Shocked by Bank Funding Shocks: Evidence from 500 Million Consumer Credit Cards

Sudheer Chava¹ Rohan Ganduri² Nikhil Paradkar¹ Linghang Zeng³

¹Georgia Institute of Technology

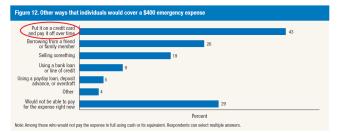
²Emory University

 3 Babson College

Financial Stability: Risks, Resilience, and Policy Federal Reserve Bank of Cleveland November 2019

Motivation

- What explains the sharp decline in consumption after the financial crisis?
 - Also, puzzling slow recovery post-crisis (esp. non-durables, services)?
- Household balance sheet effects (Mian, Rao, and Sufi, 2013):
 - Housing-wealth effect.
 - Debt overhang effect.
 - Borrowing constraints due to reduced collateral values.


Motivation

- What explains the sharp decline in consumption after the financial crisis?
 - Also, puzzling slow recovery post-crisis (esp. non-durables, services)?


- Financial intermediaries' balance sheet effects: Did bank health affect consumers' balance sheets?
 - Bank health: Fragile funding structures (reliance on uninsured short-term liabilities).
 - What is the transmission mechanism? Who gets affected? Are the effects short-term or long-term?
 - Effects on Durables vs. Non-durables/services/staples. Consumption financed by Secured (e.g., mortgage, auto) vs. *Unsecured* debt (e.g., credit cards).
 - This paper: Did bank health affect consumption through credit cards?

Motivation

- Credit card spending accounts for 25% of personal consumption expenditure (PCE) (\sim \$10 trillion in 2010, typically \sim 70% of GDP).
- Most households consume services and non-durable goods such as food, apparel, gasoline, transportation, and healthcare through credit cards.
- Important source of marginal borrowing:
 - Can you cover an emergency \$400 expense?
 - Answer is NO for 40% of U.S. households.

Preview of results

- Banks' balancesheets affect agg. consumption through the credit card channel.
- Negative bank funding shock → Dry-up of wholesale funding market.
- CC Balance-Limit Elasticities due to shock: 0.32
- Banks transmit shocks unequally across consumers → greater transmission to consumers who have lower ability to cope with the transmitted shocks.
- Effects of transmitted shocks are persistent for some consumers.

Identification challenges

- Main challenge: Isolate the changes in credit supply from the changes in credit demand.
- Implementation: Within-individual comparison (ala Khwaja & Mian, 2008)
 - Same individual exposed to high-shock and low-shock credit cards.
 - The within individual comparison controls for changes in individual-specific demand factors (e.g., income changes).
 - Leave-out mean credit limit to mitigate individual-bank specific demand.
- Unique data advantages:
 - Observe CC limits separately from CC balances.
 - Observe data on ALL credit cards for a given individual (advantage over previous papers).

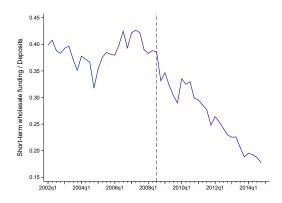
Identification challenges

- Main challenge: Isolate the changes in credit supply from the changes in credit demand.
- Implementation: Within-individual comparison (ala Khwaja & Mian, 2008)
 - Same individual exposed to high-shock and low-shock credit cards.
 - The within individual comparison controls for changes in individual-specific demand factors (e.g., income changes).
 - Leave-out mean credit limit to mitigate individual-bank specific demand.
- Unique data advantages:
 - Observe CC limits separately from CC balances.
 - Observe data on ALL credit cards for a given individual (advantage over previous papers).
- Identify shock's effect on consumption:

•
$$\frac{\partial CB}{\partial S} = \frac{\partial CL}{\partial S} \times \frac{\partial CB}{\partial CL}$$

- Isolate Δ (Credit Limits) due to the sudden bank liquidity shock.
- Next, examine Δ (Balances) resulting from Δ (Credit Limits) induced by the bank liquidity shock.

