Ephemeral Experiences, Long Lived Impact : Disasters and Portfolio Choice

Sreedhar T. Bharath and DuckKi Cho

W. P. Carey School of Business, Arizona State University

Household Economics and Decision Making Conference @ Federal Reserve Bank of Cleveland

Sep 25, 2015

- In traditional economic models,
 - (i) preferences are unaltered by experiences
 - (ii) **beliefs** are shaped by rational expectations

- In traditional economic models,
 - (i) preferences are unaltered by experiences
 - (ii) **beliefs** are shaped by rational expectations

- On the other hand, in psychology literature,
 - $\checkmark\,$ experiences affect preferences and beliefs

- Economic experiences affect financial decisions
 - ✓ Malmendier and Nagel (2011)
 - ✓ Malmendier and Nagel (2014)
 - ✓ Malmendier, Tate, and Yan (2011)
 - ✓ Knupfer, Rantapuska, and Sarvimaki (2014)
 - ✓ Benartzi (2001)
 - ✓ Choi, Laibson, Madrian, and Metrick (2009)

- Economic experiences affect financial decisions
 - ✓ Malmendier and Nagel (2011)
 - ✓ Malmendier and Nagel (2014)
 - ✓ Malmendier, Tate, and Yan (2011)
 - ✓ Knupfer, Rantapuska, and Sarvimaki (2014)
 - ✓ Benartzi (2001)
 - ✓ Choi, Laibson, Madrian, and Metrick (2009)

Non economic experiences affect financial decisions

- ✓ Cameron and Shah (2013)
- ✓ Bernile, Bhagwat, and Rau (2014)
- ✓ Malmendier, Tate, and Yan (2011)
- ✓ Callen, Isaqzadeh, Long, and Sprenger (2014)

Disaster Experiences

Disaster Experiences

- Non economic
- Fleeting
- In Adulthood

- Non economic
- Fleeting
- In Adulthood

- Non economic
- Fleeting
- In Adulthood

• Risky Asset Market Participation Rate

• Fraction of Liquid Assets Invested in Risky Assets

- Non economic
- Fleeting
- In Adulthood

 Risky Asset Market Participation Rate

• Fraction of Liquid Assets Invested in Risky Assets

Disaster Characteristics - Heatmap

Disaster Characteristics - Heatmap

From May 1953 to December 2013

Disasters Characteristics - Distributions

Disasters Characteristics - Distributions

Histogram of Disaster Duration

• The Federal Emergency Management Agency (FEMA) Disaster Declarations Database from May 1953 to December 2013

: disaster type, incident begin / end dates, state, county, Hazard Mitigation Program project amount, Public Assistance Grant Funding amount, ...

 The National Longitudinal Survey of Youth 1979 Cohort (NLSY79) from 1988 to 2008

: household asset allocation, demographics, geographic residence (Restricted Use), ...

The UBS/Gallup Index of Investor Optimism from 1998
to 2002

: households' expectations of stock market return and volatility, demographics, geographic residence, ...

$$Pr(\mathbb{1}_{\{y_{i,t}>0\}} = 1 | x_{i,t}, Disaster Experiences_{i,t})$$
$$= F(\alpha + \beta Disaster Experiences_{i,t} + \gamma' x_{i,t})$$

where $y_{i,t}$ is a fraction of liquid assets invested in risky assets and $x_{i,t}$ is a vector of control variables (log income, log income squared, number of children, number of children squared, liquid assets, liquid assets squared, housing variables and dummies for completed high school education, completed college education, marital status, race, gender)

$$Pr(\mathbb{1}_{\{y_{i,t}>0\}} = 1 | x_{i,t}, Disaster Experiences_{i,t})$$
$$= F(\alpha + \beta Disaster Experiences_{i,t} + \gamma' x_{i,t})$$

where $y_{i,t}$ is a fraction of liquid assets invested in risky assets and $x_{i,t}$ is a vector of control variables (log income, log income squared, number of children, number of children squared, liquid assets, liquid assets squared, housing variables and dummies for completed high school education, completed college education, marital status, race, gender)

