Financial networks over the business cycle

Alexandr Kopytov

2019 Financial Stability Conference November, 2019

Motivation

- Years prior to financial crisis saw growing financial interconnectedness
 - ► Credit risk pooling (securitization), loan portfolio overlap, derivatives (CDS), interbank lending, etc. Measures
- Financial architecture shapes systemic risk
 - 'Robust-yet-fragile' property: Risk sharing vs correlated failures

Motivation

- Years prior to financial crisis saw growing financial interconnectedness
 - ► Credit risk pooling (securitization), loan portfolio overlap, derivatives (CDS), interbank lending, etc. Measures
- ► Financial architecture shapes systemic risk
 - 'Robust-yet-fragile' property: Risk sharing vs correlated failures
- ► This paper: a dynamic model with interlinked financial sector
- 1. How does systemic risk build up over time?
- 2. Why do systemic financial crises happen at the end of credit booms?

Framework

- Interconnectedness is due to common portfolio holdings
 - Asset commonality is a crucial source of systemic risk
 e.g., Borio (2003), Elsinger et al. (2006)
 - ► Tractable, yet captures essential trade-off e.g., Allen et al. (2012), Cabrales et al. (2017)

Framework

- Interconnectedness is due to common portfolio holdings
 - ► Asset commonality is a crucial source of systemic risk e.g., Borio (2003), Elsinger et al. (2006)
 - ► Tractable, yet captures essential trade-off e.g., Allen et al. (2012), Cabrales et al. (2017)
- Finite number of underlying sources of risks (asset classes/projects)
 - ▶ Risk sharing: individual default risk ↓; joint default probability ↑
 - Risk-sharing links are costly to form

Framework

- Interconnectedness is due to common portfolio holdings
 - ► Asset commonality is a crucial source of systemic risk e.g., Borio (2003), Elsinger et al. (2006)
 - ► Tractable, yet captures essential trade-off e.g., Allen et al. (2012), Cabrales et al. (2017)
- Finite number of underlying sources of risks (asset classes/projects)
 - ▶ Risk sharing: individual default risk ↓; joint default probability ↑
 - Risk-sharing links are costly to form
- Main novelty: time-varying and endogenous interconnectedness
 - Incentives to form links change over the credit cycle
 - Systemic risk is governed by evolving density of financial links

Main results

- ▶ Positive analysis: Systemic risk is built up during 'good' times
 - Systemic crises occur at the end of credit booms
 - Credit is abundant but real investment is not productive
 - Strong asset commonality due to active risk sharing
- Welfare analysis: Inefficiently high systemic risk

Literature

- Fragility of financial networks
 - Allen and Gale (2000), Allen, Babus, and Carletti (2012), Elliott, Golub, and Jackson (2014), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Babus (2016), Cabrales, Gottardi, and Vega-Redondo (2017), Farboodi (2017)
 - Portfolio overlap and systemic risk: Shaffer (1994), Acharya (2009), Stiglitz (2010), Wagner (2010, 2011), Ibragimov, Jaffe, and Walden (2011), Liu (2018)

Difference: dynamic model of systemic risk and financial fragility

- Macro models with financial frictions
 - Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1999), He and Krishnamurthy (2012), Brunnermeier and Sannikov (2014), Gertler and Kiyotaki (2015), Boissay, Collard, and Smets (2017)

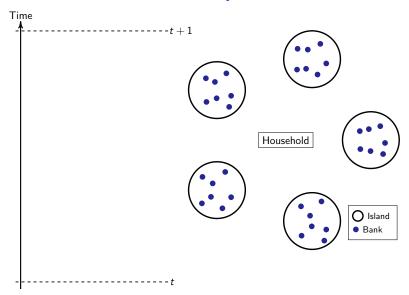
Difference: role of financial links for shock propagation and aggregate fluctuations

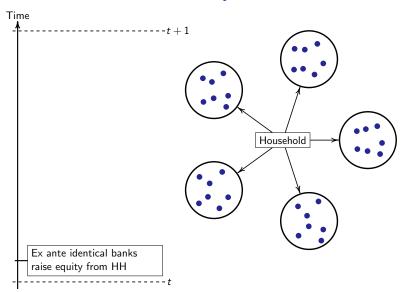
- Interconnectedness and systemic risk: Empirics
 - Elsinger, Lehar, and Summer (2006), Diebold and Yilmaz (2009, 2014), Billio, Getmansky, Lo, and Pelizzon (2012), Adrian and Brunnermeier (2016), Cai, Eidam, Saunders, and Steffen (2018)

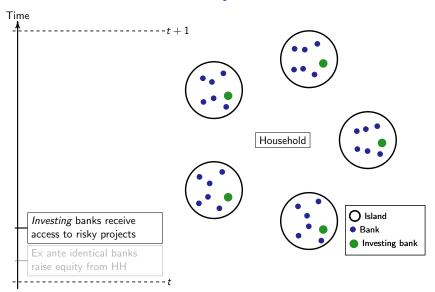
I. Model

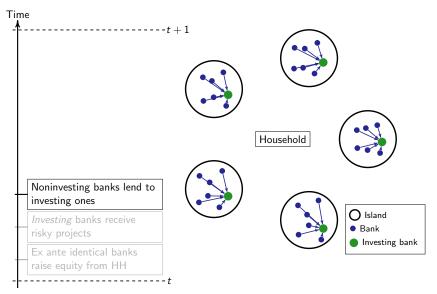
Model: Overview

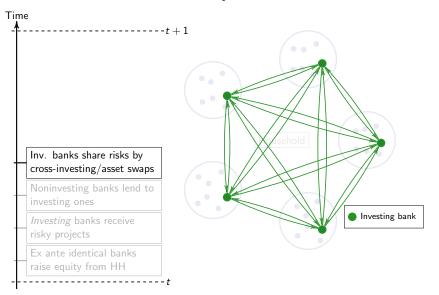
- Closed economy, infinite horizon
- Two types of agents: households and banks
- Long-lived representative household
 - Owns all assets but relies on banks for real investment (no HH-banks frictions)
 - Makes intertemporal consumption/savings decision
- One-period banks
 - ► Raise funds from households, extend credit to real economy

