insiders buy back and burn tokens out of circulation $(dD_t^* < 0)$ if $-V_{M_t} \ge P_t (1 + \chi)$.

Risk-Neutral to Physical Measure

• SDF:
$$\frac{d\Lambda_t}{\Lambda_t} = -rdt - \eta d\hat{Z}_t^{\Lambda}$$

• Risk-neutral measure: $dZ_t^{\Lambda} = d\hat{Z}_t^{\Lambda} + \eta dt$.

•
$$\rho = corr(dZ^{\Lambda}, dZ^{A})$$

- Calibrate the model to the speed of N_t growth in data
 - Drift of A_t under physical measure: $\mu^A + \eta \rho \sigma^A$