 $y_{i,t} = \alpha + \beta Disaster Experiences_{i,t} + \gamma' x_{i,t} + \epsilon_{i,t}$

Main Results I - Participation and Fraction

Main Results I - Participation and Fraction

$$y_{i,t} = \alpha + \beta N_{i,t}(\lambda) + \gamma' X_{i,t} + \epsilon_{i,t}$$
$$N_{i,t}(\lambda) = \sum_{k=1}^{age_{it}-1} w_{it}(k,\lambda) \cdot NUM_EXP_{i,t-k} ; w_{it}(k,\lambda) = \frac{(age_{it}-k)^{\lambda}}{\sum_{k=1}^{age_{it}-1} (age_{it}-k)^{\lambda}}$$

$$y_{i,t} = \alpha + \beta N_{i,t}(\lambda) + \gamma' X_{i,t} + \epsilon_{i,t}$$
$$N_{i,t}(\lambda) = \sum_{k=1}^{age_{it}-1} w_{it}(k,\lambda) \cdot NUM_EXP_{i,t-k} ; w_{it}(k,\lambda) = \frac{(age_{it}-k)^{\lambda}}{\sum_{k=1}^{age_{it}-1} (age_{it}-k)^{\lambda}}$$

$$y_{i,t} = \alpha + \beta N_{i,t}(\lambda) + \gamma' X_{i,t} + \epsilon_{i,t}$$
$$N_{i,t}(\lambda) = \sum_{k=1}^{age_{i,t}-1} w_{it}(k,\lambda) \cdot NUM_EXP_{i,t-k} ; w_{it}(k,\lambda) = \frac{(age_{i,t}-k)^{\lambda}}{\sum_{k=1}^{age_{i,t}-1} (age_{i,t}-k)^{\lambda}}$$

	Weighted Experience	
Weighted # of Disasters coefficient (β)	-0.059***	(-6.074)
Weighting parameter (λ)	2.478***	(2.589)
Age Dummies	YES	
Year Dummies	YES	
Controls	YES	
# Obs.	62,553	
Sample Period	1988-2008	
Adjusted R ²	0.481	

Main Results II - Relocation

Main Results III - Which Channels?

Main Results III - Which Channels?

$$\alpha = \frac{\mathbb{E}[\boldsymbol{R} - \boldsymbol{R}_f]}{\gamma \sigma^2}$$

where α is a fraction of wealth invested in risky assets, γ represents a relative risk aversion coefficient, *R* and *R*_f are returns on risky assets and safe assets respectively, and σ^2 is volatility of risky asset returns

Main Results III - Which Channels?

$$\alpha = \frac{\mathbb{E}[\boldsymbol{R} - \boldsymbol{R}_f]}{\gamma \sigma^2}$$

where α is a fraction of wealth invested in risky assets, γ represents a relative risk aversion coefficient, *R* and *R*_f are returns on risky assets and safe assets respectively, and σ^2 is volatility of risky asset returns

$$\Delta \alpha \approx \frac{1}{\sigma^2} \left[\frac{\Delta(\textit{risk premium})}{\gamma} + (\textit{risk premium}) \Delta \left(\frac{1}{\gamma} \right) \right]$$
Main Results III - Which Channels?

$$\alpha = \frac{\mathbb{E}[\boldsymbol{R} - \boldsymbol{R}_f]}{\gamma \sigma^2}$$

where α is a fraction of wealth invested in risky assets, γ represents a relative risk aversion coefficient, *R* and *R*_f are returns on risky assets and safe assets respectively, and σ^2 is volatility of risky asset returns

$$\Delta \alpha \approx \frac{1}{\sigma^2} \left[\frac{\Delta (\textit{risk premium})}{\gamma} + (\textit{risk premium}) \Delta \left(\frac{1}{\gamma} \right) \right]$$

Contribution(%) to $\Delta \alpha$	Scenario I	Scenario II
	[1926-2008]	[1988-2008]
Δ (risk premium)	45%	61%
$\Delta\gamma$	55%	39%

