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III. Fiscal Theory in
General Equilibrium

Here we address issues that could not be
addressed in the one-period example. The first
issue will likely concern any reader who has
made it this far. Part II showed how an equa-
tion that is not usually used in the context 
of price determination—the government’s
intertemporal budget equation—can pin down
the price level. But don’t we already have a
theory of the price level? If we adopt the non-
Ricardian assumption on policy, won’t the price
level be overdetermined? It might be, depend-
ing on how we flesh out the rest of the econ-
omy. If the price level were overdetermined,
there would be no equilibrium, except in the
fortuitous case in which the government hap-
pens to pick just the right value for s. If this
were the situation for all reasonable ways of
modeling the rest of the economy, the FTPL
would be in trouble: It would not be a logically
coherent macroeconomic model. But this is not
the case. In the following sections, we flesh out
the economy in what appears to be a reason-
able way, and we find the price level is
uniquely determined. (This issue is addressed
more rigorously in the appendix.)

We then turn to an issue of greater concern.
We present evidence suggesting that to use the
FTPL, one must take the non-Ricardian assump-
tion very seriously. Seemingly minute departures
from that assumption—in the direction of
allowing for some sensitivity in the surplus to
the real debt—collapses the FTPL’s ability to
pin down the price level.

The final section revisits the central bank’s
ability to control average inflation under the
FTPL. It shows that conventional views about
how to control average inflation could actually
spark an explosive hyperinflation under the
FTPL. So, although the central bank can fea-
sibly control average inflation, its method of
doing so must be designed with care.

Is the Price Level
Overdetermined in
the FTPL?

We begin this section by providing a general
discussion of the issues involved in determining
the price level. We then turn to a specific exam-
ple in which the price level is uniquely deter-
mined by the FTPL.

General Discussion

It is easy to find examples of the FTPL in which
the price level is overdetermined. Recall the
equation of exchange, discussed previously.
For convenience, we reproduce it here: MV = PY.
In traditional, old-fashioned monetarism, V is
assumed to be fixed by technology, Y is deter-
mined exogenously, and monetary policy takes
the form of a choice of M. In this model, P is
obviously determined by the equation of
exchange. If the rest of the economy were
characterized by these assumptions, then a
logically coherent FTPL would be impossible.32

Each of these assumptions, however, has
been rejected on empirical grounds. First, V
exhibits substantial fluctuations in the data; the
assumption that V is fixed is replaced in modern
models by the assumption that V is an increas-
ing function of the nominal rate of interest.
Additionally, expected inflation plays an impor-
tant role in determining R. With these two fea-
tures, a logically coherent FTPL is possible.
These changes cause expected future values
of P to enter the equation of exchange
through V. This creates the possibility that
there are many P processes that can satisfy
the equation, leaving room for the non-Ricardian
assumption to pin down one of them. This possi-
bility is illustrated through an example in the
appendix.33

Second, the assumption that Y is exogenous
has been questioned. There is general agree-
ment that at least short-run movements in Y are
influenced by movements in V, P, and M.
When models are constructed to capture this,
expected future values of P enter into the
determination of Y. As in the example of the

� 32 Finite-horizon models in which the simple quantity equation
holds in the last period, but in which velocity is an increasing function of
the nominal interest rate in the previous periods also have the property that
the price level is overdetermined (see Buiter [1999]). The reasoning is sim-
ilar to that used in our text. In those models, the equilibrium price level
must satisfy a first-order difference equation. All equilibrium prices are
then pinned down by the fact that the price level is pinned down in the last
period. The likelihood that this price level coincides with the one produced
by the intertemporal budget equation of the government seems small. The
most likely outcome is that the price level will be overdetermined.

� 33 Brock (1975), Obstfeld and Rogoff (1983), and Matsuyama
(1991) present similar examples. An example taken from Woodford (1994)
can be found in the appendix.
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previous paragraph, there can be multiple P
processes that satisfy the equation of exchange.
Again, this leaves room for the non-Ricardian
assumption to pin down one of them.34

Third, there is a nearly universal consensus
that exogenous M poorly characterizes monetary
policy. For example, Taylor (1993) has argued
that, in practice, monetary policy is best thought
of as a rule for setting the rate of interest. In
this case, M becomes an endogenous variable.
We can see in the equation of exchange that if R
is the exogenous policy variable (as opposed to
M ), then V is pinned down. But now there are
two endogenous variables, M and P, in this
equation. Generally, under these circumstances,
P and M are not pinned down. There is, in a
sense, a missing equation. Again, there is room
for the FTPL to fit in.