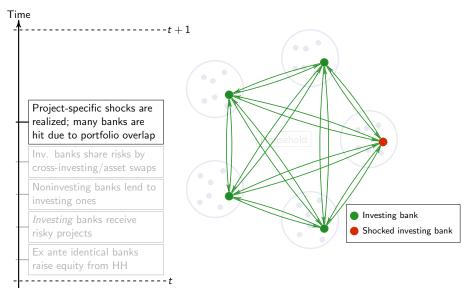


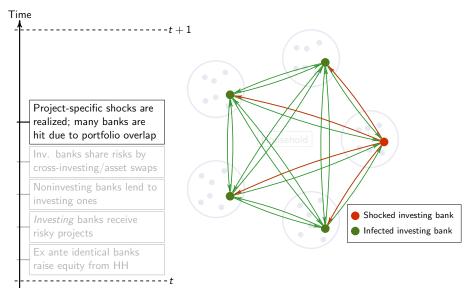


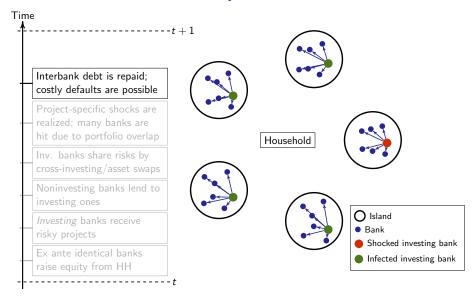


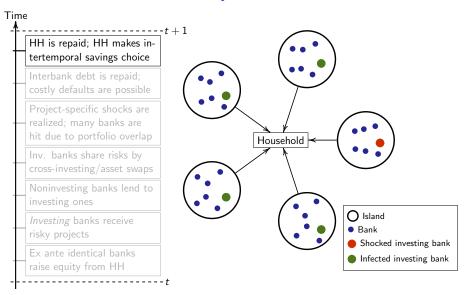












Problem of investing banks

▶ Investing bank *i* maximizes its expected earnings

$$\max_{\mu,\rho,\{\omega_{ij}\}_{j=1}^{N}} \underbrace{\frac{a_0}{1-\mu}}_{\text{Assets}} \times \left[\underbrace{\frac{1}{N} \sum_{j=1}^{N} \int_{\underline{x}}^{\frac{R-\rho\mu}{\omega_{ij}}} (R-\omega_{ij}x-\rho\mu) d\Phi(x)}_{\text{Expected net returns}} - \underbrace{f \sum_{j\neq i} \omega_{ij}}_{\text{Linking costs}}\right]$$

Problem of investing banks

Investing bank i maximizes its expected earnings

$$\max_{\mu,\rho,\{\omega_{ij}\}_{j=1}^{N}} \frac{a_0}{1-\mu} \times \left[\frac{1}{N} \sum_{j=1}^{N} \int_{\underline{x}}^{\frac{R-\rho\mu}{\omega_{ij}}} (R-\omega_{ij}x-\rho\mu) d\Phi(x) - f \sum_{j\neq i} \omega_{ij} \right]$$

ightharpoonup
ho makes noninvesting banks break even

$$\rho_{s} = \underbrace{\rho \frac{1}{N} \sum_{j=1}^{N} \Phi\left(\frac{R - \rho\mu}{\omega_{ij}}\right)}_{\text{No default}} + \underbrace{\frac{1}{\mu} \frac{1}{N} \sum_{j=1}^{N} \int_{\frac{R - \rho\mu}{\omega_{ij}}}^{\infty} (R - \omega_{ij}x - \theta) d\Phi(x)}_{\text{Default}}$$

Problem of investing banks

▶ Investing bank *i* maximizes its expected earnings

$$\max_{\mu,\rho,\{\omega_{ij}\}_{j=1}^{N}} \frac{a_0}{1-\mu} \times \left[\frac{1}{N} \sum_{j=1}^{N} \int_{\underline{x}}^{\frac{R-\rho\mu}{\omega_{ij}}} (R-\omega_{ij}x-\rho\mu) d\Phi(x) - f \sum_{j\neq i} \omega_{ij} \right]$$

ightharpoonup
ho makes noninvesting banks break even

$$\rho_{s} = \rho \frac{1}{N} \sum_{j=1}^{N} \Phi\left(\frac{R - \rho\mu}{\omega_{ij}}\right) + \frac{1}{\mu} \frac{1}{N} \sum_{j=1}^{N} \int_{\frac{R - \rho\mu}{\omega_{ij}}}^{\infty} (R - \omega_{ij}x - \theta) d\Phi(x)$$

- ▶ Borrowing capacity: $\mu \leq \bar{\mu} \equiv \frac{M-1}{M}$, where each island has M banks
 - Assumed to be binding in the theoretical analysis

Portfolio structure

Proposition

Portfolio $\{\omega_{ij}\}_{i=1}^{N}$ of investing bank i has the following form:

$$\begin{array}{|c|c|c|c|c|c|}\hline & \textit{Project } j < i & \textit{Project } i & \textit{Project } k > i \\ \hline \\ \textit{Bank } i & \omega_{ij} = \frac{1-\alpha}{N-1} & \omega_{ii} = \alpha > \frac{1}{N} & \omega_{ik} = \frac{1-\alpha}{N-1} \\ \hline \end{array}$$

- All projects generate the same diversification benefit
- ▶ Projects $j \neq i$ are costly to invest \Rightarrow portfolio is tilted toward project i

Portfolio structure

Proposition

Portfolio $\{\omega_{ij}\}_{i=1}^{N}$ of investing bank i has the following form:

$$\begin{array}{|c|c|c|c|c|c|}\hline & \textit{Project } j < i & \textit{Project } i & \textit{Project } k > i \\ \hline \\ \textit{Bank } i & \omega_{ij} = \frac{1-\alpha}{N-1} & \omega_{ii} = \alpha > \frac{1}{N} & \omega_{ik} = \frac{1-\alpha}{N-1} \\ \hline \end{array}$$

- ▶ All projects generate the same diversification benefit
- ▶ Projects $j \neq i$ are costly to invest \Rightarrow portfolio is tilted toward project i

Define financial interconnectedness as
$$IC = \frac{1-lpha}{1-1/ extsf{N}} \in [0,1]$$

► Systemic crisis: simultaneous defaults of all investing banks

$$p_{syst}^d = 1 - \Phi\left(N \times \frac{R - \rho\mu}{IC}\right)$$

▶ Systemic crisis: simultaneous defaults of all investing banks

$$p_{syst}^d = 1 - \Phi\left(N \times \frac{R - \rho\mu}{IC}\right)$$

▶ High when banks' profit margin $R - \rho \mu$ is narrow

Systemic crisis: simultaneous defaults of all investing banks

$$p_{\mathsf{syst}}^d = 1 - \Phi\left(\mathsf{N} imes rac{\mathsf{R} -
ho\mu}{\mathsf{IC}}
ight)$$

- ▶ High when banks' profit margin $R \rho \mu$ is narrow
- ...and interconnectedness is high

▶ Systemic crisis: simultaneous defaults of all investing banks

$$p_{\mathsf{syst}}^d = 1 - \Phi\left(N \times \frac{R - \rho\mu}{IC}\right)$$

- ▶ High when banks' profit margin $R \rho \mu$ is narrow
- ...and interconnectedness is high

Proposition

- ▶ Profit margin $R \rho \mu$ increases in projects' return R; interconnectedness IC and probability of systemic crisis p^d_{syst} decrease in R:
- R decreases in total amount of assets A and increases in aggregate productivity z.

