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1 Introduction

The Coleman Report of 1966 highlighted the importance of both teachers and peers in improv-

ing academic achievement. Moreover, it spawned a large literature and policy debate regarding

teacher and peer influence, particularly in understanding racial achievement gaps. Teachers skills,

effort and/or pedagogical practices are critical to understanding disparities in rates of learning

across students (Gamoran et al., 2000; Rivkin et al., 2005). Similarly, there are a large number of

channels through which peers are thought to affect educational outcomes. For example, students

could benefit from interactions with higher ability peers and suffer from the presence of disruptive

classmates (Sacerdote, 2011; Epple and Romano, 2010). Though, these literatures are vast, they

have largely treated teachers and peers in isolation.

Treating teachers and peers as separable influences on learning has (at least) two important lim-

itations. First, it fails to acknowledge that the effectiveness of different teachers/teaching practices

could depend on the characteristics of the classroom.1 For example, the benefits of student-centered

teaching practices may vary depending on the heterogeneity in initial achievement of a student’s

classmates. Second, it fails to acknowledge the fundamental role teachers can play in determining

the nature of the interactions among classmates. For instance, peer effects could be amplified by

teaching practices that promote a learning dialogue among students. In a similar vein, disruptive

behavior is an endogenous response to the teacher’s skills in managing classroom behaviors and

engaging students. Thus, the negative consequences of disruptive classmates could be largely pre-

empted by effective teachers. We seek to fill this gap in the literature, exploring complementarities

between teachers and classroom composition in achievement production, and will demonstrate why

it is critical for understanding both teacher and peer effects.

We illustrate the pervasiveness of the potential complementarities in teaching practice and

classroom composition in a simple theoretical framework. We focus on spillovers from peer initial

achievement, which are the most-studied type of peer spillover in the literature. We show that

even when the learning production function does not directly depend on the interaction between

1Teaching practices do not only involve the principles and methods used for instruction (e.g. class discussions vs.
recitation), but also those actions that affect the social dynamics of a given classroom (e.g. behavior management).
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teaching practice and peer initial achievement, a complementarity between teachers and peers will

emerge indirectly through students’ endogenous responses to teaching practices. One such example

is when teachers with better behavior management practices make misbehavior more costly, and

students benefit more from their peers if they behave well. Based on this framework, we derive a

set of equations that guide our empirical strategy.

Two important barriers have hindered an unified analysis of teacher effectiveness and peer

effects. First, detailed longitudinal data on teaching practices on a large scale are relatively rare.

Second, problems of selection and endogeneity (i.e. allocation of teachers into classrooms, and

endogenous changes in teaching practices) have prevented the implementation of credible empirical

strategies. We overcome these problems by exploiting the information collected in the Measures

of Effective Teaching (MET) Longitudinal Database. The key feature of this database is that it

provides rich information on teaching practices in a context where teachers were randomly assigned

to classrooms. Teachers are evaluated by trained raters using a research-based protocol that is

increasingly used to measure teaching effectiveness in schools nationwide, Framework for Teaching

Evaluation Instrument (Danielson, 2011).

The random assignment of teachers eliminates one of the most important confounding factors

for measuring teacher effectiveness, the systematic matching of students to classrooms that would

lead us to confound teachers or peer effects with unobservable teacher or peer quality. However,

even with random assignment, our identification strategy needs to address a number of remaining

endogeneity concerns. The first is that there is considerable non-compliance in the data. This is

easily addressed using typical strategies in the randomized control trial literature given that we

observe the randomly-assigned teacher as well as the actual teacher. Second, the experimental

design did not mandate random assignment of students to classrooms. That said, the random

assignment of teachers to classrooms is enough to obtain consistent results of the complementari-

ties between teaching practice and classroom composition, applying results developed in Bun and

Harrison (2014) and Nizalova and Murtazashvili (2014).2 Third, if teachers choose practices to

maximize student achievement, the observed teaching practice could be endogenous to the class-

2That said, this may limit our ability to infer the overall effect of peers, depending on whether classroom compo-
sition is non-random.
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room composition. We address this primarily by exploiting the availability of prior year teaching

practices, thus capturing more a teachers’ proclivity toward certain practices. Fourth, teaching

practice is measured with error. We exploit multiple measures of teaching practice through factor

models to identify what aspects are separable in the data. While we rely primarily on averages

of multiple measures of teaching practices to address measurement error, we show robustness of

a number of other approaches. This is complicated in our setting because of nonlinearities in the

effect of teaching practice inherent in our equations. We adapt the estimation approach developed

by Hausman et al. (1991) for nonlinear error in variables models to apply to our case, a panel model

where the nonlinearity takes the form of complementarities.

We make several important contributions to the literature. First, we demonstrate how failing

to capture the heterogeneity in the effectiveness of teaching practice by classroom composition

leads us to understate the importance of measured teaching practices and even, in some cases, to

infer that the practice does not matter when in fact the effects are sizable in certain classrooms.

This will provide insight into why observable teacher measures generally do a poor job of capturing

teacher quality (e.g. Rivkin et al., 2005). From a policy perspective then, understanding this type of

heterogeneity is crucial for identifying what teaching practices matter in what classroom contexts.

Second, we demonstrate that failure to allow for complementarities with teaching practice may

severely understate the benefits of peers. To the extent that teaching practices vary widely across

settings, this could help to reconcile significant disparities in the estimated importance of peers

across a number of studies (Sacerdote, 2011). More importantly, it opens new avenues of con-

structively improving achievement through teaching that makes best use of a given classroom

composition.

This work connects closely to a number of recent studies that consider heterogeneity in teacher

effectiveness by student background characteristics (Lavy, 2015; Araujo et al., 2014; Fox, 2016;

Konstantopoulos, 2009). For instance, Lavy (2015) finds larger effects of student-centered teaching

for girls and low-SES students. Connor et al. (2004) show larger effects of some types of student-

centered practices for children with higher initial achievement. Finally, Konstantopoulos (2009)

finds somewhat larger effects of teacher effectiveness for high-SES students. However, by focusing on
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heterogeneity by classroom composition, our work is substantively different in focus. Furthermore,

we show that heterogeneity by classroom composition seems to be of significantly larger magnitudes

than heterogeneity by a student’s initial achievement.

Our study also provides useful complementary evidence to the value-added literature which

argues fairly persuasively that teachers matter, but are not able to identify basic teacher charac-

teristics that are consistently associated with teacher effectiveness (Rivkin et al., 2005; Chetty et

al., 2014; Rothstein, 2010). A number of other studies have used the MET data to identify effec-

tive teachers. Already studies from the MET project have generated important insights (Cantrell

and Kane, 2013). For instance, Kane et al. (2013) verify that value-added metrics can be effec-

tive ways of evaluating teacher effectiveness in observational data and that multiple metrics of

teacher effectiveness, including observations of practice, further improve understanding of a teach-

ers’ underlying effectiveness. Mihaly et al. (2013) also show that the different metrics of teacher

effectiveness (value-added, classroom observation video scores and student survey reports) have

important commonalities. In the present study, we shift the emphasis from identifying effective

teachers to analyzing the elements of teaching that are, on average, most effective for different

kinds of classrooms.

Peer effect studies have focused more squarely on how peer effects vary by student background

characteristics because of the important implications of this type of heterogeneity to tracking and

desegregation policies. The evidence is somewhat mixed, with some studies showing a great deal of

heterogeneity in peer effects by race and initial achievement (For instance, see Burke and Sass, 2006;

Fruehwirth, 2013; Gibbons and Telhaj, 2006; Hanushek et al., 2009; Hanushek and Rivkin, 2009;

Hoxby and Weingarth, 2005; Lavy et al., 2012, among others). None of these consider heterogeneity

by teaching practice which may, similarly to the case above, be an important confounder.

Our main findings indicate that disregarding complementarities between classroom character-

istics and teaching practices make it difficult to detect the value of teaching practices. We show

that student-centered practices are more effective when classrooms have less heterogeneity in initial

achievement. In addition, we show that teacher practices aimed at managing behavior are more

effective when classroom have higher average initial achievement. This highlights the intuition that
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students cannot benefit from better-prepared peers if they are not behaving well in class. This

is consistent with the understanding that behavior management is even an important challenge in

higher-achieving classrooms, though the sources of disengagement and misbehavior may be different

from in lower-achieving classrooms (Shernoff et al., 2003). We find on the flipside that peer effects

become more important as well when teaching practice is taken into account. We show robustness

of these findings to the variety of concerns discussed above.

The rest of the paper proceeds as follows. We first describe the data in Section 2, including our

measures of teaching practice. Section 3 presents our theoretical framework. Section 4 discusses

our empirical strategy. Section 5 presents our main findings, followed by the conclusion in Section

6.

2 Data

The Measures of Effective Teaching (MET) Longitudinal Database provides detailed information

on teaching practices, student outcomes, and classroom composition from six large urban public

school districts in the United States over two academic years (2009-2010 and 2010-2011).3 The

data are linked to district administrative records, giving us access to detailed student information,

most important, current and prior measures of student achievement, but also age, race/ethnicity,

gender, special education status, free lunch eligibility, gifted status, and English language learner

status, and teacher background characteristics (e.g. sex, race/ethnicity, degree status, years of

teaching experience in the current school, and measures related to teacher aptitude, such as, the

Content Knowledge for Teaching (CKT) assessment, and school principal evaluations).4 Finally, a

key aspect of the MET data is that teachers from more than 200 schools were randomly assigned

3These districts include New York City Department of Education, Charlotte-Mecklenburg Schools, Denver Public
Schools, Memphis City Schools, Dallas Independent School District, and Hillsborough County Public Schools. Kane
and Staiger (2012) provides a detailed description on how schools were selected to participate in the MET project.
More importantly, Kane and Staiger (2012) argues that MET teachers are comparable by most measures to their
non-MET peers in the district, suggesting that they are representative of the districts included.