An Example

Next, we present a simple, multiperiod model
economy in which the price level is uniquely
determined in the FTPL. There is no last period,
and time is indexed by t = 0, 1, 2, .... Suppose
that output, Y, is the same for each date, t.
Money demand depends on the rate of interest, 

(3.1) Mt = ARt
– �, � > 0.

Pt

The parameter A captures other factors (like
income) that affect  money demand but are
assumed to be constant here. Mt is the money
stock at the beginning of period t ; Pt is the price
level during period t ; and Rt is the nominal
rate of interest on government bonds held from
the beginning of period t to the beginning of
period t +1. The Fisher equation holds

(3.2)   1+r = (1+Rt )
Pt .

Pt+1

The expression on the right (l+r) is the real
rate of interest on bonds paying a nominal rate
of return, Rt , and  r > 0 is the rate at which
households discount future utility. This pins
down the real rate of interest.

A reasonable specification of monetary
policy is that the central bank targets the nomi-
nal rate of interest. For purposes of  exposition,
we adopt an extreme version of this specifica-
tion, in which the central bank pegs the rate
of interest to a constant, R >0. The central bank
accomplishes this by supplying whatever
amount of money the private economy
demands at this rate of interest.

The interest rate peg pins down seignorage: 

st
m � Mt – Mt –1 = Mt – Pt–1 Mt–1 .

Pt    Pt     Pt    Pt –1

Imposing the money-demand and Fisher equa-
tions [(3.1) and (3.2)] and the policy rule Rt =R,
we find35

(3.3)   sm = AR –� R –r , t = 0,1,2, ....
1+R

Consistent with the FTPL, we assume the primary
budget surplus, s

t
f, is non-Ricardian. We adopt

the simplest such policy, one in which s
t
f is

simply a constant, s f. Thus, net government
revenues from all sources, excluding interest
payments, are given by

(3.4)  st = s = s f + sm > 0.

To complete the description of the government,
we present the period-t budget constraint. We
assume government debt is composed of one-
period discount bonds; that is, the amount of
borrowing in period t is Bt+1/(1+R), and the
amount paid in period t+1 is Bt+1. The period-t
government budget constraint is 

(3.5)    Bt+1 +Pt s =Bt , t = 0, 1, 2, ....
1+R

The terms on the left of the equality represent
the government’s sources of funds, and the
terms on the right denote the uses of funds to
pay off the debt.36 It is convenient to rewrite
this expression in real terms, that is, in terms of
bt �Bt /Pt . Dividing equation (3.5) by Pt , taking
the Fisher equation (3.2) into account, and re-
arranging the terms, we obtain 

(3.6)    bt +1= (1+r )(bt – s ).

� 34 A cash-in-advance model displayed in Christiano, Eichenbaum,
and Evans’ (1998) illustrates this. Because this is a cash-in-advance model,
velocity is fixed and the factors discussed in the previous paragraph are
ruled out. Chistiano, Eichenbaum, and Evans show that for different speci-
fications of the monetary policy rule for selecting Mt , the model has a con-
tinuum of equilibria. If the non-Ricardian assumption were adopted in
this model, the equilibrium would be pinned down. For other examples
like this, see Carlstrom and Fuerst (1998).

� 35 For simplicity, we assume the interest rate peg was in place in
period –1, too. A more rigorous treatment which does not make this
assumption can be found in the appendix.

� 36 An alternative representation, which has some theoretical
advantages, expresses the government’s budget equation in terms of
its total nominal liabilities, Bt + Mt –1 . We work with this alternative
representation in the appendix.
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Finally, we develop the multiperiod analog
of B�=0 in part II. Recall the logic we used
there: First, B�>0 is not optimal, since house-
holds could increase utility by raising consump-
tion and financing it with a reduction of B �.
A negative value of B � is also not optimal,
since we have removed it from the feasible
set by assumption. We continue to assume
that holdings of government bonds must be
non-negative; that is, households only lend to
the government, they do not borrow from it.