- Non economic, short-lived disaster experiences have long lasting effects on economic choices, mainly driven by severe ones.
 - (i) less likely to participate in risky asset markets
 - (ii) lower the share of risky assets in the portfolio

- Non economic, short-lived disaster experiences have long lasting effects on economic choices, mainly driven by severe ones.
 - (i) less likely to participate in risky asset markets
 - (ii) lower the share of risky assets in the portfolio
- After disaster experiences, households
 - (i) become risk averse
 - (ii) have **lower expectations** on stock market returns (but not volatility)

- Non economic, short-lived disaster experiences have long lasting effects on economic choices, mainly driven by severe ones.
 - (i) less likely to participate in risky asset markets
 - (ii) lower the share of risky assets in the portfolio
- After disaster experiences, households
 - (i) become risk averse
 - (ii) have **lower expectations** on stock market returns (but not volatility)
- A quantitative decomposition,
 - (i) 45% of the effect is due to change in expectations
 - (ii) 55% of the effect is due to change in risk aversion

	Lifetime Experiences		5yr Expe	eriences
#DE_LIFE	-0.020***	(-3.707)		
#DE_5YR			-0.031***	(-2.700)
Age Dummies	YE	S	YES	
Year Dummies	YE	S	YES	
Controls	YE	S	YES	
Avg. fitted prob. at 95th pct. of #DE	0.3	64	0.372	
Avg. fitted prob. at 5th pct. of #DE	0.3	90	0.384	
Diff. between two fitted prob.	-0.025***	(-3.76)	-0.012**** (-2.72	
# Observations	89,	265	89,265	
Sample Period	1988-2008		1988-	2008
Pseudo R ²	0.541		0.541	

* Fama-MacBeth regressions confirm the effect of disaster experiences on risky asset market participation (Table 3). * Controlling for housing variables does not affect the results. (Table 8a)

Households with No Home Ownership

	Participation		Fra	ction	
#DE_LIFE	-0.025***	-0.025*** (-3.074)		(-2.442)	
Age Dummies	YE	YES		YES	
Year Dummies	YE	YES		YES	
Observations	48,258		27,244		
Sample Period	1988-2008		1988-2008		
Pseudo / Adjusted R-squared	0.483		0.361		

Fraction of Liquid Assets Invested in Risky Asset

Fraction of Liquid Assets Invested in Risky Asset

	Lifetime Ex	Lifetime Experiences		eriences
#DE_LIFE	-0.002***	(-3.930)		
#DE_5YR			-0.005***	(-3.834)
Age Dummies	YES YES		S	
Year Dummies	YE	YES		S
Controls	YE	YES		S
Avg. fitted frac. at 95th pct. of #DE	0.2	0.291		97
Avg. fitted frac. at 5th pct. of #DE	0.3	22	0.316	
Diff. between two fitted frac.	-0.030***	-0.030**** (-3.93)		(-3.83)
# Obs.	62,553		62,553	
Sample Period	1988-	1988-2008		2008
Adjusted R ²	0.480		0.480	

Fraction of Liquid Assets Invested in Risky Asset -Household Fixed Effects

Fraction of Liquid Assets Invested in Risky Asset -Household Fixed Effects

	Lifetime Experiences		
#DE_LIFE	-0.002*	(-1.644)	
Age Dummies	Y	ΈS	
Year Dummies	Y	ΈS	
Household Dummies	YES		
Controls	Y	ΈS	
Avg. fitted frac. at 95th pct. of #DE	0.	312	
Avg. fitted frac. at 5th pct. of #DE	0.336		
Diff. between two fitted frac.	-0.023*	(-1.64)	
# Obs.	51,141		
Sample Period	1988-2008		
Adjusted R ²	0.526		