4The purpose of the CKT is to assess whether a prospective elementary teacher has the content knowledge needed
at the time of entry to the profession in the areas of reading and language arts, mathematics, science, and social
studies. It is designed for teacher candidates seeking a generalist elementary school license.
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within school and grade to classrooms of students during the second academic year (2010-2011).5

This random allocation of teachers into classrooms plays a key role in our empirical strategy.

We analyze students’ math performance because it has traditionally been shown to be more

malleable to school inputs. Moreover, we focus on elementary school students (grades four and five)

given that most of them are taught by general elementary teachers in self-contained classrooms with

more concentrated exposure to the same peers and teachers.6

2.1 Measuring Teaching Practice

We make use of a well-known general classroom observation protocol that measures teaching prac-

tices, i.e. Framework for Teaching (FFT). Protocols like FFT are becoming increasingly important

from a policy perspective, because a number of school districts have begun to use them for eval-

uation purposes (AIR, 2013). FFT is a research-based protocol developed by educational experts

to assess teacher effectiveness across subjects. According to MET project (2010b), “FFT has been

subjected to several validation studies over the course of its development and refinement, including

an initial validation by Educational Testing Service (ETS).”7 The protocol divides teaching com-

ponents into four domains, with the MET database rating teachers on two of them: classroom

environment and instruction. We observe scores for eight different components of these two do-

mains by a median of seven different highly trained, independent raters, many of them current or

former teachers.8 These raters had to pass reliability tests in which their scores were compared

with master scores on a number of videos. This provides some assurance of the quality of these

5When schools joined the MET study in 2009-2010, principals were asked to identify groups of teachers that 1)
were teaching the same subject to students in the same grade, 2) were certified to teach common classes and, 3)
were expected to teach the same subject to students in the same grade the following year. These groups of teachers
were called “exchange groups.” The plan was for principals to create class rosters as similar as possible within an
exchange group, and then send these rosters to MET to be randomly assigned to “exchangeable” teachers. One issue
in practice was that, when it came time to perform the randomization, not all teachers within an exchange group
were able to teach during a common period. As a result, randomization was performed within subsets of exchange
groups called “randomization blocks”.

6Appendix A provides a detailed description of the sample selection.
7Of the MET observation protocol, two, FFT, and CLASS are generic protocols designed to apply across instruction

in a range of subject-matters. In our view, of these, FFT has the most comprehensive architecture capturing teacher
practices.

8The score assigned to each component ranges between 1 and 4, where each each number refers to a level (1:unsatis-
factory, 2:basic, 3:proficient, 4:distinguished). Appendix Table 7 provides a description of each of the sub-components
of the FFT protocol.
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observational data and help us to address measurement error, as we discuss further in Section 4.

Though FFT was designed so that each component represents a separate aspect of teaching

practice, we perform an exploratory factor analysis to determine the number of components that

are actually separable in the data. Appendix Table 8 shows the correlations between the different

components and the loadings on each FFT component after performing an oblique rotation of the

factors.9 This analysis suggests that FFT measures can be divided into two separable broad teaching

practices. There are five sub-scales which load heavily on the first factor, including establishing a

culture of learning, communicating with students, engaging students in learning, using assessment

in instruction and using questioning and discussion techniques. These all reflect what we will call

student-centered practices that encourage classroom dialogue and student involvement.10 The sub-

scales that load on the second factor are creating an environment of respect and rapport, managing

student behaviors and managing classroom procedures, all of which capture domains of instruction

related to behavior management. Taken together the factors explain 92% of the total variance in

the data.11 Finally, it is important to emphasize that these groupings of sub-scales are guided both

by the pedagogical theories underlying the construction of these protocols and what information is

separable from these measures. Our empirical strategy will mainly make use of averages across the

sub-scales that according to the exploratory factor analysis correspond to each broad practice (i.e.

behavior management and student-centered practices), but we also explore other ways of addressing

measurement error, as described in detail in Section 4.12

9The results reported take the average across raters so that there is one observation per component per teacher.
Results are similar if we perform the exploratory factor analysis at the level of the rater. They are also similar if we
extract rater fixed effects and video quality prior to performing the factor analysis. Orthogonal rotations also provide
a similar conclusion.

10We have chosen the term ”student-centered practices” to try to capture the overall emphasis of the model item.
Yet, it is important to note that the FFT protocol is well balanced with ”challenge” items (e.g. the first indicator
of proficiency in the questioning and discussion techniques sub-domain is ”questions of high cognitive challenge”
(Danielson, 2011).)

11An initial exploratory factor analysis shows that there is only one eigenvalue greater than 1, a possible rough
rule of thumb for determining the number of factors. However, one factor explains 0.79 of the variation and a second
factor explains a substantial additional part, 0.13, which is an additional criteria used to determine the number of
factors.

12We also replicated our empirical strategy using both confirmatory factor analysis and principal component as
alternative measures of student-centered and behavior management practices. Results in all cases are similar.
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2.2 Summary Statistics

Table 1 reports summary statistics (age, race, gender, proportion in gifted classes and special

education, proportion that is free and reduced price lunch eligible, and English language learners)

corresponding to the students in our final sample.13 For example, around 8% of them required

special education and 64% are free school lunch eligible. This is a racially-diverse sample; 31%

of students are black, 24% are white, 32% are Hispanic, and 9% are Asian, indicating that the

school districts included in our data are not necessarily representative of the whole US population

of students. The bottom part of Table 1 further characterizes the data by displaying the number

of districts (5), schools (45), teachers (183), and randomization blocks (70) in our final sample.

In terms of classroom and teacher characteristics, Table 2 displays summary statistics corre-

sponding to the the FFT domains and classroom prior achievement average and inter-quantile range.

Raw standard deviations reported in Column (2) show substantial variation in these variables, how-

ever, given that randomization of teachers into classrooms was performed within school-grade level

(i.e. randomization block), then it is important to assess whether there is sufficient variation within

these blocks. In this regard, we report in the last two columns of Table 2 standard deviations within

and between randomization blocks. We find considerable within-randomization block variation in

teaching practice that is only marginally smaller than that between blocks. Similarly, we also find

important variation in peer characteristics within blocks.

To conclude, we analyze whether the random assignment of teachers into classrooms (within

randomization block) has been successful by implementing balancing tests. First, we check that

teaching practices at t− 1 of randomly assigned teachers do not correlate with observed classroom

composition at t and with students’ characteristics. Second, we analyze whether these tests look dif-

ferent using initially assigned classroom composition instead. Appendix Table 10 shows regressions

of randomly-assigned teaching practices (behavior management, and student-centered practices) on

IQR of peer prior achievement of the actual and initially-assigned classroom composition.14 This

analysis shows that the randomization performed by the MET project is reliable given that almost

13Appendix A describes in detail the different restrictions that we imposed to the original sample in order to obtain
our final sample of 3322 students. Appendix Table 9 shows summary statistics of the full sample.

14Each cell corresponds to a separate regression.
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Table 1: Summary Statistics: Restricted Sample (N=3322)

Mean
Std.
Dev.

Min Max

Grade Level 4.492 0.50 4.00 5.00

Joint Math/ELA Class 0.872 0.33 0.00 1.00

Age 9.416 0.97 7.52 12.40

Male 0.495 0.50 0.00 1.00

Gifted 0.045 0.21 0.00 1.00

Special Education 0.082 0.27 0.00 1.00

English Language Learner 0.179 0.38 0.00 1.00

White 0.242 0.43 0.00 1.00

Black 0.312 0.46 0.00 1.00

Hispanic 0.315 0.46 0.00 1.00

Asian 0.091 0.29 0.00 1.00

American Indian 0.006 0.08 0.00 1.00

Race Other 0.028 0.16 0.00 1.00

Math Score (Year 09-10) 0.019 0.89 -2.82 2.75

Math Score (Year 10-11) 0.046 0.90 -3.26 3.02

Unique Districts 5 - - -

Unique Classes 183 - - -

Unique Schools 45 - - -

Unique Randomization Blocks 70 - - -

Unique Teachers 183 - - -

Percentage of Class w/ 09-10
Math Scores

0.915 0.07 0.67 1.00

Percentage of Class in Ran-
dom Assignment

0.789 0.14 0.32 1.00

Teachers per Randomization
Block

2.896 0.82 2.00 4.00

Randomization Block Compli-
ance Rate

0.931 0.09 0.50 1.00

Notes: See Appendix A for a description of how this sample was obtained. Joint
Math/ELA Class refers to a self-contained course in which students learn both math
and ela, the remaining courses are either math or ela only. We summarize the percent-
age of each class w/ prior math test scores since students new to the district will not
have prior test scores. We also summarize the percentage of each class in randomiza-
tion because not all students in the classes we observe were on the original randomly
assigned class rosters.
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Table 2: Within and Between-Randomization Block Variation in Classroom Measures

Mean
Std.
Dev.

Min Max

Std.
Dev.
Be-

tween

Std.
Dev.