Household

Representative household solves

$$\begin{split} V(A,z,x) &= \max_{C,K',L} \left[\frac{1}{1-\psi} \left(C - \frac{L^{1+\nu}}{1+\nu} \right)^{1-\psi} + \beta \mathbb{E} V(A',z',x') \right] \\ \text{s.t. } A' &= rA + wL - C + \chi \\ \log z' &= \rho_z \log z + \sigma_z \epsilon_z', \ \epsilon_z \sim \mathcal{N}(0,1) \end{split}$$

Return on assets r is

$$r = R - \frac{1}{N}x - \frac{N^d(R, x)}{N}\theta - \frac{1}{A}\chi$$

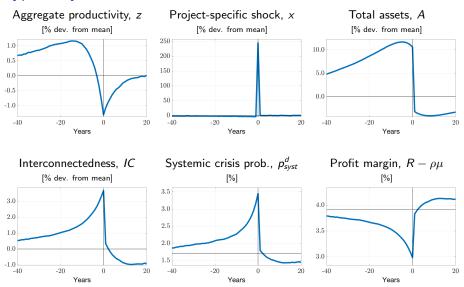
- ► N^d is the number of defaulted banks
- $\blacktriangleright \chi$ is total risk-sharing costs

II. Numerical analysis

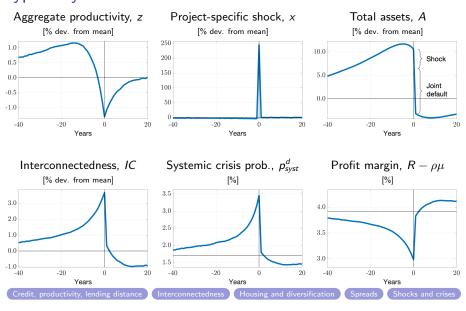
Parameters

Parameter	Value	Source/Target	
Preferences			
IES	$1/\gamma = 0.2$	Standard	
Frisch elasticity	1/ u=1	Standard	
Time discounting	$\beta = 0.97$	Standard	
Production technology			
Capital share	$\eta = 0.33$	Standard	
Capital depreciation	$\delta = 0.087$	10% annually (x shocks)	
Aggregate shocks			
Persistence	$\rho_{z} = 0.83$	US postwar data [Moments]	
St.dev. of innovations	$\sigma_z = 0.019$	US postwar data	
Banking sector			
Number of islands	N = 10	Source	
Risk-sharing cost	f = 0.005	Craig and Ma (2018)	
Default loss	heta=0.1	BGG (1999)	
Storage technology	$ ho_{s}=1.009$	$\frac{Int\ Income}{Assets} = \frac{Int\ Expense}{Liabilities}$	
Number of banks per island	M = 670	Net Interest Income Assets	
Pareto project-specific shocks, Φ($x)=1-(\underline{x}/x)^{\gamma}$		
Tail index	$\gamma=3$	Gabaix (2009)	
Minimum value	$\underline{x} = 0.088$	Financial crises frequency	

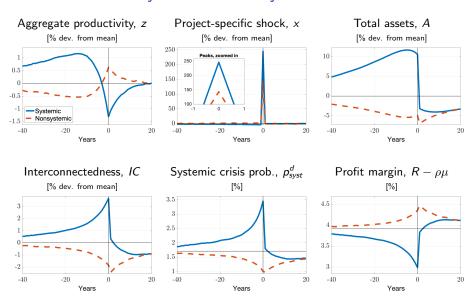
Typical systemic crisis



Typical systemic crisis



Financial crises: Systemic vs nonsystemic



Financial crises: Statistics

	Model		Data: Romer and Romer (2017)	
	All	Systemic	All	Systemic
Credit boom	1.75	3.04	1.36**	2.85***
Credit bust	-3.27	-5.95	-1.96***	- 2.77***
Output boom	1.00	1.21	1.34***	1.35*
Output bust	-1.94	- 3.12	- 2.20***	- 2.70***
Frequency	4.2	1.7	4.4	1.8

All numbers are in %. Boom/bust is defined as an average 2 years growth of HP-filtered credit/output prior to/after crises. ***,**,* denote whether the value is statistically different from zero at 1%, 5% and 10% levels, respectively.

Financial crises: Statistics

- Systemic crises are preceded by large credit booms
 - ► The model matches the frequency of systemic crises (targeted)

	Model		Data: Romer and Romer (2017)	
	All	Systemic	All	Systemic
Credit boom	1.75	3.04	1.36**	2.85***
Credit bust	-3.27	-5.95	- 1.96***	-2.77***
Output boom	1.00	1.21	1.34***	1.35*
Output bust	-1.94	-3.12	- 2.20***	-2.70***
Frequency	4.2	1.7	4.4	1.8

All numbers are in %. Boom/bust is defined as an average 2 years growth of HP-filtered credit/output prior to/after crises. ***,**,* denote whether the value is statistically different from zero at 1%, 5% and 10% levels, respectively.

Financial crises: Statistics

- Systemic crises are preceded by large credit booms
 - The model matches the frequency of systemic crises (targeted)
- Credit booms are less pronounced prior to nonsystemic crises
 - ▶ The model matches the frequency of nonsystemic crises (not targeted)

	Model		Data: Romer and Romer (2017)	
	All	Systemic	All	Systemic
Credit boom	1.75	3.04	1.36**	2.85***
Credit bust	-3.27	-5.95	-1.96***	- 2.77***
Output boom	1.00	1.21	1.34***	1.35*
Output bust	-1.94	- 3.12	-2.20***	- 2.70***
Frequency	4.2	1.7	4.4	1.8

All numbers are in %. Boom/bust is defined as an average 2 years growth of HP-filtered credit/output prior to/after crises. ***, ** denote whether the value is statistically different from zero at 1%, 5% and 10% levels, respectively.