Relocation Test by Subgroups

	Partic	ipation	Fraction	
LD	0.191***	(3.676)	0.030***	(5.712)
$D^*_{bD} \mapsto D_{aD} \mapsto LD$	0.465***	(3.177)	0.042***	(3.390)
$D_{bD} \mapsto D^*_{aD} \mapsto LD$	0.226**	(2.317)	0.024**	(1.979)
$D_{bD} \mapsto D_{aD} \mapsto LD^*$	-0.102	(-0.780)	-0.031**	(-2.206)
(i) Avg. fitted prob./fraction for $[D_{bD}^* \mapsto D_{aD} \mapsto LD]$	0.416		0.340	
(ii) Avg. fitted prob./fraction for $[D_{bD} \mapsto D^*_{aD} \mapsto LD]$	0.392		0.322	
(iii) Avg. fitted prob./fraction for $[D_{bD} \mapsto D_{aD} \mapsto LD^*]$	0.3	361	0.267	
Diff. between two fitted prob./fraction: (ii) - (i)	-0.023	(-1.58)	-0.018	(-1.25)
Diff. between two fitted prob./fraction: (iii) - (ii)	-0.032**	(-2.24)	-0.055***	(-3.40)
$H0: [D_{bD} \mapsto D_{aD}^* \mapsto LD] - [D_{bD}^* \mapsto D_{aD} \mapsto LD] = 0$	-0.239	(-1.58)	-0.018	(-1.25)
H0: $[D_{bD} \mapsto D_{aD} \mapsto LD^*] - [D_{bD} \mapsto D^*_{aD} \mapsto LD] = 0$	-0.328**	(-2.22)	-0.055***	(-3.40)

	Fraction			
	(1)	(2	:)
#DE_LIFE			-0.002**	(-2.304)
LD	0.030***	(5.712)	0.025***	(4.525)
$D^*_{bD} \mapsto D_{aD} \mapsto LD$	0.042***	(3.390)	0.040***	(3.228)
$D_{bD} \mapsto D^*_{aD} \mapsto LD$	0.024**	(1.980)	0.024*	(1.951)
$D_{bD} \mapsto D_{aD} \mapsto LD^*[ST]$	-0.026*	(-1.661)	-0.027*	(-1.701)
$D_{bD} \mapsto D_{aD} \mapsto LD^*[LT]$	-0.037*	(-1.923)	-0.040**	(-2.089)
$H0: [D_{bD} \mapsto D_{aD}^* \mapsto LD] - [D_{bD}^* \mapsto D_{aD} \mapsto LD] = 0$	-0.018	(-1.25)	-0.016	(-1.14)
H0: $[D_{bD} \mapsto D_{aD} \mapsto LD^*[ST]] - [D_{bD} \mapsto D^*_{aD} \mapsto LD] = 0$	-0.050***	(-2.99)	-0.051***	(-3.01)
H0: $[D_{bD} \mapsto D_{aD} \mapsto LD^*[LT]] - [D_{bD} \mapsto D^*_{aD} \mapsto LD] = 0$	-0.061***	(-2.82)	-0.064***	(-2.95)
# Obs.	57,9	970	57,9	970
Sample Period	1988-2008 1988-20		2008	
Adjusted R ²	0.484 0.484		84	

	$\mathbb{1}_{\Delta(\text{Risk Aversion Measure})>0}$							
	Cumulative Number of Disasters				Cumulative Severity of Disasters			sters
	(1)	(2)		(3)		(4)	
ΔDE	0.052***	(6.140)	0.050***	(5.629)	0.276***	(3.089)	0.265***	(2.773)
ΔIn(Income)			-0.501***	(-3.519)			-0.537***	(-3.716)
Δ In(income) Squared			0.030***	(4.069)			0.033***	(4.331)
# Observations	20,3	392	18,	505	20,	383	18,	503
Pseudo R ²	0.0	02	0.0	04	0.0	000	0.0	103

Thinking about the stock market more generally, what overall rate of return do you think the stock market will provide investors during the coming twelve months? [from the UBS/Gallup Survey]

Thinking about the stock market more generally, what overall rate of return do you think the stock market will provide investors during the coming twelve months? [from the UBS/Gallup Survey]