Within

Classroom Composition

Avg Peer Matht−1 0 1 -2.27 2.96 0.86 0.54

IQR Peer Matht−1 0 1 -2.42 3.01 0.78 0.69

Avg Peer Matht−1 (random) 0 1 -2.69 2.98 0.86 0.54

IQR Peer Matht−1 (random) 0 1 -2.32 4.3 0.78 0.7

Teaching Practices

Student Centered 0 1 -3.05 2.24 0.75 0.7

Behavior Management 0 1 -3.18 2.27 0.74 0.64

FFT Domains

CERR 2.79 0.34 1.67 3.5 0.24 0.23

USDT 2.21 0.36 1.25 3.25 0.27 0.26

ECL 2.61 0.34 1.67 3.5 0.26 0.23

MCP 2.74 0.37 1.67 3.5 0.27 0.25

CS 2.68 0.33 2.00 3.33 0.24 0.24

MSB 2.81 0.35 1.67 3.5 0.25 0.24

ESL 2.54 0.35 1.67 3.5 0.23 0.27

UAI 2.42 0.37 1.33 3.5 0.27 0.26

Notes: The sample size is 3322 and focuses on 2010-11 school year when students were randomly assigned
within randomization blocks. Teaching practices are measures in t − 1 based on FFT. The subcompo-
nents of FFT are CERR (creating an environment of respect and rapport), USDT (using questioning
and discussion techniques), ECL (establishing a culture of learning), MCP (managing classroom proce-
dures), CS (communicating with students), MSB (managing student behaviors), ESL (engaging students
in learning), and UAI (using assessment in instruction), as described further in Table (7). Behavior
management is the standardized average of MSB, MCP and CERR. Student-centered is the standardized
average of ECL, CS, ESL, UAI, and USDT. The last two columns decompose the standard deviation for
each variable into between randomization block and within randomization block components.
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all coefficients are not statistically significantly different from 0. In addition, these results show

that any reallocation of students across classrooms after the initial random assignment does not

seem to lead to statistically significant correlations of our classroom composition with the teaching

practice.15

3 Model

Standard models of educational achievement treat teachers and peers as separable inputs. Our

premise is that this may at best understate and at worst lead to misleading conclusions about

how teachers and peers shape achievement production. We motivate here how interactions between

teaching practice and peer initial achievement arise through a number of intuitive mechanisms. The

simplest model has these interactions arising through the production technology. This makes sense

for a number of possible teaching practices. For instance, encouraging classroom discussion would

create an environment where peers matter more for each student’s achievement, creating more of

a team production climate. Each student’s questions or contributions to a discussion could, in

theory, have either a positive or negative externality on peer achievement. Alternatively, it is also

possible that the interactions arise through a model where the teaching practice affects achievement

indirectly through students’ behavioral responses to the practice. We hypothesize that classroom

behavior management practices often fall into this latter category. While the production technology

channel is straightforward, the latter needs further motivation.

Let Yit denote achievement of a student i at time t. Let the index c = c(i, t) denote i’s

classroom in period t and then the vector of classroom peer achievement excluding i is denoted

Y−ict = (Y1t, ..., Yi−1,t, Yi+1,t, ..., YNt). A student’s class is also assigned to a teacher, indexed

j = j(i, t) who uses teaching practice(s) Pj . We begin with a value-added model where achievement

production is a function of prior achievement, some moment of the prior achievement distribution

of their time t classmates (m(Y−ict−1)). The less standard input to production that we introduce is

student behavior, bit, which we take to be unidimensional for simplicity. We conceptualize behavior

15Furthermore, in section 4 we also show that endogeneity of classroom composition would not bias estimates of the
interaction of teaching practice with classroom composition, as long as the teaching practice is randomly assigned,
which these results support.
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broadly as some aggregate of student attentiveness, engagement and/or effort.

Yit = β0 + βbbit + βbybitYit−1 + βbȳbitm(Y−ict−1) + βyYit−1 + βȳm(Y−ict−1)+

+ βpP
′
j + βpyP

′
jYit−1 + βpȳP

′
jm(Y−ict−1) + εit, (1)

where εit denotes the residual. This specification permits that the marginal value of behavior is

increasing in the child’s own initial achievement. Furthermore, the marginal benefits of behavior

vary with the composition of the classroom. For instance, if m(Y−ict−1) is average peer initial

achievement, this would allow that the returns to good behavior are higher in a classroom where

peers are higher-achieving.

Students choose their behavior to maximize their expected utility from achievement. There is a

cost to behavior and the cost of bad behavior (or modeled instead as the benefit of good behavior)

is increasing in the teaching practice (Pj), i.e.,

Uit = γyYit −
γb
2
b2it + γbpP

′
jbit.

Student utility-maximizing behavior b∗it is simply

b∗it =
γy
γb

(βb + βbyYit−1 + βbȳm(Y−ict−1)) +
γbp
γb
P ′j .

Behavior is increasing in initial achievement, peer initial achievement and teaching practice. This

further permits that both behavior management practices and student-centered practices can affect

behavior directly, depending on the values of γbp. We expect that this channel is more relevant

for behavior management, but in principle by engaging students more through student-centered

practices, teachers could also affect the value of behavior.

Plugging utility-maximizing behavior into the achievement production function, we have the
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reduced form

Y ∗it = β̃0 + (βb
γbp
γb

+ βp)P
′
j + (βbȳ

γbp
γb

+ βpȳ)P ′jm(Y−ict−1) + (2βbȳβb
γy
γb

+ βȳ)m(Y−ict−1)+

+ β2
bȳ

γy
γb
m(Y−ict−1)2 + (βy + 2βbyβb

γy
γb

)Yit−1 + β2
by

γy
γb
Y 2
it−1 + (βby

γbp
γb

+ βpy)P ′jYit−1+

+ 2βbyβbȳ
γy
γb
Yit−1m(Y−ict−1) + εit,

=α0 + αpP
′
j + αpȳP

′
jm(Y−ict−1) + αȳm(Y−it−1) + αȳ2m(Y−ict−1)2 + αyYit−1 + αy2Y

2
it−1 (2)

+ αpyP
′
jYit−1 + αyȳYit−1m(Y−ict−1) + εit.

Note that the interaction between teaching practice and peer achievement is driven by two

channels that are beyond the simple interaction included in the production function. First, student

optimal behavior varies with the teacher’s practice (i.e. she makes bad behavior more costly (βbp >

0)). Second, the benefits of good behavior for achievement are higher if peer initial achievement

is higher (i.e. the students can benefit from peers because they are behaving). In summary, it is

important to highlight that the same reduced form expression can be obtained even when teaching

practices are not included in the learning production function, so that βp = βpy = βpȳ = 0 (i.e. an

indirect effect will emerge through students endogenous responses).

While the model above posits some possible channels of complementarities, alternative plausible

models of student behavior would produce similar complementarities. For instance, it is straight-

forward to add to the model that students conform to the average behavior of classmates, so that

utility is

Uit = γyYit −
γb
2

(bit − γb̄b̄−it)2 + γbpP
′
jbit.

This captures the conformity-type peer effects that are the focus of the social interactions literature

(Brock and Durlauf, 2001; Epple and Romano, 2010). In this case, optimal behavior would be a

function of peer behavior and teaching practice and similar results would follow, except here the

benefits of the teaching practice are amplified through the re-enforcing behavior of peers. For

instance, a teacher’s behavior management practice encourages a student and her peers to behave

better, and the better behavior of peers further encourages the student’s own better behavior
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and vice-versa. The interaction between teaching practice and peer initial achievement would

follow again in this model because the marginal product of good behavior differs with peer initial

achievement.

Furthermore, we could also motivate the interaction between teachers and peers as arising

through a production function that has complementarities between average peer behavior and own

behavior, i.e.,

Yit = β0 + βbbit + βbybitYit−1 + βbȳbitm(Y−ict−1) + βbb̄bitb̄−it + βb̄b̄−it

+ βyYit−1 + βȳm(Y−ict−1) + βpP
′
j + βpyP

′
jYit−1 + βpȳP

′
jm(Y−ict−1) + εit,

where there are direct spillovers from peer behavior and the achievement benefits of behavior are

increasing in peer behavior. This channel connects well with Lazear (2001)’s classic treatment of

the classroom learning environment as a public good that is disrupted by student behaviors. The

reduced form in this setting would be similar in structure to the above, when m(Y−ict−1) = Ȳ−ict−1,

with the addition of the P 2
j term arising through the interaction of own and peer behavior, both

of which are increasing in Pj .

The model so far takes as given the teaching practice, whereas in reality teachers could respond

to the classroom composition by modifying their teaching practice. As we discuss below, we think

we can identify most convincingly the effects of a fixed or persistent aspect of teaching practice and

so do not focus on this channel.

4 Estimation

Our empirical strategy focuses on estimation of the reduced form model described in equation (2),

as this if the focus of the literature. We take as a starting point that m(Y−ict−1) = Ȳ−ict−1 and
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expand to consider other moments of the peer achievement distribution in the application, i.e.,

Yit = α0 + αpPj ′+ αpȳPj ′Ȳ−it−1 + αȳȲ−ict−1 + αȳ2Ȳ
2
−ict−1 + αyYit−1 + αy2Y

2
it−1

+ αpyPj ′Yit−1 + αyȳYit−1Ȳ−ict−1 + εit, (3)

where we assume that observed achievement is a result of student’s utility-maximizing behavior.

The parameter, αpȳ, which captures how the marginal benefits of teaching practice vary with the

classroom composition constitutes our main object of interest. To simplify exposition, we ignore the

role of student and teacher observables (e.g. race, gender, among others) though we show results

that include these covariates.

As discussed above, a unique aspect of these data is that teachers are randomly assigned to

classrooms. This means that teacher fixed and pre-determined characteristics are independent of εit.

Because randomization held within randomization blocks at a school, we control for randomization

block fixed effects to isolate this random variation. However, even with random assignment of

teachers to classrooms, several important endogeneity concerns remain. First, there is considerable

non-compliance to the random assignment in the data, which we need to address. Largely, this

was because assignments were made based off of preliminary rosters at the end of the previous

school year before school administrators had a good sense of who would be attending their school.

Second, classroom composition may be endogenous as principals were not required to randomly

assign students to classrooms. This means that Ȳ−ict−1 could be correlated with the student’s

unobserved type for instance, even though it is not correlated with unobserved teacher quality.

Third, Pj may still be endogenous even with random assignment because of measurement error.

We discuss each of these issues in turn.