Transmission of bank shocks through credit cards


- Hedged consumers?: Ex-ante, the bank lending channel through credit cards is not obvious.
- Consumers have multiple credit cards and unutilized credit.
 - 59.8% of the households held two or more credit cards in 2007 (source: 2007 SCF).
 - Average utilization ratio is about 27%.
- Substitutes: Households have access to other sources of financing (personal loans, home equity lines of credit)
- Thus, frictions that constrain consumers in the credit market are necessary for a real impact of bank shocks transmitted through the credit card channel.
 - We highlight which credit market frictions are binding.

Data

- Data from one of the three major credit bureaus in the United States observe credit limits and balances on all credit cards of an individual (~ 500 million CCs.)
- Sample: 18 BHCs with non-zero wholesale funding dependence that are CC issuers; account for 65% of market; cover 7 of top 10 CC issuers which account for 50% of market share.
 - Dropped 4 foreign issuers, 1 specializing in retail store cards, 1 targeting a particular segment of U.S. population (veterans), 1 with insufficient data.
- Omit cards closed in the post-shock period \rightarrow so that we don't pick up changes in credit limits and balances due to personal bankruptcies or CC cancellations.
- Two main samples: Within-individual sample (158 million CCs, 54 million individuals), Aggregate sample (500 million CCs, 134 million individuals).
- Bank data from BHC Y-9C filings.

Bank liquidity shock

- Bank exposure to liquidity shock: ratio of bank's short-term wholesale funding to deposits.
- <u>Exposure measure</u>: bank's runnable funding (short-term wholesale funding) as a proportion of its stable funding (deposits).
- Exposure measure: Relatively stable in the pre-crisis period, and declines sharply in the post-crisis period.

Bank liquidity shock

- Banks vary in the extent to which they depend on short-term wholesale funding \rightarrow liquidity shock should vary across banks.
- Short-term wholesale funding: non-deposit financing (e.g., repos, commercial paper, interbank borrowing) with maturity less than one year.
 - Mainly provided by institutional investors such as, money market funds (MMFs) and other banks.
 - <u>Advantages</u>: Alternative to deposits when they need to quickly cover any funding gap (supply of deposits is highly inelastic with respect to the interest rates offered (Amel & Hannan, 1999)
 - Disadvantages: Expensive and prone to runs when compared to deposit financing
 - Ex-ante, less risky/strong banks should have a comparative advantage in accessing the wholesale funding market (Choi & Choi, 2017)

Validity of liquidity shock

Depvar:	Δ ST Wholesale (1)	Δ Wholesale (2)	Δ Tot Liabilities (3)	Δ Tot Equity (4)
Exposure	-0.425*** (-4.03)	-0.324*** (-2.95)	-0.272*** (-3.34)	-0.151 (-1.75)
N Adj. R^2	18 0.469	18 0.334	18 0.412	18 0.181
Controls	Assets	Assets	Assets	Assets
Orthog-Exposure R^2	0.531	0.412	0.481	0.278

- Banks with high exposure experienced larger decline in short-term wholesale funding
- · High exposure banks also experienced declines in total liabilities
- Equities/deposits unaffected
- The exposure measure explains $\sim 53\%$ of the decline in short-term wholesale funding, and $\sim 48\%$ of decline in total liabilities in banks.

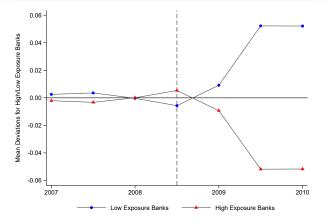
Empirical setup: Collapsed cross-sectional analysis

- Collapse the time-series credit card account-level data to obtain a single credit card-level cross-section separately in the pre-shock and post-shock period by averaging across time.
- Estimate credit card-level regression:

 $\Delta CreditLimit_{i,c,b} = \alpha + \beta Exposure_b + f(\mathbf{X}_{i,c,b}) + \eta_i + \varepsilon_{i,c,b}$

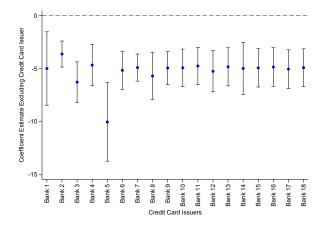
- Sample period:
 - Pre-shock Jan-2007, Jul-2007, and Jan-2008 semi-annual archives.
 - Post-shock Jan-2009, July-2009, and Jan-2010 archives.
- Analysis is similar to including *Individual*×Archive FE which absorbs all time-varying individual-level factors.