III. Welfare analysis

Inefficiencies

- ▶ Incomplete markets (interbank debt financing) and real default losses
- ▶ Pecuniary externality: agents do not internalize their impact on $R \Rightarrow$ overaccumulation of assets, too high systemic risk

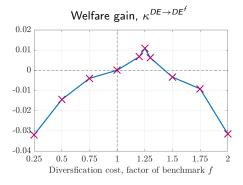
Inefficiencies

- Incomplete markets (interbank debt financing) and real default losses
- ▶ Pecuniary externality: agents do not internalize their impact on $R \Rightarrow$ overaccumulation of assets, too high systemic risk
- (Constrained) planner takes this into account by reducing credit extension in booms

	Α	С	L	Y	IC	p_{syst}^d	$p_{nonsyst}^d$	$\kappa^{\mathit{DE} o \mathit{SB}}$
DE	4.26	1.27	1.08	1.71	0.941	1.7%	2.5%	
SB	4.00	1.25	1.06	1.65	0.928	1.1%	2.9%	0.05%

Welfare impacts of financial innovations

- Recent financial innovations (securitization) facilitated risk sharing
- ▶ A decline in risk-sharing cost *f* leads to:
 - Lower expected default losses due to better risk sharing
 - ► Further increase in investment in the risky technology



	DE	SB	DE ^{optimal}
Α	4.26	4.00	4.20
IC	0.941	0.928	0.927
p_{syst}^d	1.7%	1.1%	1.5%
$p_{nonsyst}^d$	2.5%	2.9%	3.4%
$\kappa^{DE o i}$	•	0.05%	0.01%

IV. Concluding remarks

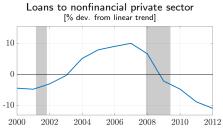
Conclusion

- ► A dynamic GE model of robust-yet-fragile financial systems
- Financial fragility endogenously changes over the credit cycle
 - Systemic banking crises burst at the end of credit booms
- Decentralized eq'm: overconnected networks, too frequent crises
- lacktriangle Financial innovations are destabilizing: number of systemic crises \uparrow
 - ...but welfare implications are generally ambiguous

Appendix

Credit and aggregate productivity

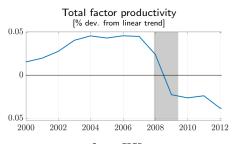




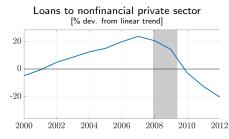
Source: Jorda, Schularick, and Taylor (2017). Trend is constructed starting from 1990

- ▶ TFP around financial crises: Gorton and Ordonez (2018)
- ► Credit around financial crises: Jorda, Schularick, and Taylor (2017)

Credit and aggregate productivity: UK

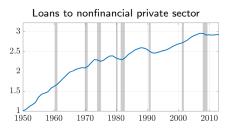


Source: FRED.
Trend is constructed starting from 1990



Source: Jorda, Schularick, and Taylor (2017). Trend is constructed starting from 1990

Credit and aggregate productivity: Full series



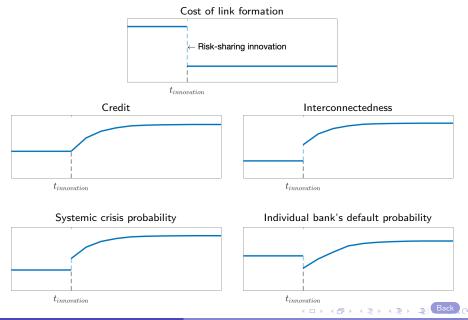
Source: Jorda, Schularick, and Taylor (2017)

Back

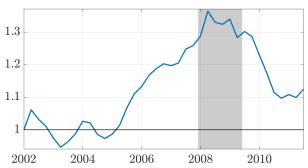
Mortgages and geographic diversification

- Geographic diversification is used to mitigate risks by mortgage investors (Cotter, Gabriel, and Roll, 2014)
 - ► Freddie Mac's 2007 annual report: "A key characteristic of our credit risk portfolio is diversification along a number of critical risk dimensions [such as] product mix, LTV ratios and *geographic concentrations...*"
 - Substantial pre-crisis decline in share of geographically concentrated mortgage lenders (Loutskina and Strahan, 2011)
- Geographic concentration is significantly negatively associated with proportion of RMBS deal rated AAA (Nadauld and Sherlund, 2009; Ashcraft, Goldsmith-Pinkham, and Vickery, 2010)

Financial innovation: Reduction in cost of link formation



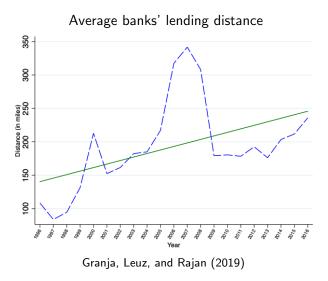
Interconnectedness: Measures I



 $\frac{\mathsf{Nonagency}\;\mathsf{MBS} + \mathsf{ABS}}{\mathsf{Assets}}$

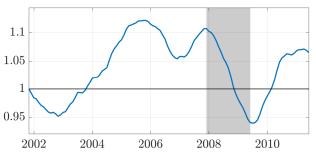
100 largest US BHC (FR Y-9C)

Interconnectedness: Measures II



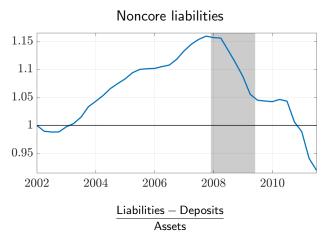
Interconnectedness: Measures III

Syndicated loan portfolio overlap



Cai, Eidam, Saunders, and Steffen (2018)

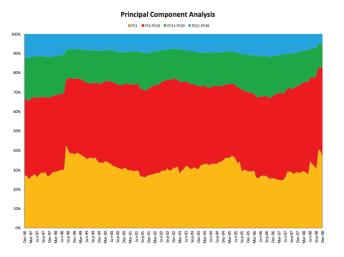
Interconnectedness: Measures IV



Source: Barattieri et al. (2018), 100 largest US BHC (FR Y-9C)