Non-compliance We index the randomly assigned teacher as r = r(i, t), so that the teaching

practice of the randomly-assigned teacher is denote Pr. Because the data include an indicator

of the teacher that was randomly assigned to the student, we can use standard approaches for

dealing with non-compliance, instrumenting for teaching practice of the observed teacher using the

teaching practice of the randomly assigned teacher. However, in our setting we need to instrument
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for the level effect of the practice and its two interactions. This is easily done with the additional

instruments PrȲ−ict−1 and PrY−it−1. However, in our main models when we include both practices

and multiple moments of peer initial achievement, this introduces considerable noise. Therefore,

we focus much of our discussion around the “intent-to-treat” estimates, which replace the observed

teaching practice with the randomly-assigned teaching practice. The benefit of this latter strategy

is that it has smaller standard errors, but the cost is that it understates the benefits of teaching

practice, as we show in Section 5.

Because teachers were randomly assigned at the randomization block levels, we include random-

ization block fixed effects αb, where b = b(i, t) indexes randomization blocks. Thus, our equation 3

becomes

Yit = α0 + αpPr′+ αpȳPr′Ȳ−ict−1 + αȳȲ−ict−1 + αȳ2Ȳ
2
−ict−1 + αyYit−1 + αy2Y

2
it−1

+ αpyPr′Yit−1 + αyȳYit−1Ȳ−it−1 + αb + ε̃it. (4)

Endogeneity of classroom composition Endogeneity of classroom composition could occur

in our data for two reasons. First, the principals were not required to assign classroom composi-

tion randomly. Second, non-compliance by students could lead the classroom composition to be

endogenous even after addressing the non-compliance at the teacher-level.

The question we now address is whether we can identify αpȳ even though Ȳ−ict−1 is potentially

endogenous.16 Maintaining the assumption that practice does not respond to classroom composi-

tion, we have that εit is independent of Rt. For simplicity, we ignore for the moment the conditioning

on Yit−1 and randomization block fixed effects, though all arguments go through with this addi-

tional conditioning.17 Assume further without loss of generality that E(Pr) = E(Ȳ−it−1) = 0, so

that teaching practice and classroom composition measures are mean 0. Demeaning these variables

also aids in interpretation of the parameters in equation (4) as discussed further in Section 5.

The correlation between the interaction term and the residual can be written as Cov(PrȲ−it−1, ε̃it) =

16Bun and Harrison (2014) and Nizalova and Murtazashvili (2014) provide a detailed discussion of this type of
setting, where an exogenous covariate is interacted with an endogenous variable, which we follow here.

17We also ignore the higher order peer terms though inclusion of them does not change our results.
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E(PrE(Ȳ−it−1εit|Pr). Sufficient assumptions for identification of the interaction include

Assumption A1. E(Ȳ−ict−1εit|Pr) = E(Ȳ−ict−1εit), and

Assumption A2. Ȳ−ict−1 is independent of Pr

Thus, for instance, if there is matching of students to peers which generates a correlation

between peer initial achievement and the residual, it is independent of the randomly assigned

teaching practice.

It then follows that Cov(PrȲ−ict−1, εit) = E(Pr)E(Ȳ−ict−1εit) = 0, given that E(Pr) = 0. The

first equality follows from random assignment of teachers to students and the second through a

normalization of the independent variables, without loss of generality.18 Bun and Harrison (2014)

and Nizalova and Murtazashvili (2014) show that the independence between Pr and Ȳ−ict−1 and that

the covariance of Ȳ−ict−1 and ε̃it does not vary by Pr created by random assignment are sufficient

to obtain unbiased estimates of αpȳ even if Ȳ−ict−1 is endogenous. Nizalova and Murtazashvili

(2014) point to different studies using randomized control trials that maintain this assumption

when estimating heterogeneity in treatment effects. Bun and Harrison (2014) point out that a

number of weaker versions of Assumption A2 are sufficient for identiifcation. In particular, it

would be sufficient if E(Ȳ−ict−1Pr) = E(Ȳ−ict−1)E(Pr) and E(Ȳ 2
−ict−1Pr) = E(Ȳ 2

−ict−1)E(Pr).

The main way assumptions A1 and A2 could be violated is if students reshuffle after the initial

teacher assignment. We do not believe this is a concern for 2 reasons. First, as we discussed

in the balancing tests in Section 2, we do not see evidence that peer characteristics (measured

after potential reshuffling of students) are correlated with teaching practice. Second, we test this

condition by regressing each of the student’s own characteristics times the peer characteristics on

the randomly assigned teaching practice. These tests also provide strong support that at least in

terms of observables this condition is not violated. Finally, we can test the implications for our

estimation if there is some matching based on unobservables that we did not detect with our tests,

by replacing the observed peer characteristics with the initially-assigned peer characteristics in our

regressions. We will show that results are robust to this setting in Section 5.

18It is important to emphasize that in our ITT specifications if a student is ex-post re-allocated to a different
classroom, we still impose that the teaching practice that he/she is exposed corresponds to the randomly assigned
teacher of his original classroom.
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Measurement error and endogeneity of teaching practice Suppose that true teaching

practice (Pj) is measured with error. We have multiple observations of teaching practice taken

from video observations from multiple raters of the teacher both in the initial observational year

and in the random assignment year. Let the subscript k capture different observations of the

teaching practice, i.e.,

Pjkt = δkPj + ujkt. (5)

Our preferred approach is to use t− 1 measures to capture the teaching practice. This address two

related concerns. First, video raters may have difficulty separating the teacher’s practice from the

students they are teaching. In fact, a cursory look at the protocol descriptions suggests that this

may be an important challenge. Second, if teachers change their practice in response to classroom

composition, then the practice of the randomly assigned teacher is no longer independent, leading

our identification strategy to fail.

To clarify the potential effects of measurement error on our estimates, suppose we replace the

true teaching practice with one of the measures of teaching practice in t−1 assuming that teaching

practice is a scalar, i.e.,

Yit = α0 +
αp

δk
P j
rkt−1 +

αpȳ

δk
P j
rkt−1Ȳ−ict−1 + αȳȲ−ict−1 + αȳ2Ȳ

2
−ict−1 + αyYit−1 + αy2Y

2
it−1

+
αpy

δk
Prkt−1Yit−1 + αyȳYit−1Ȳ−ict−1 + αb + νit

where νit = ε̃it −
αp

δk
urkt−1 −

αpȳ

δk
urkt−1Ȳ−ict−1 −

αpy

δk
urkt−1Yit−1. If measurement error is random,

this should bias our estimates of αp and αpȳ toward 0. If Cov(urkt−1, Prkt−1) > 0, which is expected

if there is assortative matching of better teachers with better students in t − 1, then estimates of

αpȳ would be further biased toward 0.

The primary results we focus on use simple averages across relevant observations of our measures

of practice. However, we show results are robust to using principle component analysis to construct

our measures (the primary approach we have seen applied in this literature) or factor model to

extract the underlying teaching practice from multiple measures as in equation (5). We are also

aware of the concern that simply including extracted factors in nonlinear models does not completely
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deal with measurement error. We adapt the method developed in Hausman et al. (1991) to deal

with nonlinear errors in variables models to our setting where the nonlinearity takes the form of

interactions. We describe this approach in detail in Appendix C.

To the extent that practice is time-varying, the focus on t−1 measures may understate the total

effect of teaching practice though the potential effect on our interaction terms is ambiguous. For

time-varying practice, we can extract instead the common component from the correlation between

t−1 and time t practices, as this should not be related to classroom composition, given that teachers

are randomly assigned to classrooms in time t. This would pick up a persistent aspect of teaching

practice. Because we need to deal with non-compliance as well, this means instrumenting for the

time t observed teacher’s teaching practice with the time t − 1 teaching practice of the randomly

assigned teacher, which introduces more noise.

5 Results

We begin by showing results from simple specifications that ignore the potential complementarities

of teaching practice and classroom composition, and then we build into more complex models. This

relates most closely to the existing literature and will clarify why the simpler models that are often

the focus of the literature can provide misleading evidence on the benefits of teachign practice.

Furthermore, this will show how teaching practices emerge as important elements of the learning

process once interactions with classroom composition are brought into the analysis.

5.1 Do Teaching Practices have a Direct Effect on Test Scores?

We begin by estimating a simpler version of equation (3), where we abstract from key interactions

between teaching practices and peer characteristics. The aim is to study whether these practices

play any visible role when we do not account for complementarities with classroom composition.

Panels A and B of Table 3 display results from eight different specifications for behavior manage-

ment and student-centered practices, respectively. In particular, odd columns present results from

models without any relevant interaction, while even columns additionally incorporate interactions

between student prior performance and the teaching practice of interest. Results in columns (1)
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and (2) correspond to naive OLS specifications, where previous year teaching practice of the current

teacher (Pjt−1) is the variable of interest.19 Columns (3) and (4) report intent-to-treat (ITT) esti-

mates, replacing Pjt−1 with the teaching practice at t−1 of the randomly-assigned teacher (Prt−1).

Columns (5) and (6) present treatment on the treated (TT) results where Pjt−1 is instrumented

with Prt−1. Finally, columns (7) and (8) also report IV findings but in this case Prt is instrumented

with Prt−1 to capture persistent aspects of teaching practice across years in the case where teaching

practice is time-varying.20

Given the breadth of the measures, it is perhaps suprising that none of the specifications (in

both panels) show that the level of teaching practices play a statistically significant role in math

performance.21 However, these results are consistent with the findings in Garrett and Steinberg

(2015), where principal components of FFT measures do not seem to have a direct impact on

students’ performance. In a similar vein, while interactions of student prior achievement with

behavior management or student-centered practices are statistically significant in ITT and IV

specifications, F-tests (reported at the bottom of each panel) show that the coefficients associated

with these practices are in many specifications not jointly significant. At first glance, these findings

suggest that our constructs of teaching practice may not measure something meaningful or at the

very least do not matter for performance, and therefore they should be disregarded as relevant

measures of the teacher’s effectiveness in teaching math. Moreover, while peer effect parameters

are likely biased upward (if anything) because of non-random sorting of students, we find that

in all specifications average peer prior achievement has small coefficient estimates of the order

of magnitude of 0.013 at the highest and large standard errors. Thus, these findings might also

suggest that peer initial achievement does not substantially affect math performance. However,

the following section shows that these conclusions are misleading when we build to account for

complementarities between teaching practice and peers.