Summary stats


- High-exposure banks significantly larger than low-exposure banks
- Insignificant differences in equity capital, liquid assets, business mix, performance between high- and low-exposure banks.
- Greater decline in credit card limits for high-exposure banks:
 - Mean Δ CCLimit_{High-exposure} = -3.96%
 - Mean Δ CCLimit_{Low-exposure} = -0.30%
- Greater decline in credit card balances for high-exposure banks:
 - Mean ΔCCBalance_{High-exposure} = -49.07%
 - Mean Δ CCBalance $_{Low-exposure} = -19.13\%$
- · High-exposure banks lend to relatively higher quality borrowers
 - Better credit scores, higher monthly income, lower delinquency rates, lower subprime share.
 - Consumers of high-exposure banks have higher credit card balance, mortgage balance, differences in debt composition (auto, mortgage, credit card etc.), but similar DTI.

Bank exposure and Δ CC limits: Credit card-level analysis

		OLS				
Depvar: ΔCC Limit	(1)	(2)	(3)	(4) -4.035*** (-8.66)		
Exposure	-3.811*** (-9.85)	-5.050*** (-13.32)	- <mark>4.750***</mark> (-12.89)			
Bank characteristics Bank quality Credit card controls	\checkmark	\checkmark	√ √ √			
N Adj. R^2	158,432,533 0.072	158,432,533 0.084	158,432,533 0.090	158,432,533 0.036		
Clustering	Bank×State					


- FE estimate implies 1 SD (16%) greater bank exposure leads to a reduction of \$434 in credit limit (Avg. pre-shock credit limit 9131.60×4.750%).
- FE and OLS estimates are similar → demand factors that drive increases in credit limits seem uncorrelated with liquidity shock exposure in the cross-section.
- Robust after controlling for bank quality (size, size², capital ratio, CC business, ROE, non-perf loans etc.) and credit card controls (CC utilization, CC age, bank-individual relationship).
- Robust to alternate measures of bank exposure (exposure defined w.r.t assets, exposure orthogonalized to bank size) and different levels of clustering (bank-level).

Bank exposure and Δ CC limits: Parallel trends assumption

- Within individual trends: Equivalent to plotting residuals from Individual × Archive FE regression by high- and low- exposure groups.
 - Obtain de-meaned credit limits and exposure variable within each Individual-Archive.
 - Sort and average de-meaned credit limits by high- and low-exposure credit card groups.

Results not driven by any particular bank

- Regressions estimated with 17 BHCs each time after removing 1 BHC one by one.
- Ranking of Bank 1 Bank 18 in descending order of market share.

Bank exposure and Δ CC balances

- Why should changes in credit limits affect credit card balances?
 - Permanent income hypothesis: Corr(Δ CCLimits, Δ CCBalances)=0 if Δ (Permanent income)=0.
 - Liquidity constraints: Corr(ΔCCLimits, ΔCCBalances)>0 only if binding liquidity constraints (e.g.: high CC utilization individuals.)
 - Buffer stock models: Corr(\(\Delta CCL\)imits, \(\Delta CCBalances\)>0\) if liquidity constraints expected to be binding in future affects currently unconstrained individuals too.
- Corr(Δ CCLimits, Δ CCBalances) \neq 0 because of demand factors.
 - Consumers apply for credit limit increase.
 - Lenders can anticipate future demand changes.
 - Important to control for Individual FE!