Interconnectedness: Measures V

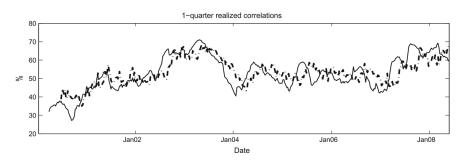
▶ PCA of banks', hedge funds', broker/dealers', insurance firms' returns



Source: Billio, Getmansky, Lo, and Pelizzon (2012)

Interconnectedness: Measures VI

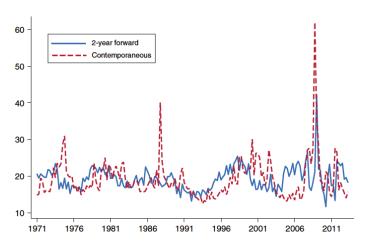
▶ Average equity returns correlation across 12 major U.S. banks



Source: Huang, Zhou, and Zhu (2009)

Interconnectedness: Measures VII

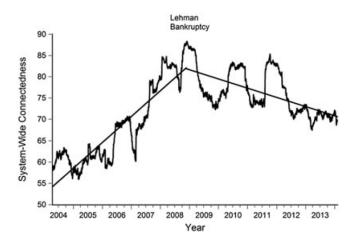
▶ Procyclicality of forward-∆CoVaR



Source: Adrian and Brunnermeier (2016)

Interconnectedness: Measures VIII

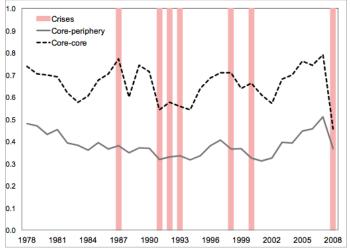
Volatility interconnectedness between major international banks



Source: Demirer, Diebold, Liu, and Yilmaz (2016)

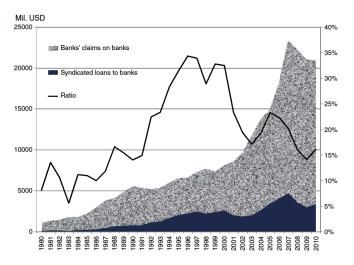
Interconnectedness: Measures IX

 Country-level interbank flows network: fraction of all possible links established



Interconnectedness: Measures X

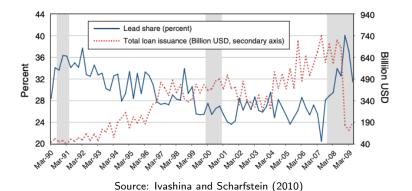
International interbank syndicated loans



Source: Hale (2012)

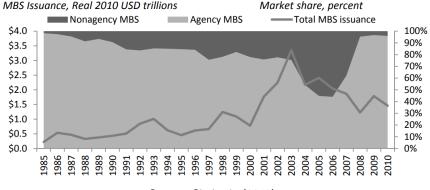
Interconnectedness: Measures XI

► US syndicated loans: Loan share retained by the originating bank and total loan issuance



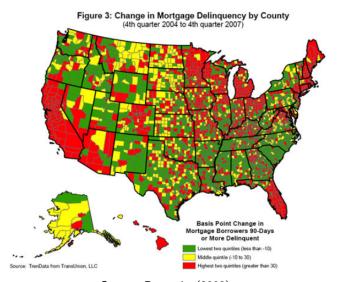
Securitization: Agency vs private

U.S. mortgage-backed securities issuance, 1985–2010



Source: Simkovic (2013)

Mortgage crisis: Regional pattern



Source: Bernanke (2008)

Measure of systemic risk

- Systemic risk: tail comovement between individual institutions and the whole system
 - CoVaR measure of Adrian and Brunnermeier (2016)

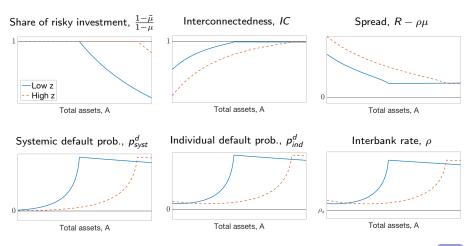
 $SR = \mathbb{P}\left[\mathsf{All}\;\mathsf{banks}\;\mathsf{default}\middle|\mathsf{Bank}\;i\;\mathsf{defaults}\right]$

$$SR = \frac{\left(\frac{1-\alpha}{N-1}\right)^{\gamma}}{\frac{1}{N}\alpha^{\gamma} + \frac{N-1}{N}\left(\frac{1-\alpha}{N-1}\right)^{\gamma}}$$

▶ $\frac{\partial SR}{\partial \alpha}$ < 0: higher systemic risk in densely connected systems

Comparative statics: Summary

- lacktriangle Regime 1: high projects' return R, no investment in storage, $\mu=\bar{\mu}$
- ▶ Regime 2: low R, nonzero investment in storage, $\mu < \bar{\mu}$



Interconnectedness and systemic risk: Derivation details

▶ Denote profit margin $\xi = R - \rho \bar{\mu}$. Then bank's problem can be written as

$$\begin{split} & \max_{\rho,\alpha} \frac{a_0}{1-\bar{\mu}} \left[R - \rho_s \bar{\mu} - \theta g_1(\alpha,\xi) - \frac{1}{N} \mathbb{E}_{\mathbf{x}} \tilde{\mathbf{x}} - f(1-\alpha) \right], \\ & \text{s.t. } \rho_s = \rho - \frac{1}{\bar{\mu}} \left(\theta g_1(\alpha,\xi) + g_2(\alpha,\xi) \right). \end{split}$$

First order conditions imply

$$B(\alpha,\xi) = \frac{\frac{\partial g_1}{\partial \alpha} + \frac{\partial g_1}{\partial \alpha} \frac{\partial g_2}{\partial \xi} - \frac{\partial g_1}{\partial \xi} \frac{\partial g_2}{\partial \alpha}}{1 + \theta \frac{\partial g_1}{\partial \xi} + \frac{\partial g_2}{\partial \xi}} - \frac{f}{\theta} = 0.$$

Under sufficiently thin tailed project-specific shocks

$$\frac{\partial B}{\partial \alpha} > 0, \quad \frac{\partial B}{\partial \xi} < 0.$$

▶ Hence, optimal α and ξ move in the same direction.

