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Introduction

Most people understand that the term “interest
rates” is plural and acknowledge the difference
between the rates on a savings account, over-
night federal funds rate, and 10-year Treasury
bonds. Of the many differences one can point
to, such as risk, issuer, or denomination, among
the most basic and most important factors for
determining the interest rate is the maturity, or
length, of the bond. In this case, a surprisingly
small amount of economics can yield some
valuable insights into the relationship between
interest rates on bonds of various maturities, or
what is more often called the term structure of
interest rates.

Economics tells us that at the most basic
level, interest rates are a price that borrowers
pay investors for moving purchasing power
from the present to the future. This price obvi-
ously has both real and nominal components
—the future value of the money you invest will
depend on how high inflation is in the mean-
time. The price also reflects aspects of risk.
Because you’re uncertain exactly what you’ll
need for retirement, you’re uncertain about
how much consumption you should transfer
into the future. Real variables, inflation, and

uncertainty interact in rather complex ways,
and some common perspectives ignore factors
that play a key role in determining interest
rates. A careful look with an economist’s eye
can sort out these different effects. 

Term Structure versus Yield Curve
Two closely related but distinct terms are often
used interchangeably. If we are interested in how
interest rates vary with maturity, it is useful to
look at the yield curve, which plots the yield to
maturity of different bonds against maturity. The
problem is that most Treasury bonds are coupon
bonds, paying a fixed amount semi-annually. For
the purist then, the yield on a five-year T-bond
is really an average of the five-year interest rate
on the principal and many shorter rates on the
coupon payments. One solution is to look at
yields on zero-coupon bonds, which have no
coupons. Figure 1 shows the recent yield curves
for coupon and zero-coupon bonds. Some liq-
uidity and tax differences between coupons and
zeroes lead many to prefer to estimate the pure
interest rates, known as the term structure (of
interest rates) from coupon bonds. See McCulloch,
Huston, and Kwon (1993) and Dhillon and Lasser
(1998) for a discussion of this. So, while the term
structure is the more useful theoretical concept,
the yield curve is easier to observe.
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I. Real Term 
Structure

To understand the interplay of factors that
determine interest rates, it is easier to begin by
ignoring the problem of inflation and think of
real bonds. Given that a dollar tomorrow will
buy just as much beef, beer, or baby-sitting
time as a dollar will today, we further simplify
and talk about bonds in terms of abstract
consumption units (although, for the sake of
concreteness, it sometimes helps to think of it
as ice cream).

The economic logic behind interest rates
represents an application of supply and
demand. The interest rate serves as the price
expressing the trade-off of consuming today
versus consuming tomorrow. It adjusts to
equate the supply of savings with the demand
for savings. Even at this general level, we can
note that an increase in the demand for savings
will increase interest rates. If we specialize fur-
ther, we can answer more specific questions,
such as how recessions or economic growth
affect interest rates. 

The first step is to aggregate everyone in the
economy into a single representative agent and
to consider the choice problem of this agent.1

The second step is to consider an endowment
economy without production. The consumption
good just drops from the trees. The last step is
to assume no storage possibilities. In other
words, bonds are in “zero net supply,” so that
when someone is borrowing, someone is lend-
ing. Any individual can save or borrow by
using a “consumption loan,” say, giving up one
unit of consumption today for some units
tomorrow, but the economy as a whole cannot.

Thus, in a very simple two-period case, in
equilibrium the interest rate will adjust to make
the representative agent content to hold her
endowment. In figure 2, this is seen as the line
tangent to the agent’s indifference curve at the
endowment point. The basic idea behind this
simple case—where preferences and the
amount of consumption today and consump-
tion tomorrow determine the interest rate—
extends to more complicated cases with
uncertainty and many time periods.

F I G U R E 1

Yield Curve for October 5, 1999a

a. All instruments are Treasury constant-maturity series.
b. For each maturity, the yield is the average of yields on zero-coupon Trea-
sury bonds with that maturity, as of October 5, 1999.
SOURCE: Wall Street Journal, October 5, 1999, p. H15.

F I G U R E 2

Endowment, Preferences, and 
Interest Rates

SOURCE: Author’s calculations.