The analog of B�=0 in this setting is 

(3.7)    lim BT = 0.
T →� (1+R)T

We establish that household optimization
implies this condition by the same reasoning
used to establish B�=0. The limit cannot be
positive, for otherwise households could increase
utility by reducing their holdings of government
debt. To see this, suppose the limit is positive.
Eventually, government debt would grow at the
rate of interest, that is, 

Bt =Bt* (1+R )t–t*, t � t * for some t *. 

At this point, the government is engaged in
what is called a Ponzi scheme with households.
The principal and interest on debt coming due
are financed entirely and forever with newly
issued debt. Under these circumstances,
households can do better by saying no to the

Ponzi game,  consuming the principal and
interest on debt coming due in one period and
then never holding any more government debt.
The household is better off, because the action
allows  a one-time increase in consumption
without the need to reduce consumption at
any other date. An optimizing household
would not pass up an opportunity like this;
therefore, household optimization implies the
limit cannot be positive. But the limit cannot
be negative either, because Bt<0 is not allowed.
Equation (3.7) is called the transversality
condition. It is convenient for us to express this
condition in real terms, after substituting out for
the nominal rate of interest from the Fisher
equation (3.2). Using that equation, we find37

(1+R)t = (1+r )t Pt , t =1, 2, ...,
P0

so that BT /(1+R )T = P0bT /(1+r )T. The transver-
sality condition can then be written as

(3.8)    lim  bT = 0, bT = BT .
T→� (1+r )T PT

We have now stated the entire model. The
household’s part is given by equations (3.1),
(3.2), and (3.8) and by the condition Bt �0.
The government is summarized by its policy,
equation (3.4), and by its flow-budget constraint,
equation (3.6). Does this economy uniquely
determine the price level? To see that it does,
first note that the money-demand equation and
the government’s policy of pegging the interest
rate have the effect of pinning down real bal-
ances, but not M or P separately. Double M and
P, and those equations remain satisfied. The
same is true of the Fisher equation: Double P
at all dates, and it continues to hold, too. So,
the level of the money stock and the price level
are not pinned down. It turns out that the non-
Ricardian specification of government policy,
together with the household’s transversality
condition, is sufficient to pin down the price
level uniquely.

To see that the price level is uniquely deter-
mined, consider figure 1, which illustrates the
government budget equation, b� = (1+r)(b–s).
The vertical axis measures b� and the horizontal
axis measures b. (The 45-degree line is included
in the figure for convenience.) The intercept for
the budget equation is negative, and it cuts the
45-degree line from below. Its slope is steeper
than 45 degrees because we assume  r > 0.

F I G U R E 1
Debt Evolution Under Non-Ricardian
Fiscal Policy

End-of-period real debt

Beginning-of-period real debt

b*

45°

� 37 For example, for t = 2,

(1+R )2 = �(1+R ) P1 � �(1+R ) P0� P2 = (1 + r ) 2 P2   .
P2 P1 P0 P0
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Here, we describe one concern about the
fragility of the FTPL, based on Canzoneri, Cumby,
and Diba (1998). We show that small, plausible
perturbations of non-Ricardian policy collapse
the FTPL’s ability to pin down the price level.40

Consider the following alternative to the canon-
ical non-Ricardian policy of setting s to a con-
stant. Suppose s =εb , where 0 < ε�1. With this
policy, b �=(1+r)(1–ε)b, or 

bt = (1–ε)t B0 , 
(1+r)t P0

so that the transversality condition is satisfied
for all P0>0. Clearly, this is a Ricardian policy;
the FTPL does not pin down the price level.
Now, this policy may appear to be a significant
perturbation of the policy st = s. Perhaps so, but
it has close cousins in which the perturbation
appears to be much smaller.

Consider the following alternative to the
canonical non-Ricardian policy: 

(3.10)  st = � –   
�

+
1+r –�

bt bt > b
–

,
1+r 1+r

s bt � b
–

where 

0 �� <1,    

1+r s <b
– 

<
�  

.
r 1– �

In this case, as long as real debt remains below
some upper bound, b

–
, then the policy is the

constant-surplus policy that we have been
analyzing. But, as soon as bt exceeds b

–
, fiscal

policy adjusts to bring the debt back in line.