Bank exposure and Δ CC balances: Card-level analysis

	OLS	FE	OLS	FE	2SLS
Depvar: ΔCC Balance	(1)	(2)	(3)	(4)	(5)
Δ CC limit	0.744*** (46.40)	0.854*** (25.05)			
Exposure			-3.080 (-1.02)	- <mark>9.805***</mark> (-4.57)	
Δ CC limit (instrumented)					2.064*** (4.52)
Individual FE		~		~	✓
Bank characteristics	~	~	~	~	~
Bank quality	1	1	1	1	1
Credit card controls	~	√ √	~	~	√
N	158,432,533	158,432,533	158,432,533	158,432,533	158,432,533
Adj. R ²	0.04	0.16	0.02	0.15	0.13
F-stat (Excl. Instru)	0.01	0.10	0.02	0.15	97.1

- OLS and FE estimates suggest that individual demand factors bias against finding results → high exposure banks were lending to better borrowers.
- IV estimate captures LATE → 2.06% card-level consumption foregone due to 1% reduction in credit limits from short-term wholesale funding shock (Assumption: Shock affects balances only through limits.)
- Results robust to using a "leave-out" mean credit supply measure instead of credit limits → mitigates bank-specific individual demand concerns.

Bank exposure and total consumer-level Δ CC balances

Depvar:	Δ Agg. CC Limit		Δ Agg. CC Balance	2
	(1)	(2)	(3)	(4)
Weighted exposure	-3.827*** (-9.56)	-1.216** (-2.55)		
Δ Agg. CC limit		· · · ·	0.859*** (43.56)	
Δ Agg. CC limit (instrumented)			(45.50)	<mark>0.318***</mark> (2.87)
Zip-code FE	✓	√	✓	\checkmark
Consumer quality	\checkmark	√	√	✓
N	133,501,009	133,501,009	133,501,009	133,501,009
Adj. R ²	0.027	0.032	0.141	0.098
F-stat (excl. instru)				91.386

For each individual, compute weighted exposure using <u>All</u> their credit cards.

- <u>Note</u>: Individual-level regression (Zip-code FE).
- 1 SD increase in bank exposure reduces aggregate credit card balances by 1.216% (effect is 1/8th compared to card-level balance results → consumers are able to partially hedge away the shock.)
- IV estimate captures LATE → 0.32% aggregate CC consumption foregone due to 1% reduction in credit limits from short-term wholesale funding shock.

Dollar Regressions

Depvar: \$ Changes:	Δ CC Limit FE	Δ CC Balance 2SLS	Δ Agg. CC Balance 2SLS	
	(1)	(2)	(3)	
Exposure	-475.35*** (-13.31)			
Δ CC limit (instrumented)	(10.01)	0.235*** (7.30)		
Δ Agg. CC limit (instrumented)		(1.50)	0.071*** (13.03)	
N F-stat (excl. instru)	158,432,533	158,432,533 177.15	133,501,009 104.48	

1 SD increase in bank exposure reduces credit card balance by \$475.35.

- Funding-shock induced credit limit cuts:
 - <u>Credit card level:</u> ↓ \$1 Credit Limit ⇒ Balance 23.5 cents ↓
 - Individual level: ↓ \$1 Credit Limit ⇒ Balance 7.1 cents ↓
- Other Studies:
 - Gross and Souleles (2002): ↑ \$1 Credit Limit ⇒ Balance 10 14 cents ↑
 - Mian, Rao, and Sufi (2013): ↓ \$1 House Price ⇒ Spending 5 7 cents ↓