19Notice that we have access to measures of teaching practice for the same teacher at two different points in time
(i.e. academic years 2009-2010 and 2010-2011). We do not report OLS results that include current teacher practices
because results would be largely endogenous, though we report IV estimates that instrument teaching practices of
the current randomly assigned teacher with its t− 1 teaching practices.

20The first stage shows that Prt−1 is a statistically significant predictor of Prt with a coefficient of 0.32 for behavior
management and 0.17 for student-centered practices.

21These results also holds if instead of using averages of the sub-domains, we consider a principal component
approach.
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Table 3: Effects of Teaching Practice without Classroom Interactions

Actual Random IV Actual with IV Practicet

Teacher Teacher Rand. Teacher With Practicet−1

for Rand. Teacher

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A

Behavior Management 0.012 0.012 0.015 0.015 0.017 0.016 0.046 0.046

(0.021) (0.020) (0.019) (0.018) (0.021) (0.020) (0.066) (0.064)

B.M.×Matht−1 0.021* 0.022* 0.023* 0.041*

(0.012) (0.012) (0.012) (0.022)

Matht−1 0.752∗∗∗ 0.752∗∗∗ 0.752∗∗∗ 0.752∗∗∗ 0.752∗∗∗ 0.752∗∗∗ 0.753∗∗∗ 0.753∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Avg Peer Matht−1 0.012 0.013 0.011 0.012 0.012 0.013 0.0016 0.0043

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.030) (0.029)

P-value (joint signif. of
teaching practice)

0.210 0.168 0.151 0.150

F-Stat. (first stage)† 765.6 387.6 10.47 5.169

Panel B

Student Centered 0.022 0.021 0.022 0.021 0.025 0.023 0.127 0.132

(0.019) (0.019) (0.019) (0.018) (0.021) (0.021) (0.135) (0.136)

S.C.× Matht−1 0.017 0.023* 0.024** 0.068*

(0.012) (0.012) (0.012) (0.036)

Matht−1 0.752∗∗∗ 0.752∗∗∗ 0.752∗∗∗ 0.751∗∗∗ 0.752∗∗∗ 0.751∗∗∗ 0.755∗∗∗ 0.753∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.018)

Avg Peer Matht−1 0.011 0.010 0.010 0.008 0.011 0.009 0.001 0.003

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.028) (0.026)

P-value (joint signif. of
teaching practice)

0.142 0.048 0.038 0.154

F-Stat. (first stage)† 921.5 477.2 4.200 2.058

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the
randomization block level. Panel A and B correspond to different regressions with math as the dependent variable. Lagged
teaching practices are used in columns (1)-(6) and sample size is 3322. Columns (7) and (8) use current practices and
sample is 3319. These regressions include randomization block fixed effects and controls for the level and a squared term of
prior math achievement and average peer prior achievement, as well as student characteristics listed in Table 1. † Reports
the Kleibergen-Paap rk Wald statistic for a weak instrument test.
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5.2 Teaching Practice and Classroom Composition

We expand the previous analysis by fully estimating equation (3), by including interactions of dif-

ferent moments of the classroom prior achievement distribution (i.e. average peer achievement, and

interquantile range, IQR) with teaching practices. Panels A and B of Table 4 present results from

six different specifications for each practice, respectively. Odd columns accommodate models where

average peer prior achievement is interacted with one of the broad teaching domains (in addition

to student prior achievement), while even columns additionally control for classroom interquartile

range and its interaction with teaching practices. Columns (1) and (2) report ITT results (i.e.

Pjt−1 is replaced with Prt−1 as per equation (4)). Columns (3) and (4) report TT estimates where

Pjt−1 is instrumented with Prt−1. Finally, columns (5) and (6) provide further ITT robustness

checks where we additionally replace the average and IQR of the actual classroom composition

with those of the original composition (i.e. before any potential re-allocation of students could

occur in response to the randomization of teachers into classrooms).22

Panel A shows that classrooms with higher average peer initial achievement benefit more from

behavior management practices, which is consistent with the mechanisms discussed in our model.

For example, ITT and TT results show that a one standard deviation increase in behavior man-

agement increase test scores around 5% to 3.5% of a standard deviation when peer average prior

year performance is one standard deviation above the mean.23 In contrast, the even columns show

that the effectiveness of behavior management practices does not vary significantly with the IQR

in classroom initial achievement. Furthermore, consistent with the results in Table 3, the level

effects of behavior management practices are still not statistically significantly different from 0 and

point estimates are small. Moreover, the interactions between behavior management and student’s

prior achievement become statistically insignificant in most specifications, suggesting that failure

to account for complementarities with classroom composition may lead to stronger conclusions

22Recall that our identification strategy only requires the random allocation of teachers into classrooms to estimate
the interaction between classroom composition and teaching practice, so is robust to the endogeneity of classroom
composition. It is important to clarify that if a student is ex-post re-allocated to a different classroom, we impose
that the teaching practice that he/she was exposed corresponds to the randomly assigned teacher.

23For example, our findings indicate that teaching practices that prevent misconduct seem to reinforce peer effects
in the classroom.
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about student-level heterogeneity in the effects of teaching practice. A further notable change

is that behavior management emerges as a statistically significant predictor of test performance

when interacted with average peer prior achievement. In addition, F-tests show that the vari-

ables associated with this teaching domain are jointly significant at the 99% confidence level in

most specifications. The fact that the interaction between student prior achievement and behavior

practice is not significant suggests that the channel in which teaching practices are operating is

through amplifying the role of peer effects, as discussed in section 4, and that failure to account

for this interaction would lead us to misrepresent the relevance of this teaching domain for math

performance.

Panel B shows results for student-centered practices. Generally, we find that classes with higher

average initial achievement also benefit more for student-centered practices. However, the benefits

of student-centered practices are smaller in classroom with higher IQR in initial achievement.

Like in the case of behavior management, the level effect of student centered practices are not

statistically significantly different from 0 and neither are the interactions with initial achievement,

after controlling for interactions with classroom composition. Furthermore, joint tests also confirm

that student-centered practices are significant predictors of achievement, with a p-value of 0.003 in

our preferred specification. Finally, there may be some concerns that IQR may be correlated with

class size, and therefore we may be picking class size effects. However, specifications that control

for class size and its interactions do not change the results. In summary, the findings in Table 4

provide two main messages. First, teaching practices seem to show large complementarities with

classroom characteristics. Second, the contrasting evidence between behavior management and

student-centered practices also points to the importance of considering these measures separately,

i.e., a single measure of teaching quality does not allow to understand in which contexts different

practices become more or less effective.

A valid concern with our findings is to what extent our results (e.g. lack of significance in the

level of the teaching practice measures) are affected by problems of measurement error in our key

teaching practice variables. In order to address this point, we implemented a measurement error

correction strategy that follows Hausman et al. (1991). This approach is more convenient than
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Table 4: Teaching Practice and Classroom Composition
Random IV Actual with IV Practicet
Teacher Rand. Teacher With Practicet−1

for Rand. Teacher

(1) (2) (3) (4) (5) (6)

Panel A

Behavior Management 0.017 0.020 0.018 0.021 0.068 0.068

(0.016) (0.017) (0.018) (0.019) (0.062) (0.062)

B.M. × Matht−1 0.014 0.013 0.015 0.013 0.029 0.025

(0.012) (0.011) (0.012) (0.012) (0.022) (0.021)

B.M. × Avg Peer Matht−1 0.049∗∗∗ 0.048** 0.054∗∗∗ 0.052** 0.140** 0.125**

(0.018) (0.018) (0.019) (0.021) (0.057) (0.064)

B.M. × IQR Peer Matht−1 -0.015 -0.015 -0.032

(0.016) (0.019) (0.038)

P-value (joint signif. of teach-
ing practice)

0.010 0.008 0.004 0.002 0.052 0.029

First Stage F-Stat.† 210.9 87.94 3.371 2.981

Panel B

Student Centered 0.019 0.012 0.020 0.011 0.222 0.134

(0.019) (0.019) (0.022) (0.021) (0.250) (0.225)

S.C. × Matht−1 0.016 0.0130 0.017 0.013 0.049 0.038

(0.011) (0.011) (0.012) (0.011) (0.034) (0.033)

S.C. × Avg Peer Matht−1 0.032** 0.030** 0.036** 0.034** 0.195 0.191

(0.015) (0.0150) (0.017) (0.017) (0.170) (0.165)

S.C. × IQR PeerMatht−1 −0.035** −0.039** −0.096

(0.015) (0.016) (0.071)

P-value (joint signif. of teach-
ing practice)

0.015 0.010 0.009 0.003 0.500 0.365

First Stage F-Statistic† 151.4 75.22 0.521 0.418

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered
at the randomization block level. Sample size is 3322. Lagged teaching practices are used with the exception
of columns (5) and (6), where sample size is 3319. Panel A and B correspond to different regressions with
math as the dependent variable. These regressions include randomization block fixed effects and controls
for the level and a squared term of prior math achievement and average peer prior achievement, as well
as student characteristics listed in Table 1. Even columns also include the IQR in peer prior achievement.
Whenever peer variables are included we also include their square, and all pairwise interactions of peer
variables and prior achievement. † Reports the Kleibergen-Paap rk Wald statistic for a weak instrument
test.
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the usual IV strategy that accounts for error in variables, because in our model the variables of

interest enter non-linearly into the model. In appendix C, we provide a description of how we

adapt the Hausman et al. (1991) method to our context, and results obtained after implementing

it. For completeness, we also report results when performing IV corrections (i.e. instrumenting one

of the measures that corresponds to a given teaching practice with the remaining measures of that

teaching practice). Overall, the findings indicate that our current strategy of taking averages of

the teaching practice variables provides similar results to strategies that correct for measurement

error following alternative approaches.