�

14

Figure 1 shows what happens to b over time
for any initial value of b.38 Denote the value of
b where the budget equation intersects the
45-degree line by b*,

�
(3.9) b*= 1+r s = � s .

r t=0 (1+r)t

As the last equality indicates, b* is the present
value of future surpluses.

The value of b in period 0, b0, is now an
endogenous variable. Although the nominal
debt, B0, is predetermined at date 0, the price
level is not. Consider three possibilities:
Suppose 0 � b0<b*. Figure 1 indicates that b
quickly spirals into the negative zone, violating
the non-negativity constraint on the household’s
holdings of debt.39 Next consider b0>b*. In this
case, figure 1 indicates the debt diverges to plus
infinity. To see how the debt’s growth rate
evolves, divide equation (3.6) by bt :

bt+1 = (1+r)�1– s � . 
bt                     bt

As bt grows, s becomes relatively small, and the
growth rate of bt eventually converges to 1+r .
At this point, the debt becomes so large that s
is, by comparison, insignificant. The govern-
ment is now running a Ponzi scheme. For the
reasons we have given above, it is not in the
household’s interest to participate in this
scheme (technically, the household’s transver-
sality condition, equation [3.8], is violated).
Since  households will not hold this debt, we
conclude that all b0 >b* do not correspond to
equilibria.

This leaves only b0 =b* to consider. Since the
level of real debt is fixed in this case, the trans-
versality condition is now trivially satisfied.
Thus, only P0 =B0 /b* is consistent with equilib-
rium. We conclude this version of the FTPL is
an internally consistent theory of the price level.

Is the FTPL Fragile?

The assumptions underlying economists’
theories are, at best, only approximations.
We don’t think of them as being exactly true.
Therefore, we trust theories more if their central
implications do not change when we alter the
assumptions a little. But, if key implications
evaporate with small changes—particularly
changes that are arguably in the direction of
greater empirical plausibility—then there is
reason for concern. In this case, we say a theory
is fragile.

� 38 To see this, specify an initial value for b on the horizontal axis.
Proceed vertically to the budget line, move horizontally to the 45-degree
line, move vertically to the budget line, and so on.

� 39 Implicitly, we have ruled out the possibility that a negative b
implies a negative P. This cannot be, since P0 is positive for 0 � b 0 < b*.
The Fisher equation (3.2) then pins down the price path for Pt  and  cannot
produce a negative Pt if P0 > 0.

� 40 Woodford (1998a) argues there may be a local sense in which
the FTPL’s ability to pin down the price level survives the sort of perturba-
tions we consider here. He also discusses versions of the model with
learning which may survive these perturbations.
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Although the algebraic representation of this
policy may seem forbidding, it is easy to analyze
it with the help of figure 2. For bt >b

–
, real debt

evolves according to bt +1=�bt +�.
If real debt followed this equation forever, it

would eventually converge to b	= �/(1– �). This
equation, as well as equation (3.6), is graphed
in figure 2.

Figure 2 simulates the evolution of real debt
under the fiscal policy in equation (3.10). The
simulation is initiated with the indicated value
of b0. Real debt initially follows the steep line
with slope 1+r >1 until it passes b

–
, at which

point it follows the flatter line with slope � <1.
All paths with b0�b* are consistent with the
transversality condition because they converge
to a finite value, either b* or b	. With the given
change in policy, the FTPL cannot pin down
the price level.

This perturbation of the non-Ricardian policy
seems realistic. At low levels of debt, fiscal
policy is exogenous, as it is in the canonical
non-Ricardian policy. If the debt gets out of
line, then fiscal policy adjusts to bring it under
control. This rings true in light of the U.S. expe-
rience in the 1980s and 1990s and the provisions
of the Maastricht Treaty, which limit the real
debts of European Union member countries.

The FTPL with 
Stochastic Fiscal
Policy

Thus far, we have illustrated non-Ricardian fiscal
policy with st = s, a constant. But the essence
of non-Ricardian fiscal policy is simply that st
is not calibrated to satisfy the intertemporal
budget equation for all prices; it is compatible
with a much larger class of specifications for
st than st = s. Here, we study non-Ricardian
policies in which surpluses, st , are random.
We use this specification to make three points.