	Expected Stock Market Return Over the Next 12 months				
	Dummy for D	Disaster Experiences	Number of Disaster Experience		
Dummy_DE	-0.005**	(-2.243)			
#DE			-0.003**	(-2.161)	
Age Dummies		YES	YES		
Year-Month Dummies		YES	YES		
Controls		YES	YES		
# Observations	26,365 26,365		26,365		
Sample Period	2000-2002 200		00-2002		
Adjusted R ²		0.095		0.095	

Do you think the amount of volatility in the marketplace during the next twelve months will increase, stay at the same level, or decrease from what it has been during the last several months? [from the UBS/Gallup Survey]

	$\mathbb{1}$ { Increase in Volatility }				
	Dummy for	Dummy for Disaster Experiences		Disaster Experiences	
Dummy_DE	-0.058 (-1.099)				
#DE			-0.015	(-0.390)	
Age Dummies	YES		YES		
Year-Month Dummies	YES			YES	
Controls	YES			YES	
# Observations	19,040		19,040		
Sample Period	1998-2000		1998-2000		
Pseudo R ²	0.021			0.021	

Decomposition of Contributions

Decomposition of Contributions

$$\begin{split} \alpha &= \frac{\mathbb{E}[R - R_{f}]}{\gamma \sigma^{2}} \\ \Delta \alpha &\approx \frac{1}{\sigma^{2}} \left[\frac{\Delta(\textit{risk premium})}{\gamma} + (\textit{risk premium})\Delta\left(\frac{1}{\gamma}\right) \right] \end{split}$$

Decomposition of Contributions
$\alpha = \frac{\mathbb{E}[\boldsymbol{R} - \boldsymbol{R}_{f}]}{\gamma \sigma^{2}}$				
	$\Delta \alpha \approx \frac{1}{\sigma^2} \left[\right.$	$\Delta(risk premiun)$	$\frac{\eta}{1} + (risk \ premium) \Delta\left(\frac{1}{\gamma}\right)$	
Parameter	Scenario I	Scenario II	Note	_
/ Contribution	[1926-2008]	[1988-2008]		
rp	7.36%	5.45%	average excess return on market	
σ	18.89%	14.62%	standard deviation of market return	

$\alpha = \frac{\mathbb{E}[R - R_f]}{\gamma \sigma^2}$				
$\Delta lpha pprox rac{1}{\sigma^2} \left[rac{\Delta(\textit{risk premium})}{\gamma} + (\textit{risk premium})\Delta\left(rac{1}{\gamma} ight) ight]$				
Parameter	Scenario I	Scenario II	Note	
/ Contribution	[1926-2008]	[1988-2008]		
rp	7.36%	5.45%	average excess return on market	
σ	18.89%	14.62%	standard deviation of market return	
Δ (rp)	-0.32%	-0.32%	Table 11 Panel A (4)	

$$\begin{split} \alpha &= \frac{\mathbb{E}[R - R_{I}]}{\gamma \sigma^{2}} \\ \Delta \alpha &\approx \frac{1}{\sigma^{2}} \left[\frac{\Delta(\textit{risk premium})}{\gamma} + (\textit{risk premium})\Delta\left(\frac{1}{\gamma}\right) \right] \end{split}$$

Parameter	Scenario I	Scenario II	Note
/ Contribution	[1926-2008]	[1988-2008]	
rp	7.36%	5.45%	average excess return on market
σ	18.89%	14.62%	standard deviation of market return
Δ (rp)	-0.32%	-0.32%	Table 11 Panel A (4)
α_{5th}	32.15%	32.15%	Table 7a (1) (at 5th pct. Of #DE)
α_{95th}	29.13%	29.13%	Table 7a (1) (at 95th pct. Of #DE)

$$\begin{split} \alpha &= \frac{\mathbb{E}[R - R_{f}]}{\gamma \sigma^{2}} \\ \Delta \alpha &\approx \frac{1}{\sigma^{2}} \left[\frac{\Delta(\text{risk premium})}{\gamma} + (\text{risk premium})\Delta\left(\frac{1}{\gamma}\right) \right] \end{split}$$