5.3 Teaching Practice vs. Teacher “Quality”

While previous specifications provide important insights, teachers who have better behavior man-

agement practices may also engage in more student-centered practices; therefore not including

both domains in the same specification may bias our estimates. In addition, a remaining concern

is whether our findings on complementarities between teaching practices and peer composition are

robust to the inclusion of measures of teacher “quality.” It is worth pointing out that there is no

consensus on how teaching quality should be measured, and FFT was designed to capture different

aspects of effective teaching. This means that in some ways behavior management and student cen-

tered practices are in fact measures of quality. Furthermore, the fact that behavior-management

and student-centered practices interact differently with classroom composition already suggests

that a single unidimensional quality may not be correct. That said, it is still informative to see

whether controlling for more traditional measures of teacher quality changes our results.

In order to address these key points, Table 5, Columns (1) and (2) present ITT (i.e. Pjt−1

is replaced with Prt−1) and IV (i.e. Pjt−1 is instrumented with Prt−1) results from a model that

simultaneously controls for behavior management and student-centered practices and their interac-

tions with peer composition. These results show that interactions of behavior management with the

average peer initial achievement are robust, but seem to explain the interaction of student-centered

practices with the average peer initial achievement in the previous tables because of strong correla-

tions between these two practices. In contrast, interactions of student-centered practices with the
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IQR in peer initial achievement remain robust.

Columns (3) to (5) of Table 5 report results from ITT specifications similar to column (1)

where we additionally include different proxies for overall teaching “quality” and its interactions

with classroom characteristics.24 First, as a measure of aptitude we include teacher performance

in the Content Knowledge for Teaching (CKT) assessment, which has been designed to measure

the extent to which a prospective elementary teacher has the content knowledge needed in the

areas of reading and language arts, mathematics, science, and social studies.25 Second, we include

the teacher’s average score on student assessments from the TRIPOD survey. This instrument as-

sesses the extent to which students experience the classroom environment as engaging, demanding,

and supportive of their intellectual growth.26 Finally, we included school principal evaluations on

teachers performance which are reported in the MET database.27 These results show that across all

specifications our key interactions between teaching practices and moments of the classroom prior

achievement distribution remain significant where the size of these coefficients is fairly constant,

and similar to our previous specifications. Furthermore, we see that these alternative measures of

“quality” do not interact with peer average initial achievement and IQR in the same way as our

two practices. This is true despite CKT and principal surveys being statistically significant predic-

tors of math achievement. In contrast to our practice measures, these show statistically significant

heterogeneity in effects by the student’s initial achievement, suggesting that “quality” as measured

through CKT and principal assessments matters more for better students.

24Notice that we cannot control for the usual measures of teacher value-added (i.e. adjusted random effects) because
these models inherently neglect the presence of classroom-teacher interactions.

25See MET project (2010a) for a detailed description of this assessment.
26Tripod is a research-based protocol that measures teacher effectiveness based on student surveys. See Kane and

Staiger (2012) for a description of this tool and the importance for predicting teacher value-added.
27The fact that our specifications include randomization blocks (which in this case are school-grade fixed effects)

should account for systematic difference on principals reporting.
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Table 5: Teaching Practices and Alternative Teacher “Quality” Controls

Random IV Actual Random Teacher

Teacher with Random Alt. Teacher Control:

Teacher CKT 7C PSVY

(1) (2) (3) (4) (5)

Behavior Management 0.007 0.007 -0.004 0.011 0.005

(0.023) (0.026) (0.022) (0.023) (0.022)

B.M. × Matht−1 0.008 0.007 0.009 0.007 0.004

(0.017) (0.018) (0.017) (0.017) (0.017)

B.M. × Avg Peer Matht−1 0.045* 0.049* 0.055** 0.048* 0.043*

(0.025) (0.028) (0.025) (0.025) (0.024)

B.M. × IQR Peer Matht−1 0.018 0.023 0.013 0.021 0.014

(0.022) (0.025) (0.022) (0.022) (0.022)

Student Centered 0.010 0.01 0.016 0.011 0.002

(0.026) (0.029) (0.024) (0.026) (0.026)

S.C. × Matht−1 0.008 0.008 0.003 0.015 0.008

(0.017) (0.018) (0.017) (0.017) (0.016)

S.C. × Avg Peer Matht−1 0.003 0.005 -0.006 -0.003 0.004

(0.021) (0.024) (0.020) (0.021) (0.022)

S.C. × IQR Peer Matht−1 -0.044** -0.050** -0.046** -0.050** −0.037

(0.021) (0.023) (0.019) (0.024) (0.023)

Alt. Teacher Control −0.014 −0.002 0.056***

(0.016) (0.019) (0.016)

T.C.× Matht−1 0.043*** -0.0230* 0.033***

(0.013) (0.012) (0.011)

T.C.× Avg Peer Matht−1 -0.020 0.02 -0.022

(0.020) (0.021) (0.016)

T.C. × IQR Peer Matht−1 -0.007 0.013 -0.013

(0.020) (0.023) (0.016)

P-value joint signif of BM& SC 0.033 0.008 0.034 0.015 0.143

P-value joint signif. T.C. 0.030 0.406 0.002

First Stage F-Statistic† 31.84

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered
at the randomization block level. Sample size is 3322. Dependent variable is math and teaching practices
are measured at t− 1. Regressions include randomization block fixed effects and controls for the level and a
squared term of prior math achievement and average and IQR of peer prior achievement, their square and
all pairwise interactions of peer variables and prior achievement, as well as student characteristics listed in
Table 1. Even columns also include the IQR in peer prior achievement. † Reports the Kleibergen-Paap rk
Wald statistic for a weak instrument test. CKT denotes Content Knowledge for Teaching assessment, 7C
denotes overall student survey teacher ratings based on Tripod and PSVY denotes principal assessments of
teacher quality. 28



6 Conclusion

Exploiting a unique data set that provides detailed information on teaching practices from trained

raters based on an increasingly popular teacher evaluation protocol, FFT, and where teachers are

randomly assigned to classrooms, this paper makes three main contributions to the literature on

teacher effectiveness. First, we show that the benefits of teaching practices vary significantly with

classroom composition. This finding suggests that teachers can in fact shape peer effects and

classroom composition can shape teacher effects. We find that behavior management practices are

more effective in classes with higher average initial peer achievement, whereas student-centered

practices are more effective in classrooms with lower variation in initial peer achievement.

Second, failure to capture the interactions of the teaching practice with the classroom compo-

sition may lead researchers to understate or even conclude that a teaching practice is not relevant

for achievement when in fact it matters. In particular, we find that level effects of the teaching

practices measured by FFT on math performance are not statistically significantly different from

0.

Third, failure to capture the interactions of the teaching practice with the classroom composition

also may lead researchers to misstate the importance of heterogeneity in the effects of the teaching

practice by the individual student’s initial achievement. Both behavior management and student-

centered practices seem to matter more for higher-achieving students before including interactions

with classroom composition.

We illustrate through a simple model the potentially pervasive nature of the interactions of

practice with classroom composition. For instance, the interaction of behavior management prac-

tices with average peer initial achievement arises in a model where the achievement benefits of good

behavior (which is positively affected by behavior management practices) are higher if a student’s

peers are also behaving or if her classmates are higher-achieving. That student-centered practices

are more effective in lower variance classrooms seems more straightforwardly a property of the

achievement production function, though it could also be motivated through preferences if student

engagement or effort depends on their initial achievement relative to their peers.

We show that our results are robust to a number of specification checks, including controlling for

29



observable unidimensional aspects of teacher quality, including aptitude from the Content Knowl-

edge assessment, principal surveys of teacher quality and student surveys do not explain these

patterns. Furthermore, similar effects are not found with these unidimensional measures of quality.

These results suggest that the common focus in the teacher effectiveness literature, including the

value-added literature, to treat teaching quality as a unidimensional, separable construct may be

misguided.

Finally, we consider implications of these findings on classroom composition and teaching prac-

tice in two school improvement paradigms: (1) teacher evaluation and accountability, and (2)

professional development and training. Classroom observations of teaching practice–scored using

the FFT and other protocols–are now routinely used in annual teacher evaluation and accountabil-

ity. When coupled with other indicators of teacher effectiveness, rigorous observations might help

reduce the negative instructional adaptations that sometimes occur in test-based accountability sys-

tems (Jennings and Corcoran, 2012), and reduce the risk of erroneously labeling any given teacher

as ineffective or effective. Yet, our findings suggest that, depending on teachers’ assignments or the

overall school context, specific domains of instructional practice may be more relevant to teacher

effectiveness than others. As such, specific domains of instruction (rather than an overall obser-

vational score) may be emphasized in accountability systems depending on teaching assignments

and/or school context.

Our main findings also have ramifications for advancing teacher training and professional devel-

opment. In particular, they reinforce the importance of explicit attention to challenges stemming

from classroom-achievement heterogeneity (Cohen and Lotan, 1997; Seaton et al., 2010). Another

ramification is that behavioral management practices appear to be especially important in culti-

vating achievement growth in high-achieving elementary school classrooms. On the one hand, this

is intuitive given that students cannot benefit from having higher-achieving peers if the teacher

does not maintain a good classroom environment by managing behaviors. On the other hand, this

finding is novel or even counter-intuitive given models of student motivation and engagement that

stress the iterative relationship between achievement and engagement; i.e. problems of engagement

and disruptive behaviors are often traced to academic struggles (Finn and Zimmer, 2012; Voelkl,
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2012), and are thought to be exacerbated in low-achieving peer-contexts (Kelly, 2009). Yet, high-

achieving students can also experience low levels of engagement, and in particular, low levels of

concentration caused by a mismatch between challenge and skills (Shernoff et al., 2003). Given

this interpretation, we suggest further research to better isolate the effects of teachers’ emphasis

on behavioral management from the accomplishment of a positive behavioral climate, which may

stem from other underlying instructional conditions including levels of challenge.