■ 1 Of course, different investors may have different preferences.
Wang (1996) considers this case.
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These have an intuitive explanation. The
left-hand side is the marginal utility of con-
suming one unit less in period t, that is,
what you give up (in utility terms) if you
invest. The right-hand side tells you what
you gain: the discounted expected marginal
utility of an extra R1t units of consumption
in a future period. The agent equates mar-
ginal cost and marginal benefits, leading to
equations (3) and (4).

To focus on the interest rates, it is useful to
rearrange (3) and (4) as

(5)
1

= bEt [
u' (ct+1 )

]
R1t

u' (ct )

and

(6)
1

= b2Et [
u' (ct+2 )

] .
R2t

u' (ct )

The left-hand sides of (5) and (6) are the
current (date t ) prices of a bond that pays one
unit of consumption one period or two periods
in the future. The lower the price, that is, the
less you pay for such a bond, the higher the
interest rate: Bond prices and rates move in
opposite directions. 

Even here we are not quite finished. Both
R1t and R2t are gross returns, and R2t in particu-
lar is a two-period gross return. For example, 
if the interest rate is 10 percent, R1t is 1.10 and
R2t is 1.21. Because we want to compare the
returns on bonds of different maturities, how-
ever, we need to standardize the returns—if
one period is a year, we would want to annual-
ize the returns. To transform R2t into a one-
period return we can take the square root.3 The
annualized return on the long (that is, two-
period) bond is then

Lt== R2t .

This simplified model, expressed by
equations (5) and (6), is the basis of an
analysis that can give us a lot of insight into 
the term structure.

Many Periods: A 
More Formal Approach

Extending this analysis to many periods and to
uncertainty about future consumption requires a
more formal, mathematical approach. This section
sets up such a model. 

There is a single representative agent with
preferences

(1)   E0 ^ t=0
b tu (ct ),

where E0 denotes expectations as of period 0, 
b denotes the discount factor, and u(ct ) de-
notes the utility of consumption in period t.
The agent faces a budget constraint,

(2)   ct +B1t +B2t £ dt +B1t –1R1t –1+B2t –2 R2t–2,

where Bjt , j =1,2 is the amount of a bond of
length j bought in period t. These bonds are 
perfectly safe, and at the beginning of period t
investors know the gross rates of return R1t and
R2t . The endowment, or dividend, for a period 
is denoteddt.

The agent seeks to arrange consumption 
to maximize utility, subject to the budget con-
straint, so a natural way to solve the problem 
is to substitute (2) into (1) and obtain the first-
order conditions.2

J =E0 ^ t=0
b tu(dt+B1t –1R1t –1+B2t –2 R2t–2 –B1t –B2t ),

¶J
=0=E0[–b tu' (dt+B1t –1R1t –1+B2t –2 R2t –2 –B1t –B2t )¶B1t

+b t+1R1tu' (dt+1+B1tR1t+B2tR2t –B1t–B2t )]

and

¶J
=0=E0[–b tu' (dt+B1t –1R1t –1+B2t –2 R2t–2 –B1t –B2t )¶B2t

+b t+2R2tu'(dt+2+B1t+1R1t+1+B2t +1R2t +1–B1t +1–B2t +1)].

We can simplify this in two ways. First, we use 
(2) again to get consumption back into the
equations. Next, we take the perspective of 
time period t, where R1t , R2t , and ct are 
known, which allows us to drop some of 
the expectations operators. We get

(3)   u' (ct) = bEt [R1t u' (ct+1) ]

and

(4)  u' (ct) = b2Et [R2t u' (ct+2) ] .

■ 2 Although the budget constraint assumes that the representative
agent holds only one- and two-period bonds, the equilibrium interest rates
on these bonds will be the same even if the agent can hold bonds of other
maturities.

■ 3 This makes sense in the discrete time framework. In some cases, it
is more convenient to take logarithms. See Campbell, Lo, and MacKinlay
(1997), chapter 1.
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The Expectations
Hypothesis and
Beyond

What do equations (5) and (6) tell us about the
term structure?  A good place to start is the sim-
ple case of no uncertainty, where the consumer
knows everything today—all future interest
rates and all future consumption endowments.
Then we can rewrite (6) as

(7) 1 =b 2 [
u' (ct+1)u' (ct+2)] =  1 • 1 .