Number of islands

- ▶ In the benchmark analysis we use N = 10
 - ▶ Results are largely unchanged if N is increased (and \underline{x} is recalibrated)
- Number of two-digit SIC industries (Cai et al., 2018)
- ▶ 10 largest BHCs account for 70% of total assets (FR Y-9C)
- ▶ 10 PCs explain \approx 80% of financial firms' return variation (Billio et al., 2012)

Number of islands

- ▶ In the benchmark analysis we use N = 10
 - ▶ Results are largely unchanged if N is increased (and \underline{x} is recalibrated)
- ▶ Number of two-digit SIC industries (Cai et al., 2018)
- ▶ 10 largest BHCs account for 70% of total assets (FR Y-9C)
- ▶ 10 PCs explain \approx 80% of financial firms' return variation (Billio et al., 2012)
- Main asset classes of BHCs:

	Weight		Weight
Residential RE Loans	14.12%	Residual Securities	3.21%
C&I Loans	9.69%	Treasuries	2.27%
Repo	9.02%	Equities	2.02%
Agency MBS	8.80%	Nonagency MBS	1.74%
Consumer Loans	8.36%	Agency Securities	1.32%
Cash	7.55%	Municipal Securities	1.28%
Commercial RE Loans	6.55%	Lease Financing	1.13%
ABS and Other Debt Securities	6.46%	Other RE Loans	0.92%
Residual Loans	4.62%	Residual Assets	10.97%

100 largest BHCs from FR Y-9C, 2001-2017

Macroeconomic moments

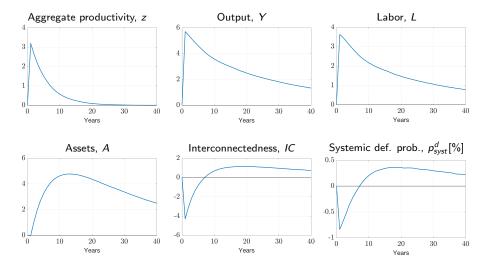
- ▶ Aggregate productivity: $\log z' = \rho_z \log z + \sigma_z \epsilon_z', \ \epsilon_z' \sim \mathcal{N}(0, 1)$
 - σ_z and ρ_z are chosen to match persistence and st.dev. of Solow residuals

	Output	Hours	Consumption	Investment
Data	1.98	1.70	0.74	5.06
Model	2.23	1.60	1.71	4.16

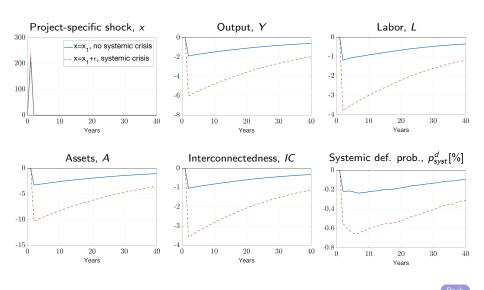
Standard deviations of macro variables: Model vs postwar US data (1950-2017). All series are HP-filtered with the smoothing parameter of $\lambda = 6.25$.

- x shocks and occasional financial crises generate excess kurtosis and negative skewness of output
 - ▶ Data: Skew(Y) = -0.57, Kurt(Y) = 3.52
 - ▶ Model (benchmark): Skew(Y) = -0.16, Kurt(Y) = 3.64
 - ▶ Model (no default losses): Skew(Y) = -0.02, Kurt(Y) = 3.14

Impulse response functions: Shock to z

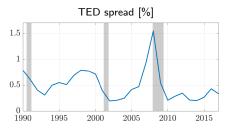


Impulse response functions: Shock to *x*



Banks' returns

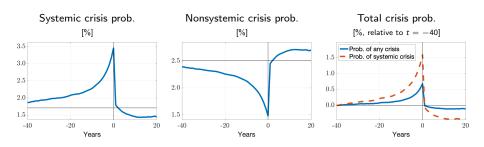




► Source: FRED

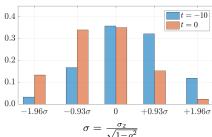
Crises probabilities

- Run-up of a systemic financial crisis:
 - ▶ Banks become more alike ⇒ less likely to default in isolation
 - ▶ Probability of some financial distress grows only marginally (≈CDX, top tranche)



Shocks leading to systemic crises

- Aggregate productivity z:
 - High in the run-up of credit booms
 - Low right prior to systemic crises

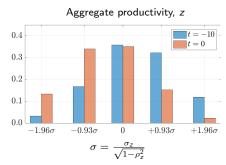


t = 0: systemic crisis

t = -10: ten periods before systemic crisis

Shocks leading to systemic crises

- Aggregate productivity z:
 - ▶ High in the run-up of credit booms
 - Low right prior to systemic crises

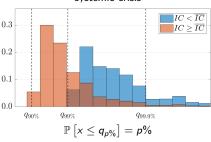


t = 0: systemic crisis

t = -10: ten periods before systemic crisis

- Systemic crises burst in densely connected networks
 - ▶ 88% occur when $IC \ge \overline{IC}$

Project-specific shock *x* at the moment of systemic crisis

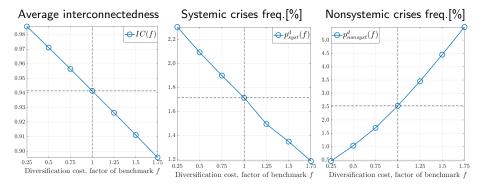


 $IC < \overline{IC}$: below average connectedness

 $IC \ge \overline{IC}$: above average connectedness

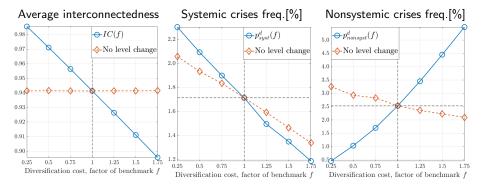
Inspecting the mechanism: Interconnectedness and crises

•
$$f \downarrow \Rightarrow IC \uparrow$$
 and $A \uparrow \Rightarrow p_{syst}^d \uparrow$, $p_{nonsyst}^d \downarrow$



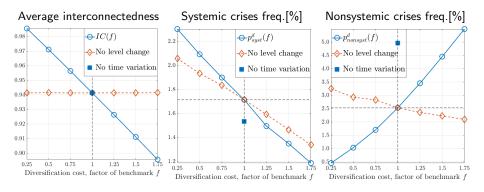
Inspecting the mechanism: Interconnectedness and crises

- ▶ $f \downarrow \Rightarrow IC \uparrow$ and $A \uparrow \Rightarrow p_{syst}^d \uparrow$, $p_{nonsyst}^d \downarrow$
- ► Level effect: same change in f holding average IC fixed