Parameter	Scenario I	Scenario II	Note
/ Contribution	[1926-2008]	[1988-2008]	
rp	7.36%	5.45%	average excess return on market
σ	18.89%	14.62%	standard deviation of market return
$\Delta(rp)$	-0.32%	-0.32%	Table 11 Panel A (4)
α_{5th}	32.15%	32.15%	Table 7a (1) (at 5th pct. Of #DE)
α 95th	29.13%	29.13%	Table 7a (1) (at 95th pct. Of #DE)
γ_{5th}	6.42	7.92	implied risk aversion coefficient (at 5th pct. Of #DE)
γ_{95th}	6.78	8.24	implied risk aversion coefficient (at 95th pct. Of #DE)
$\Delta\gamma$	0.36	0.31	<i>γ</i> 95 <i>th</i> [−] <i>γ</i> 5 <i>th</i>

α	=	E[F	$\frac{[R-R_f]}{\gamma \sigma^2}$			
Δα	≈	$\frac{1}{\sigma^2}$	$\left[\frac{\Delta(\textit{risk})}{2}\right]$	$\frac{\rho}{\gamma}$ premium)	+ (risk premium).	$\Delta\left(\frac{1}{\gamma}\right)$

Parameter	Scenario I	Scenario II	Note
/ Contribution	[1926-2008]	[1988-2008]	
rp	7.36%	5.45%	average excess return on market
σ	18.89%	14.62%	standard deviation of market return
$\Delta(rp)$	-0.32%	-0.32%	Table 11 Panel A (4)
α_{5th}	32.15%	32.15%	Table 7a (1) (at 5th pct. Of #DE)
α 95th	29.13%	29.13%	Table 7a (1) (at 95th pct. Of #DE)
γ_{5th}	6.42	7.92	implied risk aversion coefficient (at 5th pct. Of #DE)
γ95th	6.78	8.24	implied risk aversion coefficient (at 95th pct. Of #DE)
$\Delta\gamma$	0.36	0.31	$\gamma_{95th} - \gamma_{5th}$
$\Delta lpha$ due to			
Δ (rp)	-1.39%	-1.88%	$\frac{\Delta(rp)}{2\sigma^2}$
$\Delta\gamma$	-1.71%	-1.22%	$\frac{\binom{\prime \rho}{\rho}}{\sigma^2}\Delta\left(\frac{1}{\gamma}\right)$
Contribution to $\Delta \alpha$			normalized

α	=		$\frac{[-R_f]}{\sigma^2}$			
Δα	≈	$\frac{1}{\sigma^2}$	$\left[\frac{\Delta(\textit{risk})}{2}\right]$	$\frac{\text{premium}}{\gamma}$	+ (risk premium)	$\Delta\left(\frac{1}{\gamma}\right)$

Parameter	Scenario I	Scenario II	Note
/ Contribution	[1926-2008]	[1988-2008]	
rp	7.36%	5.45%	average excess return on market
σ	18.89%	14.62%	standard deviation of market return
$\Delta(rp)$	-0.32%	-0.32%	Table 11 Panel A (4)
α_{5th}	32.15%	32.15%	Table 7a (1) (at 5th pct. Of #DE)
α 95th	29.13%	29.13%	Table 7a (1) (at 95th pct. Of #DE)
γ_{5th}	6.42	7.92	implied risk aversion coefficient (at 5th pct. Of #DE)
γ_{95th}	6.78	8.24	implied risk aversion coefficient (at 95th pct. Of #DE)
$\Delta\gamma$	0.36	0.31	γ 95th ⁻ γ 5th
$\Delta lpha$ due to			
$\Delta(rp)$	-1.39%	-1.88%	$\frac{\Delta(rp)}{\sigma \sigma^2}$
$\Delta\gamma$	-1.71%	-1.22%	$\frac{\binom{\gamma}{p}}{\sigma^2}\Delta\left(\frac{1}{\gamma}\right)$
Contribution to $\Delta \alpha$			normalized
$\Delta(rp)$	45%	61%	