R2t u' (ct ) u' (ct+1) R1t R1t+1

Put differently, Lt== R1t R1t+1
. The long-term

rate is the average between today’s short-term
rate and tomorrow’s short-term rate. The ratio-
nal investor has two ways of moving consump-
tion from t into t +2: invest in a long bond
with per-period return Lt , or roll over a short-
term bond, getting rate R1t at the start and R1t+1
next period. The two ways of investing must
have the same return; otherwise, the investor
moves her savings from the low-return invest-
ment to the high-return investment. So, in the
case of perfect certainty, the interest rates of
long- and short-term bonds will adjust to keep
today’s long rate an average of today’s and
tomorrow’s short rate. 

Equation (7) is often seen in a slightly
modified form, which, although not exactly
correct, is often useful when high precision is
not necessary. This approximation to (7) 
takes the form

Lt – 1 = 
(R1t –1) +

2

(R1t+1 –1) .

For example, if interest rates are 3 percent
today and 7 percent tomorrow, the long-term
rate should be 5 percent. This is not quite
exact, as Lt = = (1.03)(1.07) = 1.0498; but, for
many purposes, it is close enough.

Perfect certainty, as anyone who watches the
stock market can attest, is a rather unrealistic
assumption. One common way to incorporate
uncertainty is to replace unknown future rates
in (7) by their expectation. Thus, 

(7a)   Lt = = R1t Et R1t +1 .

The long-term rate is an average of current and
expected future short-term rates. This is often

termed the expectations hypothesis of the term
structure. A useful approach, it is not derived
from (5) and (6), and it ignores the risk effect
of uncertain interest rates.4

A more correct treatment with uncertainty
comes from a closer look at equations (5) and
(6). Rewrite (6) as

(8)
1

= Et [b
u' (ct+1 )

b
u' (ct+2 )

]
R

2t
u' (ct ) u' (ct +1)

or

(9)
1

= Et [b
u' (ct +1 )

Et+1 b
u' (ct +2 )

]
R

2t
u' (ct ) u' (ct +1 )

or

(10)
1

= Et [b
u' (ct +1 ) 1

].
R

2t
u' (ct ) R

1t+1

To split out the risk terms, we use the standard
formula

(11) E (XY) = E (X) E (Y) + cov(X,Y),

where cov stands for the covariance of X and
Y. Using (11), (10) becomes

(12)
1

= Et [b
u' (ct +1) ]Et [

1  
]

R
2t

u' (ct ) R1t +1

+cov [ b
u' (ct +1) , b

u' (ct +2 )
] .

u' (ct ) u' (ct +1 )

A little more work yields

(13)
1

=
1 

Et [  
1

]+cov[b
u'(ct +1 )

,b
u'(ct +2) ].

R2t R1t R1t+1 u'(ct ) u'(ct +1)

A lot of insight about the effect of uncer-
tainty comes from comparing (13), the correct
model with uncertainty, with (7), the correct
model with perfect certainty, and (7a), the
expectations hypothesis. The correct interest
rate differs from the simple expectations
hypothesis in two ways. The first is a Jensen’s
inequality term that would arise even with risk-
neutral investors. The second way is a risk pre-
mium that arises precisely because investors are
not risk neutral. 

■ 4 The extent to which the expectations hypothesis is a good
approximation to the data is a much discussed issue. See Campbell, Lo,
and MacKinlay (1997), section 10.2.
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■ 6 For a more general version of this approach, see Campbell
(1986), and Campbell, Lo, and MacKinlay (1997), chapter 11. See also
Sargent (1987), section 3.5.

■ 5 For an excellent discussion of this point, see Litterman,
Scheinkman, and Weiss (1991).
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The Jensen’s inequality term arises because
Et [ 

1 ] does not equal    1 ; indeed, 

Et [ 1 ]  ³ 1 . The reason is that a 

given change in the interest rate has more
effect on the price of a bond when rates are
low than when rates are high.5 The difference
can be large. Hearkening back to the simple
numerical example above, suppose short-term
rates stand at 3 percent today and are expected
to be 7 percent tomorrow, but have an even
chance of being either at 3 percent or 11 per-
cent. Using the Jensen’s inequality part of (13)
(ignoring the covariance term) the (annualized)
yield on the long-term bond is 

Lt =1/= (1.03)/[0.5 1  +0.5 1  ] =1.0487.
1.03       1.11

Thus, correctly considering uncertainty leads 
to an interest rate of 4.87 percent—a bit below
the 4.98 percent suggested by the simple
expectations hypothesis. You might not notice
this on your savings account, but if you were a
pension fund investing millions of dollars, it
would add up.