Heterogeneity: Credit card level analysis

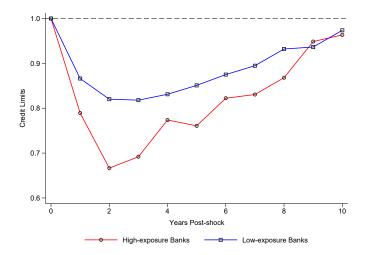
Panel A: CC-level	Panel A: CC-level Util		Panel B: Ind-level Util		
Depvar: ΔCC Limit	(1)	Depvar: ΔCC Limit	(2)	Depvar: ΔCC Limit	(3)
Exposure	-4.052*** (-10.61)	Exposure	-4.232*** (-10.87)	Exposure	- <mark>4.038***</mark> (-10.26)
Exposure×CC util (50-90%)	-4.298*** (-10.61)	Exposure×Agg. util (50–90%)	<mark>-4.994***</mark> (-11.68)	$Exposure \times Near-prime$	-4.145*** (-9.92)
Exposure×CC util (>90%)	-6.587*** (-15.16)	Exposure \times Agg. util (>90%)	-8.185*** (-15.37)	Exposure×Subprime	- <mark>7.887***</mark> (-14.88)
N Adj. R ²	158,432,533 0.089		151,449,029 0.089		158,423,518 0.089

- Banks transmit shocks differentially across consumers! → Banks cut credit limits more for higher utilization and lower credit score consumers.
- Evidence consistent with greater costs of lending to consumers with greater information frictions (e.g., moral hazard for high utilization ratio consumers).

Heterogeneity: Individual level analysis

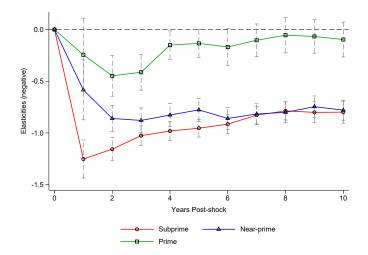
Change in Credit Card Balances Across All Cards									
	Utilization			Credit score					
	0-50%	50-90%	90%+	Sub-prime	Near-prime	Prime			
	(1)	(2)	(3)	(4)	(5)	(6)			
Δ Agg. CC Limit (instru)	<mark>0.232</mark>	1.078***	1.325***	1.475***	0.639***	<mark>0.120</mark>			
	(1.14)	(21.11)	(44.16)	(36.59)	(12.50)	(0.66)			

~


Change in Total Debt Balances Across All Debt-related Accounts

	Utilization			Credit score		
	0-50%	50-90%	90%+	Sub-prime	Near-prime	Prime
	(1)	(2)	(3)	(4)	(5)	(6)
Δ Agg. CC limit (instru)	- <mark>0.890***</mark>	-0.001	0.199***	0.596***	0.123**	- <mark>0.723***</mark>
	(-4.91)	(-0.03)	(6.48)	(10.23)	(2.13)	(-5.43)

- Aggregate consumption elasticity is decreasing in an individual's ability to hedge.
- Individuals with lower credit score, higher utilization reduce consumption on their credit cards at the aggregate level.
- Elasticities for total debt balances are smaller compared to total credit card balances. → Individuals able to substitute to other credit sources
- Overall, suggests credit constrained individuals were not able to hedge away the funding shock to their bank at the aggregate level.


Long-run effects of the funding shock

• Total inflation-adjusted real credit extended by banks on credit cards recovered to pre-crisis levels over time.

Long-run effects of the funding shock

• Persistent effects of funding shock for the near-prime and subprime consumers in the long-run.

Conclusion

• Results:

- Funding structure of banks affects aggregate consumption through the credit cards channel.
- Heterogeneity in bank response: Banks transmit shocks more to the credit constrained consumers.
- Heterogeneity in consumption elasticities: Consumption sensitivity to funding shock is higher for credit constrained consumers.
- Overall, when faced with liquidity shocks, banks pass them on to consumers who are least able to cope with them.
- Ours + prior studies shed light on the winners and losers in a credit boom-bust cycle: Credit constrained consumers enjoy less gains in boom and suffer more costs in bust.

• Contribution:

- Banks' balance sheets can affect aggregate consumption through the credit card channel with significant distributional consequences over the long-term.
- Post-crisis regulatory reform focused on addressing the vulnerabilities of a bank's funding structure, especially the reliance on wholesale funding (Tarullo, 2014).