First, Barro’s (1979) famous policy of
absorbing fiscal shocks by raising taxes in the
future can be represented as non-Ricardian
fiscal policy.41 This is an important example,
partly because it clarifies the definition of non-
Ricardian policy as it is used in the FTPL.
Clarification is necessary because one might
mistakenly attach other meanings to the term
“non-Ricardian,” based on economists’ everyday
usage of the term “Ricardian.”

Second, unless policy takes the form advo-
cated by Barro, fiscal shocks cause the inflation
rate to fluctuate randomly about its average.
The average value of inflation is determined by
the value of the monetary authority’s interest
rate peg.

Third, we describe an important result from
Woodford (1996, 1998a). He shows that under
the FTPL, instability in fiscal policy must affect
the price level, no matter how committed the
monetary authority is to price stability.42 We call
this striking result “Woodford’s really unpleas-
ant arithmetic,” to contrast it with Sargent and
Wallace’s famous title. Woodford’s arithmetic is
even tougher than that of Sargent and Wallace,
who argue that if the central bank is weak, then
the fiscal authority can push it into producing
price instability. However, Sargent and Wallace’s
pessimistic (“unpleasant”) conclusion is balanced
by their optimism that, if the central bank just
hangs tough, the problem of price stability will
be solved. From the perspective of the FTPL,
Woodford argues that no matter how tough
the central bank is, it still cannot stabilize the
price level.43

� 41 It seems obvious that the Barro policy can also be represented
as Ricardian, so we do not discuss it here.

� 42 Implicitly, we have in mind non-Ricardian policies other than
those advocated by Barro (1979).

� 43 Recall, however, our second point, that the central bank can
control the average inflation rate.

F I G U R E 2
Debt Evolution Under Perturbed
Fiscal Policy

End-of-period real debt

Beginning-of-period real debt

b* bo b
_

45°

b   
~
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Random Fiscal Policy

Suppose the surplus obeys the first-order
autoregressive representation, 

(3.11) st+1 = (1–ρ)s +ρst +εt+1 .

In this equation, εt +1 is an independently and
identically distributed white-noise process 
independent of st–j , j � 0. A positive realization
of εt induces a change in the date-t government
surplus and in the expected value of future
government surpluses. Let 
j denote this effect
at date t+j for j � 0:

(3.12)   
j εt =Et st +j –Et –1st+j , j �0, 
0�1.

Et denotes the expectation operator, conditional
on information available at date t (Et st =st ).
When the surplus has the time-series represen-
tation, equation (3.11), then 
j =ρ

j. Of course,
equation (3.12) applies more generally, even
when st does not have the time-series represen-
tation given in equation (3.11). The present
value of εt ’s impact on current and expected
future surpluses can be defined as 


� 1 �εt � εt+

1 εt +


2 εt+... .
1+r 1+ r (1+ r )2

(Note here that 
 (.) is a function.) In the case
of equation (3.11), this is 


� 1 � =
1+ r

.
1+r 1+ r –ρ

When ρ=0, so that st is independently and
identically distributed, then the present-value
term is just unity. In this case, the effect of an
innovation in the surplus is limited to the current
surplus only. As ρ increases above zero, then
the present-value term increases to take into
account the future effects of innovation. Nega-
tive values of ρ cause the present-value terms
to fall as innovations in the current surplus gen-
erate expected reductions in the future surplus.

It is interesting to compare the fiscal policy
considered in equation (3.11) with that advo-
cated by Barro (1979). He argues that a neg-
ative shock to government finances (due, for
instance, to war) should be met by a large
increase in debt, coupled with a constant
increase in the labor tax rate that is sufficient
to pay off the interest and principal on that debt
over time. In particular, he advocates fiscal
policies of the form 


 � 1 � = 0 .
1+r

For example,44


0=1, 
1= – (1+r), or,


0=1, 
i= – �1+r �
i
,i �1;

2
that is, 

st=s +εt –(1+r)εt–1, or,

�
st=s +εt –� �1+r �

i
εt–i .

i=1    2

These examples head off misunderstandings
about the definition of “non-Ricardian” policy.
In everyday discussion, the word “Ricardian”
is used in a variety of senses. For instance,
economists may refer to a policy as Ricardian
when a current tax cut is financed by increases
in future taxes that are large enough in present
value to match the current cut.45 It is clear from
the preceding discussion that this type of policy
can be part of a non-Ricardian regime. 