This example highlights another key feature
of the model: The interest rate can change sig-
nificantly even if expected rates stay constant. If
future rates become more or less uncertain,
rates will change today. The numerical example
showed this quite clearly: If future short-term
interest rates were known with certainty to 
be 5 percent, then the long-term rate would be
4.98 percent. When those future rates became
uncertain, the long-term rate fell to 4.87 percent.

The second way the model in (13) differs
from the expectations hypothesis is that interest
rates also have a risk premium. In focussing on
the Jensen inequality term, we’ve ignored the
covariance terms—in a sense, we’ve said that
the world got riskier, but nobody cared. And
we’ve also ignored the underlying link with
consumption—when the whole point of the
exercise is to stop taking interest rates as given
and consider their underlying determinants.
Casual inspection of (13) suggests that this gen-
eral investigation might get quite complicated,
as we have a covariance term involving nonlin-
ear functions of consumption in three time peri-
ods. In this case, discretion is the better part of
valor, and it makes sense to examine some sim-
plified versions of the general problem. 

A Specialized 
Example

By making a number of special assumptions,
we can get to a series of explicit equations that
make it easy to look at the effects of various
factors on the term structure. First, specialize to
log utility,6 so that u(c) = log(c).

Recalling that in equilibrium, consumption
must equal the dividend endowment for the
representative agent, equations (5) and (6)
reduce to

1
= bEt ( 

dt ) 
R1t

dt+1

and

1
= b2Et (

dt ) .
R2t

dt+2

We further specialize by specifying a particular
stochastic process for the dividends: We base it
on an AR(1) process, of the form log dt+1 = g +
r log dt + Ut+1, where Ut+1 is a sequence of
independent and identically distributed random
variables. Adding a time trend (and normalizing
the growth rate g , the process for dividends is
given by:

(14) logdt+1=gt +^k=0 rkUt-k .

We further assume that the Ut+1 terms are 
distributed log-normally. This lets us invoke the
useful substitution that if X is distributed log-
normally,

logE (X) =E [ log(X) ] +1VAR [log(X) ].–
2

It also helps if we change the definition of
interest rate slightly. We have been thinking
about rates on a discrete time basis; if the
yearly interest rate R1t is 1.05, an investment 
of $1 returns $1.05 at the end of the year,
and it is natural to say that the interest rate is
5 percent. When we start using logs, however,
it is more convenient to consider continuously
compounded rates of return, leading to the
definitions

rt = log R1t

and

lt = log Lt = log = R2t  .

¥

R1t+1 Et R1t+1

R1t+1 Et R1t+1
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The difference between the two definitions is
often small: log(1.05)=0.0488.

Taking (14) as the dividend process, these
various assumptions allow equations (5) and
(6) to take a relatively convenient, if not exactly
simple, form:

(15) r1 t = log 1 +g +(r –1)^k=0 rkUt-k – 1 s2

b
–
2 U

and

(16) lt=log 1+g+1(r2–1)^k=0rkUt-k – 1 (1+r2)s2 .
b

–
2

–
4 U

What Moves the
Term Structure?

Equations (15) and (16) provide a reference
point for illustrating term-structure economics.
A variety of factors will move interest rates and
the term structure. These include the value of
today’s shock Ut, the persistence of the endow-
ment shocks r, the growth trend g, the variance
of the endowment shocks s 2

U , and the time
preference parameter b. Of these, the most
interesting are Ut , g, and s 2

U . 
How do interest rates react to the endow-

ment shock Ut ? Simple calculus shows that 

]r1t = (r –1 )
]Ut

and

]lt = 1 (r2 –1) .
]Ut

–
2

A positive shock today lowers interest rates
as long as r,1. Income today is relatively high,
so people want to save the extra income; con-
sequently, they drive up the price of bonds and
correspondingly drive down the interest rate. In
addition, the term structure steepens because
short rates fall more than long rates. This is
because with r,1, the effect of the shock dies
off, so that if income is high today, it is also
expected to be higher than average next period,
but not quite so high. The size of the effect,
and thus the incentive to save, diminishes,
leading to a smaller increase in long rates. 