α	=		$\frac{[-R_f]}{\sigma^2}$			
Δα	≈	$\frac{1}{\sigma^2}$	$\left[\frac{\Delta(\textit{risk})}{2}\right]$	$\frac{\text{premium}}{\gamma}$	+ (risk premium)	$\Delta\left(\frac{1}{\gamma}\right)$

Parameter	Scenario I	Scenario II	Note
/ Contribution	[1926-2008]	[1988-2008]	
rp	7.36%	5.45%	average excess return on market
σ	18.89%	14.62%	standard deviation of market return
$\Delta(rp)$	-0.32%	-0.32%	Table 11 Panel A (4)
α_{5th}	32.15%	32.15%	Table 7a (1) (at 5th pct. Of #DE)
α_{95th}	29.13%	29.13%	Table 7a (1) (at 95th pct. Of #DE)
γ_{5th}	6.42	7.92	implied risk aversion coefficient (at 5th pct. Of #DE)
γ_{95th}	6.78	8.24	implied risk aversion coefficient (at 95th pct. Of #DE)
$\Delta\gamma$	0.36	0.31	γ_{95th} - γ_{5th}
$\Delta lpha$ due to			
$\Delta(rp)$	-1.39%	-1.88%	$\frac{\Delta(rp)}{\sigma r^2}$
$\Delta\gamma$	-1.71%	-1.22%	$\frac{\left(\frac{\rho}{\rho}\right)}{\sigma^2}\Delta\left(\frac{1}{\gamma}\right)$
Contribution to $\Delta \alpha$			normalized
$\Delta(rp)$	45%	61%	
$\Delta\gamma$	55%	39%	

10 Most Disaster-Prone States

10 Most Disaster-Prone States

	Total Number of	of Disasters	Sum of PA [*] amount	
Rank	State	Number	State	\$ millions
1	Texas	245	Louisiana	13,430
2	California	205	New York	8,859
3	Oklahoma	154	Florida	5,149
4	Florida	118	Texas	4,071
5	New York	91	Mississippi	3,442
6	Washington	88	lowa	1,619
7	Alabama	77	New Jersey	1,579
8	New Mexico	76	California	1,299
9	Louisiana	71	Kansas	956
10	Colorado	70	Oklahoma	842

*PA: Public Assistance Grant Program

Summary Statistics

Variables	Mean	Std.Dev.	10th pct	90th pct
Income (\$)	55,514	163,726	10,859	99,305
Safe Assets (\$)	14,471	67,066	0	29,117
Risky Assets (\$)	34,050	294,773	0	67,154
Liquid Assets (\$)	47,825	315,436	0	96,121
Financial Assets [*] (\$)	87,277	3,293,097	-578	271,269
Risky Asset Market Participation	0.39	0.49	0	1
Safe Asset Market Participation	0.74	0.44	0	1
Fraction of Risky Assets	0.32	0.39	0	1

of households = 12,686; 11 survey years

*net of debt

Severe vs. Non-severe

	Fraction of Liquid Assets Invested in Risky Assets			
	75th HM [*] amount		75th PA ⁺ amount	
#DE_NOSV	-0.002*	(-1.764)	-0.002	(-1.068)
#DE_SV	-0.007***	(-3.906)	-0.011***	(-3.062)
Age Dummies	YES		YES	
Year Dummies	YES		YES	
Controls	YES		YES	
Avg. fitted frac. at 95th pct. of #DE_SV	0.421		0.570	
Avg. fitted frac. at 5th pct. of #DE_SV	0.457		0.602	
Diff. between two fitted frac.	-0.036***	(-3.91)	-0.032***	(-3.06)
H0: #DE_SV - #DE_NOSV = 0	-0.005**	(-1.98)	-0.009**	(-2.05)
Observations	37,216		14,052	
Sample Period	1993-2008		1999-2008	
Adjusted R ²	0.416		0.321	

*HM: Hazard Mitigation Grant Program; +PA: Public Assistance Grant Program