Finally, returning to the need to differentiate teachers’ practice in specific instructional domains

in teacher evaluation, an ancillary impression from our analysis of the MET data arose which suggest

limits to present capacity; scores on protocol subdomains do not appear to be as orthogonal in

practice as they are in principle, or are intended to be. That is, the MET observational protocol

seem to have been developed as formative measures of instruction, where ideally the protocol would

be useful in assessing “weak points” to target for instructional improvement.28 But at least in this

study, domain scores are much more similar than they are disparate. Again, further research is

needed on observing and measuring teachers’ practice in order to more fully separate the specific

aspects of teaching practice which are theorized to matter for achievement. Our results indicate that

this needs to be done with attention to the important moderating effect of classroom composition.

28This is our own interpretation of these protocol. The supporting documentation we examined for the FFT
protocol for example, does not specifically address the extent to which it was designed to measure a formative
construct (Danielson, 2011, 2012).
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A Randomization and Sample Selection

When schools joined the MET study in 2009-2010, principals were asked to identify groups of
teachers that 1) were teaching the same subject to students in the same grade 2) were certified
to teach common classes and 3) were expected to teach the same subject to students in the same
grade the following year. These groups of teachers were called “exchange groups” The plan was
for principals to create class rosters as similar as possible within an exchange group, and then send
these rosters to MET to be randomly assigned to “exchangeable” teachers. One issue in practice
was that, when it came time to perform the randomization, not all teachers within an exchange
group were able to teach during a common period. As a result, randomization was performed
within subsets of exchange groups called “randomization blocks.” In summary, MET requested
scheduling information for 2,462 teachers from 865 exchange groups in 316 schools. From this, they
created 668 randomization blocks from 619 exchange groups in 284 participating schools. The drop
off in teachers can be attributed to either a school refusing to permit randomly swapping rosters, or
all remaining MET project teachers leaving the school or the study prior to randomization. From
these randomization blocks, 1,591 teachers were randomly assigned to class rosters. Teachers were
lost either because they were not scheduled to teach the exchange group subject and grade level in
2010-2011 or they decided not to participate.29 Kane et al. (2013)

Since assignments were made based on preliminary rosters at the end of the previous school
year, before school administrators knew who would be attending their school, there was both
attrition from the sample and additional students who moved into the school and needed to be
incorporated in the sample. As a result, our analysis does not rely on the assumption that the
observed classroom composition is random, but rather exploits what we know to be random—the
initial random assignment of teachers to classrooms. We discuss this further in Section 4. We cannot
include students who were not in the randomization sample in our main analysis, which relies on
the randomization, but we do include them as part of the calculation of classroom composition
when prior test scores are available. For the average student in our final sample, 79% of classroom
peers were included in randomization, and we observe prior test scores for 91% of classroom peers.

To motivate our sample selection, we first review what is needed for estimation. We rely on the
random assignment of classes to teachers, and primarily use teaching practice from the prior year
to avoid endogeneity issues. Additionally, we need current and prior test scores to measure the
effect of teaching practice on a student’s outcomes. We start with the entire sample of elementary
students in the randomization year (2010-11), in either a math or joint math and ELA classroom
and restrict the sample to students who were a part of random assignment. At this point we have
5,730 students, summarized in appendix Table (9). Next, we restrict the sample to randomization
blocks in which half or more of the students complied with random assignment. We lose 31% of the
sample here, but still have 3,927 student observations. One reason for this is that compliance rates
and teacher attrition varied by school, but since our analysis relies on within randomization block
variation in teaching practice and classroom composition, this does not affect the internal validity of
our results. Next we restrict the sample to students we can use in our baseline specifications. This
just requires that students have current and prior test scores, and that their actual and randomly
assigned teacher has non-missing measures of teaching practice in the prior year (2009-10). We lose
just 149 observations or under 4% of the remaining sample. Next we make a class size restriction,

29The number of randomized teachers includes 386 high school teachers and 24 teachers from grades 4-8 for whom
rosters were later found to be invalid by MET. We do not include these in our sample.
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requiring that all classes have a minimum of 7 students in random assignment with current and prior
test scores. We do this to avoid the possibility of results being driven by unusually small classes.
We only lose 38 students or about 1% of the remaining sample from this class size restriction
directly. Our estimation strategy requires a minimum of two teachers per randomization block.
We lose about 10% of the remaining sample, and are left with 3,372 students who show up in our
analysis. There are 22 students showing up twice within schools but between sections. To avoid
counting these students twice, we drop all of these duplicate student observations or 44 student
observations. Finally, we check the randomization block compliance rates again, the class size
restriction and that there are at least two teachers per randomization block. The final restricted
regression sample has 3,322 student observations. These student observations span 5 districts, 45
schools, 70 randomization blocks, 183 teachers, 183 classrooms, with 87% of student observations
coming from joint math/ela courses. Tables (1) and (9) present summary statistics of our sample
before and after we make our main sample restrictions.
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B Appendix Tables

Table 6: Comparison between the Hausman Estimator and ITT-IV specifications

MCP ITT MCP IV

FFT
MCP-
MSB-
CERR

ESL ITT ESL IV
FFT
ESL-

USDT

(1) (2) (3) (4) (5) (6)

Teaching Practice 0.010 0.018 0.022 0.019 0.018 0.012

(0.017) (0.020) (0.025) (0.016) (0.020) (0.025)

T.P. × Matht−1 0.012 0.008 0.009 0.000 0.017 0.016

(0.012) (0.014) (0.017) (0.011) (0.013) (0.019)

T.P × Avg Peer Matht−1 0.034* 0.048** 0.061** 0.016 0.039** 0.015

(0.018) (0.022) (0.027) (0.016) (0.017) (0.032)

T.P. × IQR Peer Matht−1 -0.029* -0.011 -0.021 -0.028* -0.036** -0.056**

(0.017) (0.017) (0.025) (0.015) (0.016) (0.024)

P-value joint signif. T.P. 0.025 0.141 0.179 0.005

First Stage F-Stat.† 32.29 31.36

Hansen J P-value†† 0.405 0.539

p2 load 1.062 0.836

p3 load 0.857 0.860

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Sample size is 3322. The ITT
columns uses randomly assigned MCP or ESL scores as “Practice.” The IV columns use all other practices that
load on behavior management to instrument for MCP, and likewise for ESL with student centered practices.
Practices are for the randomly assigned teacher measured at t− 1. We use efficient GMM estimator and FFT
MCP-MSB-CERR uses our adapted Hausman estimator to correct for measurement error, where MCP is the
anchor, and MSB is used to construct moment conditions. FFT ESL-USDT is similar but uses the average
of all other student centered practices as the third measurement since we are overidentified. The specification
is identical to that in Table (4) except here we do not include controls for student characteristics. † Reports
the Kleibergen-Paap rk Wald statistic. †† Reports p-value from Hansen’s J statistic test of overidentifying
restrictions.“p2 load” and “p3 load” are the recovered measurement parameters described in Appendix C.
Standard errors are clustered at the randomization block level, and with the adapted Hausman estimator we
bootstrap standard errors with 200 repetitions.
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Table 7: Description of Framework for Teaching (FFT)
Behavior Management

Managing student be-
haviors

Monitoring of student behavior, response to student misbe-
havior, expectations

Managing classroom
procedures

Management of instructional groups, transitions, and mate-
rials and supplies

Creating an environ-
ment of respect and rap-
port

Teacher interactions with students and student interactions
with each other

Student-centered practices

Establishing a culture of
learning

Importance of content and expectations for learning and
achievement

Communicating with
students

Expectations for learning, directions and procedures, expla-
nations of content, use of oral and written language

Engaging students in
learning

Activities and assignments, grouping of students, instruc-
tional materials and resources, structure and pacing

Using assessment in in-
struction

Assessment criteria, monitoring of student learning, feed-
back to students, student self-assessment and monitoring of
progress

Using questioning and
discussion techniques

Quality of questions, discussion techniques, student partici-
pation

Table 8: FFT Teaching Practice Correlations and Factor Loadings

CERR MCP MSB USDT ECL CS ESL
Factor 1
Loadings

Factor 2
Loadings

CERR 1 0.196 0.680

MCP 0.602*** 1 0.055 0.779

MSB 0.676*** 0.713*** 1 -0.090 0.934

USDT 0.476*** 0.413*** 0.395*** 1 0.790 -0.033

ECL 0.627*** 0.497*** 0.496*** 0.569*** 1 0.699 0.170

CS 0.568*** 0.524*** 0.464*** 0.559*** 0.601*** 1 0.592 0.219

ESL 0.489*** 0.452*** 0.415*** 0.627*** 0.700*** 0.575*** 1 0.886 -0.067

UAI 0.462*** 0.468*** 0.416*** 0.644*** 0.597*** 0.586*** 0.667*** 0.826 -0.032

Obs. 732

Notes: First seven columns show correlations between FFT components. We use the entire sample of fourth and fifth grade
teachers from both years e.g. 732 teacher-year observations. Last two columns present factor loadings from exploratory
factor analysis after performing an oblique rotation of the factors, and keeping the first two factors. The first factor explains
79% of the variance in the data, and the second explains another 13%. CERR (creating an environment of respect and
rapport), USDT (using questioning and discussion techniques), ECL (establishing a culture of learning), MCP (managing
classroom procedures), CS (communicating with students), MSB (managing student behaviors), ESL (engaging students
in learning), UAI (using assessment in instruction). See table (7) for a detailed description of each FFT variable.
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Table 9: Summary Statistics: Pre-Restricted Sample