A somewhat different picture emerges if
r.1. Then, an increase today means an even
bigger increase tomorrow, depressing the
incentive to save and increasing rates.7 If r=1, 
then the shock has no effect on interest rates—

income is expected to go up exactly as much in
the next period, so there is no change in the
demand for saving.

This intuition follows through to the case of
changes to the growth rate of endowments, g. 

In that case,  
]r1t =1, and  

]lt =1. Growing 

dividends means that future dividends are
expected to be greater than current dividends
(similar to the case for r.1). An increase in the
growth rate means that future dividends will be
increasingly greater than current dividends,
leading to a lessening of the desire to save
today. This lower demand for savings, and thus
for bonds, decreases bond prices and increases
interest rates. An increase in the growth rate of
dividends increases both short- and long-term
interest rates one for one.

Changing the stochastic process of the
dividends will also change the term structure.
Consider the effects of an increase in the vari-
ance of the shocks to income, s 2

U . In this case,

]r1t = – 1

]s 2
U

–
2

and

]lt = – 1 (1+r2).
]s 2

U

–
4

The increased uncertainty lowers both short-
and long-term rates. The basic intuition is that
as uncertainty increases, investors wish to save
more “for a rainy day.” The increased demand
for saving drives down interest rates.8 The yield
curve steepens as long as r,1, because if
shocks die out, an increased variance is less
important the further out it is, and the demand
for savings responds correspondingly less.
Notice that though an increase in uncertainty
leads to a steeper term structure, this happens
not because long rates rise, but because they
do not fall as far as short rates. In some sense,
the increase in uncertainty is proportionally not
so bad for the long term as for the short term,
and thus has less of an impact on long-bond
prices. This result must be interpreted carefully,
however, because with a log-normal distribu-
tion, changing the variance of shocks also

■ 7 With r ,1, some delicate issues arise about the existence of
solutions to equation (1). For a discussion, see Campbell (1986) or
Labadie (1994).

■ 8 Not every utility function displays such behavior, so the result is
not completely general. See Zeldes (1989) for a good discussion.

]g ]g

¥

¥
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changes the mean of the distribution. Increasing
the variance here does not induce a mean-
preserving spread.

II. Nominal Term
Structure

In the real world, the vast majority of bonds
pay off in dollars—not in gold, sides of
beef, or Internet-connect time. Some bonds are
indexed for inflation, but, in the United States at
least, most are not. This means that bonds do
not have a certain payoff in consumption
terms—you don’t know for sure what $1,000
will be worth in 10 years—and bond pricing
must take inflation risk into account.9

Fortunately, the analysis of section I can
accommodate the shift to nominal interest rates
relatively easily. Start by considering the nomi-
nal return on a bond, R $

1t , and note that to con-
vert the dollars into consumption units and get
a real return, we must consider inflation )t +1•

10

The nominal return on a bond is constant, so
we can get a revised version of equation (5) as 

(17) 1 = bEt [
u' (ct +1 )   1 ] 

R $
1t u'(ct ) )t +1

or

(18) R $
1t=               1

bEt [
u' (ct +1) 1 ]
u'(ct ) )t+1

=                   1                    .
1 E 1 +bcov(

u' (ct+1), 1 )
R1t ()t+1) u' (ct ) )t+1

Equation (18) has a classic simplification due
to Irving Fisher. Note that if consumption and
inflation are perfectly certain (that is, there is
no uncertainty), (18) reduces to R$

1t = R1t•)t +1.
Shifting the perspective to rates, R$

1t –1'R1t –
1+)t+1. That is, a nominal interest rate of 5 per-
cent may be broken into a real interest rate of 
3 percent and an inflation rate of 2 percent.
Notice that even with perfect certainty, this
approximation does not hold for high interest
rates: While 5 percent is a good approximation
to (1.03)(1.02)=1.0506, 50 percent is not such a
good approximation to (1.30)(1.20)=1.56.