Under the fiscal policy just discussed, the
price level is insulated from fiscal shocks.
Shocks to the real primary surplus are
financed by appropriate movements in the
opposite direction later. In the next section,
we will show that when 
�0, surplus shocks
are at least partially financed by movements
in the price level.

� 44 See, for example, Woodford (1998a), footnote 18.

� 45 Hayashi (1989) is one example.
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Inflation with Random Fiscal Policy

We continue to assume that policy pegs Rt=R,
so that the seignorage component of st is the
constant value given in equation (3.3). As a
result, the random nature of st in equation
(3.11) reflects randomness in fiscal policy. The
Fisher equation still holds, although it must be
adjusted to take into account uncertainty, 

1+r = (1+R)Et
Pt

,
Pt +1

where Et is the conditional expectation, given
information available at time t. This expression
shows the central bank controls the expected
rate of deflation through its choice of R. This
translates into control over the average rate of
deflation by the fact E [Et(Pt /Pt +1)]=E (Pt /Pt +1).
Imposing the suitably adjusted version of the
household’s transversality condition, equation
(3.8), on the government’s flow-budget equa-
tion, the intertemporal budget equation
becomes46

�

(3.13)
Bt=Et � st+j =s �1+r �� 1–ρ �+� 1+r � st .Pt j=0 (1+r) j r 1+r –ρ 1+r –ρ

We now have a completely specified theory 
of the price level and inflation. One way to
understand it is to use the model to simulate a
sequence of prices for a given realization of pri-
mary surpluses. Suppose we have a time series,
s0, s1, ..., sT , from equation (3.11) and an initial
level of nominal debt, B0.

47 P0 is computed by
evaluating equation (3.13) at t =0. B1 is then
computed from the government’s flow-budget
equation, Bt +1= (1+R )(Bt –Pt st ), for t =0. A
sequence, P0, P1, ..., PT , is obtained by performing
these calculations in sequence for t =0,1,2, ..., T.

The interest rate peg guarantees that the
expected rate of inflation (actually, deflation) is
constant in these simulations. As a result, the rate
of inflation itself will be approximately uncorre-
lated over time, an artifact of the constant interest
rate peg. If the interest rate rule were instead
dependent on past interest rates and/or past infla-
tion, then persistence would presumably appear
in the model’s inflation process.48

One can gain further insight into equation
(3.13) by subtracting Et –1Bt/Pt : 

(3.14)  Bt –Et –1� Bt � = � 1+r � (st – Et –1st )Pt Pt 1+r –ρ

= 
 � 1 �
εt

1+r
.

This says that a date-t shock in the primary
surplus induces a contemporaneous change in
the real value of the debt equal to the present
value of the shock.49 Since Bt is predetermined
at time t, the change is brought about entirely
by a change in the price level.50

� 46 To see how this is derived, consider first the expression to
the right of the first equality in equation (3.13). Note from the Fisher
equation (3.2): 

1 = Et +j � 1       � , all t , j �0.
Pt +j (1+Rt+j ) (1+r )Pt +j +1)

Then, the government’s flow-budget constraint can be written 

Bt + j = st + j +       Bt +j+1          = st + j +  1 = Et + j
Bt +j+1 ,

Pt +j Pt +j (1+Rt +j ) 1+r Pt + j +1

or, after applying the law of iterated mathematical expectations, 

Et
Bt + j = E t s t +j +    1 E t

Bt +j +1    (**) .
Pt + j 1+r Pt + j +1

Substitute this, for j =1, into the period-t flow-budget constraint of the
government: 

Bt = st +   1 Bt +1          ,
Pt 1+ r Pt (1+R )

= st + 1 + Et
Bt +1    .