Mean SD Min Max

Grade Level 4.515 0.50 4.00 5.00

Joint Math and ELA Class 0.850 0.36 0.00 1.00

Age 9.458 0.96 7.52 13.20

Male 0.490 0.50 0.00 1.00

Gifted 0.078 0.27 0.00 1.00

Special Education 0.090 0.29 0.00 1.00

English Language Learner 0.148 0.36 0.00 1.00

Free and Reduced Price Lunch
Eligible

0.558 0.50 0.00 1.00

White 0.281 0.45 0.00 1.00

Black 0.345 0.48 0.00 1.00

Hispanic 0.273 0.45 0.00 1.00

Asian 0.071 0.26 0.00 1.00

American Indian 0.005 0.07 0.00 1.00

Race Other 0.022 0.15 0.00 1.00

Math Score (Year 09-10) 0.107 0.93 -3.14 2.84

Math Score (Year 10-11) 0.143 0.93 -3.26 3.02

Unique Districts 6 - - -

Unique Classes 362 - - -

Unique Schools 102 - - -

Unique Randomization Blocks 156 - - -

Unique Teachers 362 - - -

Percentage of Class w/ 09-10
Math Scores

0.908 0.07 0.63 1.00

Percentage of Class in Ran-
dom Assignment

0.755 0.19 0.03 1.00

Teachers per Randomization
Block

3.040 1.56 1.00 13.00

Randomization block compli-
ance rate

0.662 0.40 0.00 1.00

Observations 5730

Notes: This sample corresponds to all students in the 2010-11 school year in either a
fourth or fifth grade Math or Joint Math/ELA course. Since our estimation strategy
leverages the random assignment of classrooms to teachers, we restrict the sample to
students with a randomly assigned teacher. No further restrictions are made. Not all
cells have the same number of observations.
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Table 10: Balance Tests

Behav.
Manag. Rand.
Teach. (Year
2009-2010)

Student
Centered

Rand. Teach
(Year

2009-2010)

Peer
Math

IQR
Math

Peer
Math
Rand

IQR
Math
Rand

Peer Math 0.021 0.086

(0.080) (0.12)

IQR Math 0.058 0.042

(0.091) (0.090)

Peer Math Rand -0.021 0.073

(0.100) (0.124)

IQR Math Rand -0.027 0.017

(0.078) (0.075)

Matht−1 -0.0064 0.016 0.077* -0.023 0.048 0.002

(0.018) (0.022) (0.044) (0.031) (0.041) (0.022)

ELL -0.023 -0.017 -0.154 0.050 -0.149 -0.007

(0.048) (0.051) (0.097) (0.098) (0.103) (0.075)

Gifted -0.016 -0.036 0.387** 0.131 0.212 0.218**

(0.062) (0.118) (0.190) (0.090) (0.146) (0.106)

Special Educ. 0.072 0.017 -0.123** 0.031 -0.065 0.007

(0.052) (0.065) (0.060) (0.065) (0.056) (0.052)

Male 0.004 0.001 -0.014 0.003 -0.023 -0.024

(0.012) (0.015) (0.015) (0.015) (0.018) (0.017)

White 0.014 -0.029 0.033 0.010 -0.031 -0.003

(0.027) (0.030) (0.036) (0.032) (0.020) (0.030)

Black -0.010 -0.012 0.001 0.005 0.044* 0.017

(0.025) (0.029) (0.040) (0.046) (0.023) (0.043)

Hispanic -0.044* -0.036 -0.028 -0.010 -0.014 -0.009

(0.025) (0.030) (0.025) (0.040) (0.024) (0.040)

Asian 0.094* 0.141** 0.063* -0.026 0.047 0.006

(0.053) (0.054) (0.037) (0.064) (0.041) (0.062)

American Indian 0.079 0.058 -0.232 0.209 -0.151 0.075

(0.129) (0.107) (0.155) (0.155) (0.158) (0.112)

Race Other 0.053 0.051 -0.078* -0.028 -0.073** -0.038

(0.059) (0.077) (0.044) (0.056) (0.034) (0.050)

R-squared 0.573 0.489 0.487 0.711 0.504 0.529

Obs. 3322 3322 3322 3322 3322 3322

Notes: We regressed each dependent variable separately on each independent variable with randomization block fixed-
effects and stacked the parameters from these regressions. Behav. Manag. Rand. and Stud. Cent. Rand. are the averages
of FFT components that load on factors one and two, respectively. “Rand.” refers to a student’s randomly assigned teacher
in Year 10-11, but construct the variable using scores from Year 09-10.
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C Nonlinear Measurement Error

To show how Hausman et al. (1991) can be adapted to our setting to deal with measurement error
in teaching practice, we consider a simplified version of our main estimating equation (4). Let Ỹ
denotes the Y is demeaned at the randomization block level and similarly for other variables, then

Ỹit = αpP̃r + αpȳP̃rȲ −ict−1 + αȳ
˜̄Y−ict−1 + αyỸit−1 + αpyP̃rY it−1 + ε̃it. (6)

Recall that Pr is the true practice, but it is measured with error. We adapt Hausman et al. (1991)
in two ways. First, we relax the assumptions on the measurement model because we have more than
2 measures for each practice. Second, we adapt their approach which was made for nonlinearities
captured by polynomials in the variable of interest to our setting, where nonlinearities arise from
interactions.

The parameters of equation (6) are identified from

E(Ỹit) = αpE(P̃r) + αpȳE(P̃rȲ −ict−1) + αȳE( ˜̄Y−ict−1) + αyE(Ỹit−1) + αpyE(P̃rY it−1)

(7)

E(ỸitP̃r) = αpE(P̃rP̃r) + αpȳE(P̃rȲ −ict−1P̃r) + αȳE( ˜̄Y−ict−1P̃r) + αyE(Ỹit−1P̃r)

+ αpyE(P̃rY it−1P̃r)

E(Ỹit
˜̄Y−ict−1) = αpE(P̃r

˜̄Y−ict−1) + αpȳE(P̃rȲ −ict−1
˜̄Y−ict−1) + αȳE( ˜̄Y−ict−1

˜̄Y−ict−1) + αyE(Ỹit−1
˜̄Y−ict−1)

+ αpyE(P̃rY it−1
˜̄Y−ict−1)

E(ỸitP̃rȲ −ict−1) = αpE(P̃rP̃rȲ −ict−1) + αpȳE(P̃rȲ −ict−1P̃rȲ −ict−1) + αȳE( ˜̄Y−ict−1P̃rȲ −ict−1)

+ αyE(Ỹit−1P̃rȲ −ict−1) + αpyE(P̃rY it−1P̃rȲ −ict−1)

E(ỸitỸit−1) = αpE(P̃rỸit−1) + αpȳE(P̃rȲ −ict−1Ỹit−1) + αȳE( ˜̄Y−ict−1Ỹit−1) + αyE(Ỹit−1Ỹit−1)

+ αpyE(P̃rY it−1Ỹit−1)

E(ỸitP̃rY it−1) = αpE(P̃rP̃rY it−1) + αpȳE(P̃rȲ −ict−1P̃rY it−1) + αȳE( ˜̄Y−ict−1P̃rY it−1) + αyE(Ỹit−1P̃rY it−1)

+ αpyE(P̃rY it−1P̃rY it−1)

We need to recover all of the moments containing Pr. The issue is that Pr is not observed, so
next we discuss how to use our measures of practice to recover these moments.

We assume that we have at least 3 demeaned measures of practice following equation 5, such
that

Pjkt = δkPj + ujkt,

where k = {1, ...,K} and K ≥ 3. We focus the measurement equation around the mean reports
for each subcomponent, calculated over multiple videos and video raters, though we could apply
adjustments to the individual level observations as well. Then, applying a normalization, δ1 = 1,
we have

Cov(Pjnt, Pjmt)

Cov(Pjnt, Pj1t)
=
δnδmV (Pj)

δnV (Pj)
= δm,
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for n,m 6= 1 and n 6= m, thus permitting us to recover the parameters δ2, ..., δk. Notice further that

E(Pj1tPjnt) = δnE(P 2
j ), for n 6= 1

and E(P 2
j ) is thus identified and similarly,

E(P̃j1tP̃jnt) = δnE(P̃ 2
j ), for n 6= 1,

given that measurement error is also uncorrelated across measures after removing randomization
block fixed effects. Note that E(P̃j) = 0.

We can use our anchor measure then to recover

E(P̃r1tȲ −ict−1) = E(P̃rȲ −ict−1)

E(P̃r1tY it−1) = E(P̃rY it−1)

E(ỸitP̃r1t) = E(ỸitP̃r)

E(ỸitP̃r1tY it−1) = E(ỸitP̃rY it−1)

E(ỸitP̃r1tȲ −ict−1) = E(ỸitP̃rȲ −ict−1)

But to recover terms which have higher order products of Pr such as E(P̃rY it−1P̃r) we rely on
the ratio of covariances to first recover δ2. We can then use our anchor measure and measurement
two to recover

E

(
P̃1Y it−1P̃2

δ2

)
= E(P̃rY it−1P̃r)

Specifically, in estimation we pick an anchor measurement, P1, and use it to construct the terms
in equation (6). To construct rows two, four and six in the system (7) we multiply equation (6) by

P̃r2t

δ2
,
P̃r2tȲ −ict−1

δ2
and

P̃r2tY it−1

δ2
and then take expectations. Note that we use measurement two

when multiplying through and then divide by the measurement parameter we’ve recovered.
Estimation of the parameters from these moments is then straightforward. We recover the

relevant moments from the measurement model and then plug them into the system defined in 7
and solve this system for the structural parameters. We can bootstrap standard errors, clustering
at the randomization block level. Note that because we are overidentified, we can also test the
robustness to using different measures as our anchor.

Appendix Table XX shows results when we correct for measurement error by following two
strategies. First, we present findings when we implement the Hausman et al. (1991) method
described above, but we also report (for completeness) specifications when we instrument a given
measure of a teaching practice at t− 1 (e.g. creating an environment of respect and rapport when
considering the broad category behavior management) with the remaining teaching practices at t−1
(e.g. managing student behaviors and classroom procedures). Overall, results indicate that taking
averages across measurements that correspond to a specific broad teaching practice (i.e. behavior
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management or student centered) lead to similar results that when we correct for measurement
error by following other methods.
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