Inspecting the mechanism: Interconnectedness and crises

- ▶ $f \downarrow \Rightarrow IC \uparrow$ and $A \uparrow \Rightarrow p_{syst}^d \uparrow$, $p_{nonsyst}^d \downarrow$
- ► Level effect: same change in f holding average IC fixed
- ► Time variation effect: fixed IC over the business cycle



Financial crises: Statistics

	Model		Data	: RR	Data:	Data: JST	
	All	Systemic	All	Systemic	RR sample	Full sample	
Credit boom	1.75***	3.04***	1.36**	2.85***	3.02***	3.18***	
Credit bust	-3.27***	-5.95***	-1.96***	-2.77***	-1.32*	-3.14***	
Output boom	1.00***	1.21***	1.34***	1.35*	1.77***	1.33***	
Output bust	-1.94***	-3.12***	-2.20***	-2.70***	-2.76***	-2.49***	
Frequency	4.2	1.7	4.4	1.8	3.1	4.0	

All numbers are in %. Boom/bust is defined as an average 2 years growth of HP-filtered credit/output prior to/after crises. 'JST' and 'RR' stand for Jorda, Schularick, and Taylor (2016) and Romer and Romer (2017), respectively. ***,**,* denote whether the value is statistically different from zero at 1%, 5% and 10% levels, respectively.

Romer and Romer (2017): Crises definition

- ► Financial distress in 24 OECD countries, 1967-2012
 - Consistent narrative source: OECD Economic Outlook
- Nonsystemic crisis should at most involve "...significant problems in the financial sector that are not so severe [to be] central to recent macroeconomic developments or to the economy's prospects"
 - Examples: Australia (2008), Canada (2008), France (1996)
- Systemic crisis, at a minimum, should "...involve problems in the financial sector that are widespread and severe, central to the performance of the economy as a whole"
 - Examples: USA (2007-2009), Japan (1997-1999), Sweden (1993)

Systemic crises: Prediction

Prediction of model-implied probability of systemic crisis

	OLS: $\log p_{syst,t+1}^d$						
$\log(z_t)$	-8.3			-12.0			
$\log(A_t)$		4.4		4.3			
$\log(IC_t)$			19.2	4.4			
R^2	7.4%	52.7%	72.0%	78.9%			

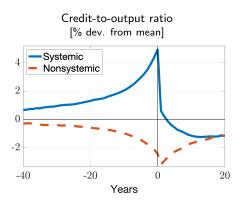
Based on 1,000,000 simulations. All coefficients are significant at 1% level

Early warning signals for systemic crises

	Logit: $\mathbb{I}\{\text{systemic crisis}\}_{t+1}$							
	(z_t)	(A_t)	(IC_t)	(z_t,A_t,IC_t)				
R^2_{pseudo}	0.6%	4.2%	6.5%	6.8%				
Type I error	100%	85.9%	60.5%	69.7%				
Type II error	0%	5.2%	13.5%	10.0%				
# of signals	0	53,930	139,854	103,632				

Based on 1,000,000 simulations and 17,170 realizations of systemic crises. Threshold is chosen to have Type II error of 10% for specification (z_t , A_t , IC_t)

Credit-to-output ratio



Decentralized equilibrium: Recursive formulation

The household solves

$$\begin{split} V^{DE}(a,A,z,x) &= \max_{c,l,a'} \frac{1}{1-\psi} \left(c - \frac{l^{1+\nu}}{1+\nu}\right)^{1-\psi} + \beta \mathbb{E} V^{DE}(a',A',z',x'), \\ \text{s.t. } a' + c &= r(A,z,x)a + w(A,z)l + \chi(\alpha(R(A,z))), \\ r(A,z,x) &= R(A,z) - \frac{1}{N}x - \frac{N^d(R(A,z),x)}{N}\theta - \frac{1}{A}\chi(\alpha(R(A,z))), \\ R(A,z) &= \eta z A^{\eta-1}L(A,z)^{1-\eta} + 1 - \delta, \\ w(A,z) &= (1-\eta)zA^{\eta}L(A,z)^{-\eta}, \\ A' &= A'(A,z,x). \end{split}$$

- $N^d(R,x)$ and $\alpha(R)$ solve interbank problem
- Labor market clears: I(A, A, z) = L(A, z)
- ► Goods market clears: $C + A' = zA^{\eta}L^{1-\eta} + A\left(1 \delta \frac{1}{N}x \frac{N^d}{N}\theta\right)$
- ▶ Aggregate law of motion is consistent with individual choice: a'(A, A, z, x) = A'(A, z, x)

Constrained planner: Recursive formulation

- The planner makes saving decisions for the household and allows labor and interbank markets to operate like in the DE case
- The planner internalizes that over-accumulation of assets leads to a fragile financial system. It also internalizes that linking costs are rebated to the household

$$V^{SB}(A, z, x) = \max_{C, A'} \frac{1}{1 - \psi} \left(C - \frac{L(A, z)^{1 + \nu}}{1 + \nu} \right)^{1 - \psi} + \beta \mathbb{E} V^{SB}(A', z', x'),$$
s.t. $A' + C = zA^{\eta}L(A, z)^{1 - \eta} + A\left(1 - \delta - \frac{1}{N}x - \frac{N^{d}(R(A, z), x)}{N}\theta\right).$

- $ightharpoonup N^d(R(A,z),x)$ solves interbank problem
- L(A,z) solves $L(A,z)^{\nu}=(1-\eta)zA^{\eta}L(A,z)^{-\eta}$
- $R(A, z) = \eta z A^{\eta 1} L(A, z)^{1 \eta} + 1 \delta$

First best allocation: Recursive formulation

In the first best, defaults are not costly $(\theta=0)$ and the economy reduces to a standard RBC model

$$V^{FB}(A, z, x) = \max_{C, L, A'} \frac{1}{1 - \psi} \left(C - \frac{L^{1 + \nu}}{1 + \nu} \right)^{1 - \psi} + \beta \mathbb{E} V^{FB}(A', z', x'),$$

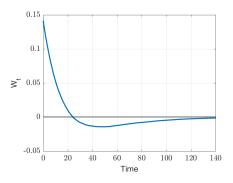
s.t. $A' + C = zA^{\eta}L^{1 - \eta} + A\left(1 - \delta - \frac{1}{N}x\right).$