1+ r Pt +1

Applying (**) repeatedly to this expression, for j =1, 2, ... results in the
expression to the right of the first equality in equation (3.13), if we apply
the transversality condition,  lim   E 0 bT / (1+r )T = 0.

T→�

To obtain the expression to the right of the second equality in (3.13),
first solve equation (3.11) to find 

Et
St + j = s � � 1   

�
j
– �

ρ
�

j

� + �
ρ

�
j
st , 

(1+r ) j 1+r 1+r 1+r

for j = 0, 1, 2, ... Then substitute this into equation (3.13) and apply the 
geometric sum formula.

� 47 It should be obvious how this procedure could be adapted to
accommodate any other time-series representation for st.

� 48 Loyo (1999) emphasizes this in his discussion of the persistent
rise in inflation observed in Brazil in the 1980s.

� 49 The analysis of price determination under the FTPL is similar to
the analysis of consumption in the permanent-income hypothesis. See
Christiano (1987).

� 50 Divide both sides of equation (3.14) by Bt and take into account
that Et–1Bt = Bt to set

1 – E t –1 � 1  � = 1  � � 1 �εt .
Pt Pt Bt 1+r
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Fiscal policies like equation (3.14) under-
score the fact that movements in the price level
are an alternative to Barro’s way of financing
shocks to the primary surplus. A jump in the
price level acts as a capital levy on holders of
government bonds, which helps to finance
government spending just as surely as the sort
of taxes included in the primary surplus. We
describe an environment with this type of
efficient fiscal policy in part IV.

Woodford’s Really Unpleasant Arithmetic

Woodford’s argument—that instability in fiscal
policy must affect the price level—is a simple
proof by contradiction. Suppose the monetary
authority could perfectly stabilize inflation and
the price level. This implies Pt+1 = Pt , so that the
nominal rate of interest is fixed and equal to the
real rate. This, in turn, implies that seignorage,
sm, is zero and, as a result, st = st

f. Now, suppose
fiscal policy is stochastic, with 
 [1/(1+r)] ≠ 0.
According to equation (3.14), Pt responds to
innovations in st . But this contradicts our
assumption that Pt is constant. It follows that
with shocks to fiscal policy, it may not be feasible
for the monetary authority to insulate the price
level from those shocks.

Bear in mind that the monetary authority
can control the expected rate of inflation in
the FTPL. For Woodford’s really unpleasant
arithmetic to be truly unpleasant, shocks to
the realized price level must have socially in-
efficient consequences. This is not the case in
many economic environments, where only
the expected inflation rate matters (see, for
example, Chari, Christiano, and Kehoe [1991]).
Shocks to the realized price level are costly
in environments with nominal rigidities and in
environments with heterogeneous agents.51

The FTPL and the
Control of Average
Inflation

The previous section described how the mone-
tary authority can control the average rate of
inflation by pegging the nominal interest rate to
an appropriate value.52 In policy discussions
about inflation, it is sometimes suggested that
inflation can be controlled more effectively
with an interest rate rule that responds aggres-
sively to inflation. In this section, we show how
such a monetary policy could, in fact, lead to
disaster if fiscal policy were non-Ricardian.

Suppose the monetary authority adjusts the
interest rate according to the rule

1+Rt =�0+�1πt, πt = Pt /Pt –1 .

The monetary authority implements this rule
by adjusting the money supply so that money
demand is satisfied at the targeted rate of interest.
An “aggressive” interest rate rule is one in which
�1 is large. For example, Taylor (1993) has
argued that �1 should be around 1.5. This
means that if inflation rises 1 percentage point,
then the central bank raises the nominal interest
rate by 1.5 percentage points. According to
conventional wisdom, an aggressive interest
rate rule such as this is a good way to keep
inflation under control. As we shall see, this is
not necessarily true if policy is non-Ricardian.

We suppose the rest of the economy corre-
sponds to the example in “Is the Price Level
Overdetermined in the FTPL?” (page 11). As in
that model economy, we assume there is no
uncertainty, since it is not essential to the
analysis here. Combining the interest rate rule
with the Fisher equation (3.2), we obtain the
following expression, which must hold in
equilibrium:

πt +1 = 
α0 +

α1 πt . 1+r 1+r

Consider an aggressive interest rate rule with
α1/(1+r) >1. The relationship between πt +1
and π t is illustrated in figure 3. There is a
particular inflation rate, π *, such that if πt = π *,
then πt +1 = π *. However, if the initial inflation
rate is greater than π *, then πt grows without

� 51 See Woodford (1996) for an environment with endogenous pro-
duction and sticky prices. With sticky prices, shocks to the aggregate price
level distort the allocation of resources across the production of different
goods. They also distort aggregate output.