■ 10 More precisely, let P$
1t be the dollar price of a pure discount

bond in time t  with one period left to maturity. That is, the bond will pay $1
in period t +1. Let the price level ($/unit of consumption good) be Qt . Then 
the real return is R $

1t = 1 • Qt .
P $

1t Qt +1

With uncertainty, the simplification becomes
an even worse approximation. As illustrated
earlier, uncertainty has two components. One is
the Jensen’s inequality term. The other is the
risk premium, the covariance between the real
interest rate (or consumption) and inflation.
Notice that this term can be positive or nega-
tive. Uncertainty about inflation may move
interest rates up or down. This may seem coun-
terintuitive, but it makes sense. For example, if
inflation covaries positively with consumption
growth, a nominal bond acts as a sort of insur-
ance. If we get lucky next period, and have a
high income, we regret having saved a lot—
but a high inflation rate reduces the value of
our savings. If we are unlucky, and income is
low next period, we wish we had saved
more—but a low inflation rate increases the
value of our savings. Positive covariance,
though, is probably not the most important
case. A variety of studies find that inflation is
negatively correlated with consumption growth
(or, equivalently, real interest rates; see Pennacchi
[1991]), so that inflation risk in fact increases
interest rates. The risk premium is positive. 

Looking at longer rates merely compounds
the effect of uncertainty. Thus we have

(19) 1 = b2Et [
u' (ct +1)   1 u' (ct +2)   1 ] . 

R $
2t u'(ct ) )t +1u'(ct +1) )t +2

Longer-term rates depend on how the real
economy will evolve, how the price level will
move, and the interactions between the two. 
Of course, simplifying assumptions can make
(19) easier to interpret, but its more challenging
form is probably more useful. What will higher
consumption growth do to interest rates? Trick
question—we don’t really know until we have
decided what will happen to inflation, and how
inflation will react to the higher growth.

III. Conclusion

The Roman poet Horace once remarked that
getting rid of folly was the beginning of wis-
dom. Something similar might be said of the
term structure. Understanding the simplifica-
tions involved in averaging current and future
interest rates or in subtracting off expected

■ 9 For several approaches to adding inflation to a term structure
model, see Sun (1992), Campbell, Lo, and MacKinlay (1997), section
11.2.1, Labadie (1994), and den Haan (1995). Sargent (1987) provides an
in-depth view of monetary economies.
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inflation is one benefit of looking at the deeper
theory of interest rates. Another benefit arises
from a better understanding of how uncertainty
influences interest rates.

By suggesting that current long-term interest
rates are an average of current and expected
short-term rates, the expectations hypothesis
captures an important truth. But it is not the
whole truth. We have seen how changes in the
uncertainty surrounding future rates may
change the term structure, even if expected
rates stay the same.

The effects of uncertainty are more varied,
and often more subtle, than many people
realize. An increased uncertainty about future
interest rates has an effect on the Jensen’s
inequality factor that tends to lower long-term
interest rates today. An increased uncertainty
about future consumption has an effect on the
risk premium that tends to lower interest rates
today, as people save for a rainy day, but it
steepens the term structure. An increased
uncertainty about inflation will increase nomi-
nal interest rates, at least if inflation and con-
sumption covary negatively. The effects on
longer rates are more complicated.

The real world is undoubtedly more complex
than the model of interest rates considered
here. Like a map, which can never show every
detail, our model can highlight important and
dangerous areas of that rather mysterious area
known as the term structure. This can lead to
better decisions, be they on the part of par-
ticular investors or of monetary policymakers.
Examining the underlying economic theory
becomes the first step in understanding the
interplay between real and nominal risk factors,
where they come from, and how changes in
those factors matter.
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Returns and Compounding
This article mostly uses the simple net return as a measure

of the interest rate, defined as rt = 
Pt +1

Pt
–1. Exactly what 

this rate is depends on the length of the period, although
in the financial press, returns are usually annualized and
expressed as if the return were for one year. Academic
work often uses continuously compounded returns, 

rt = log (
Pt +1

Pt
), because they simplify calculations. 

Using continuously compounded rates, equation (7)
becomes

e –2lt = b2 [
u' (ct +1) u' (ct +2) ] = e –r 1t •e –r 1t +1. 
u' (ct ) u' (ct )

This implies that lt = 1 (r1t +r1t +1), making the long rate
an exact average of the current and future short rates. 
Similarly, using continuously compounded rates for (18)
would give an exact Fisher equation, r $

1t =r1t+pt +1.
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