	К	С	L	Y	IC	p_{syst}^d	$p_{nonsyst}^d$	$\kappa^{DE o i}$
DE	4.26	1.27	1.08	1.71	0.941	1.7%	2.5%	
SB	4.00	1.25	1.06	1.65	0.928	1.1%	2.9%	0.05%
FB	4.67	1.34	1.12	2.81	•	-		0.78%



Transitional dynamics: $DE \rightarrow SB$

$$\Delta W = \sum_{t=0}^{\infty} W_t, \text{ where } W_t = \beta^t \mathbb{E}_0 \left[u(C_t^{SB}, L_t^{SB}) - u(C_t^{DE}, L_t^{DE}) \right]$$



- ▶ Dissaving at the initial stages of transition ⇒ welfare gains
- ▶ (Discounted) welfare losses at a lower steady state later on
 - ► Fewer painful systemic crises in the new steady state

Cost of intertemporal inefficiencies

No rebate externality

Consider an economy where linking costs are not rebated to the hh

	Α	С	L	Y	IC	p_{syst}^d	$p_{nonsyst}^d$	$\kappa^{DE o SB}$
Benchmark case								
DE	4.26	1.27	1.08	1.71	0.941	1.7%	2.5%	
SB	4.00	1.25	1.06	1.65	0.928	1.1%	2.9%	0.05%
	No rebate externality							
DE ^{no rebate}	4.25	1.25	1.08	1.70	0.941	1.7%	2.5%	
SB ^{no rebate}	3.80	1.21	1.04	1.61	0.913	0.9%	3.1%	0.12%

- Rebate and oversaving externalities work against each other
- ▶ DE and SB allocations get further from each other



Aligned risk preferences

- ▶ Benchmark case: risk-averse households, risk-neutral banks
- What if preferences are aligned?
 - No analytical results, more complicated numerical algorithm
 - ► Results are affected marginally

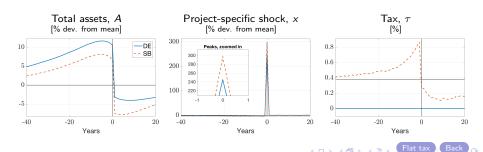
	Α	С	L	Y	IC	p_{syst}^d	$p_{nonsyst}^d$	$\kappa^{DE o SB}$
Benchmark case								
DE	4.26	1.27	1.08	1.71	0.941	1.7%	2.5%	
SB	4.00	1.25	1.06	1.65	0.928	1.1%	2.9%	0.05%
Aligned risk preferences								
DE aligned pref.	4.27	1.27	1.08	1.71	0.938	1.7%	3.0%	•
SB ^{aligned pref} .	3.99	1.24	1.06	1.65	0.924	1.1%	3.3%	0.05%

Optimal policy: Savings tax

▶ Policy to reach SB allocation: state-contingent tax on savings A'

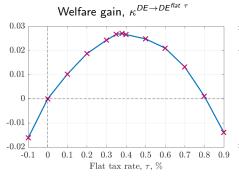
$$1 + \tau(A, z, x) = \beta \mathbb{E} \left[\left(\frac{C'_{SB} - \frac{1}{1+\nu} L'_{SB}^{1+\nu}}{C_{SB} - \frac{1}{1+\nu} L_{SB}^{1+\nu}} \right)^{-\psi} \times r(A'_{SB}, z', x') \right]$$

- ► Tax is positive on average (0.38%)
- ▶ Tax prevents large credit booms and speeds up post-crises recoveries



Flat tax on savings

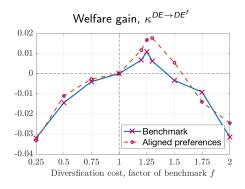
- State-contingent tax might be challenging to implement
- ▶ Flat tax corrects the steady state but not business cycle fluctuations



	DE	SB	$DE^{\mathit{flat}\ au}$
Α	4.26	4.00	4.00
IC	0.941	0.928	0.925
p_{syst}^d	1.7%	1.1%	1.2%
$p_{nonsyst}^d$	2.5%	2.9%	2.9%
$\kappa^{DE o i}$	÷	0.05%	0.03%

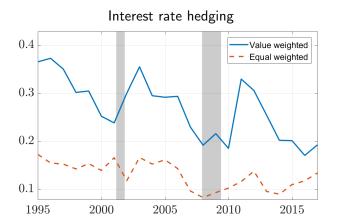
Financial innovations: Aligned risk preferences

- ▶ Benchmark case: risk-averse households, risk-neutral banks
- ▶ Systemic crises are more painful for hhs ⇒ too many connections?
 - Might be important for welfare impacts of financial innovations
- ▶ Aligned preferences: risk-sharing cost, not risk aversion, limits *IC*
 - ▶ Minor impact of preferences misalignment on the welfare analysis



	DE	SB	DE ^{optimal}
A	4.27	3.99	4.19
IC	0.938	0.924	0.921
p_{syst}^d	1.7%	1.1%	1.5%
$p_{nonsyst}^d$	3.0%	3.3%	3.9%
$\kappa^{DE o i}$	-	0.05%	0.02%

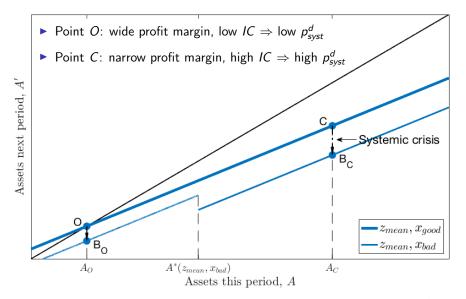
Hedging: Interest rate derivatives



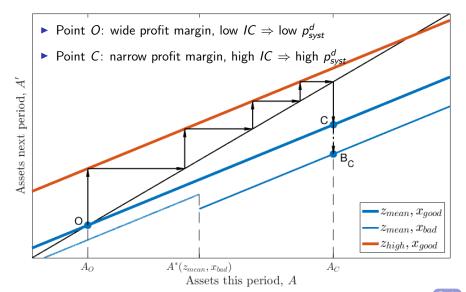
 $\frac{\text{Interest rate derivatives held not for trading}}{\text{Assets}}$

Source: Rampini et al. (2017), 100 largest US BHC (FR Y-9C)

Asset accumulation policy: State-dependent fragility



Asset accumulation policy: State-dependent fragility



Credit, aggregate productivity, and lending distance

Loans to nonfinancial private sector [% dev. from linear trend] 10 -10 2000 2002 2004 2006 2008 2010 2012 Source: Jorda, Schularick, and Taylor (2017)