� 52 See “Inflation with Random Fiscal Policy” on page 17.
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bound. This possibility is shown in figure 3,
in which inflation starts at π0 in period 0 and
then explodes.

As in our previous model economy, the
initial price level is determined by fiscal policy
according to the intertemporal budget equation
(3.9). Technically, s is no longer constant
because variations in inflation cause seignorage
to vary over time, too. However, we assume
that seignorage revenues are small enough to
ignore, so that s comprises only s f. We continue
to assume that s f is constant.53 The price level
in period 0 is determined by P0 = B0/b *, where
B0 is the initial nominal debt and b * is defined
in equation (3.9).

With P0 determined by the intertemporal
budget equation and P–1 determined by history,
π0 is uniquely pinned down. However, there
is no way to rule out the possibility that this
value of π0 lies to the right of π *, in which case
inflation explodes.54

One way to gain insight into the mechanics
of this exploding inflation is to focus on the
government’s budget constraint, equation (3.5).
From that equation, we see that a higher nomi-
nal interest rate leads to a more rapid increase
in the nominal debt, Bt+1. Assuming the outlook
for the fiscal primary surplus does not change,
the real value of the debt remains constant.
With the nominal debt growing more quickly
and its real value constant, inflation must rise.

The central bank’s monetary policy responds
to the rise in inflation by driving the interest
rate up even further, leading to an additional
increase in inflation. This circular, self-reinforcing
process produces the explosion in inflation.

The possibility just outlined, whereby an
aggressive interest rate rule leads to exploding
inflation, may seem peculiar. Loyo (1999) refers
to it as a “tight money paradox.” According to
the model, if the central bank, instead of being
aggressive, adopts a more accommodating
stance by choosing a value of �1 substantially
less than unity, then exploding inflation cannot
occur. In the previous section, with �1=0,
inflation fluctuated around a constant value. It
is easy to confirm, using the logic of figure 3,
that the same is true for 0<  

�1 <1. Relative to a
simple monetarist perspective, it is certainly a
paradox that adopting an aggressive stance
against inflation by increasing �1 could convert
stable inflation into an exploding inflation.55

However, we have just seen that it can occur in
a coherent economic model. Moreover, Loyo
argues the model captures the driving forces
behind Brazil’s inflation take-off in the early
1980s. Although we are skeptical that tough
monetary policy caused Brazil’s high inflation,
the hypothesis certainly does seem intriguing.

Woodford (1998b, pp. 399–400) uses the
exploding-inflation scenario to understand the
nature of fiscal policy in the United States over
the past two decades. He observes that econo-
metric estimates of the Federal Reserve’s policy
rule in the 1980s and 1990s place �1 substan-
tially above unity (see Clarida, Gali, and Gertler
[1998]), and  there is no evidence of instability
in U.S. inflation. He concludes that policy
in the United States during this time must not
have been non-Ricardian.

� 53 Here we are assuming the economy is in the “cashless limit”
discussed by Woodford (1998 a,b,c) and defined in footnote 30 of the pre-
sent paper.

� 54 In this situation, both fiscal policy and monetary policy are
active in the sense defined by Leeper (1991). Our analysis is consistent
with Leeper’s, which concludes that for almost all values of fiscal policy
(s f ), there is no stationary equilibrium inflation rate.

� 55 Tight money paradoxes also exist in environments with
Ricardian fiscal policy. For example, Sargent and Wallace (1981) showed
tight monetary policy may lead to an immediate rise in inflation in such an
environment. See Kocherlakota and Phelan (1999) for a discussion of a
tight money paradox in the FTPL.

F I G U R E 3
Evolution of Inflation under Aggressive 
Interest Rate Rule and Non-Ricardian Policy

Inflation in the current period

Inflation in the previous period

π* π  o

45°

1+r
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