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Introduction

The process of deregulating airlines in the
United States began in earnest with the passage
of the Airline Deregulation Act of 1978. The Act
set in place a timetable for removing govern-
ment controls on fares and entry into routes.
However, airline access to airports has not
been fully deregulated. In 1968, the Federal
Aviation Administration (FAA) adopted the so-
called "high-density rule" to combat congestion
at four airports. Specifically, limits were placed
on the number of operations per hour at Ken-
nedy, La Guardia, O'Hare, and Washington
National. More and more airports are becoming
crowded, given the difficulties in securing per-
mission from local authorities to expand exist-
ing facilities or to build new ones, so this prob-
lem will persist.1

For many years, the right to take off and
land at the four crowded airports was deter-
mined by a committee system. Multilateral ne-
gotiations took place among the incumbent
carriers and prospective entrants, with the FAA
stepping in if an impasse occurred. Since 1986,

incumbents have had property rights called
"takeoff and landing slots" or simply "slots." A
slot permits the owner to make one operation
(a takeoff or landing) during a specified time
period. Carriers now have the right to buy and
sell slots." Questions remain about the optimal
way to allocate existing or new slots. The first
question asks why the incumbents should be
given valuable property rights.3 The second
asks whether allowing carriers to buy and sell
slots will lead to monopolization of airports,
with resulting higher fares. Repossessing slots
and then selling them back to carriers would
raise revenue and would ensure that those car-
riers willing to pay the most would acquire the
slots. This has positive welfare implications in
a perfectly competitive environment, but the
impact is less clear if there is the potential for
wielding market power.

This Economic Review analyzes competition
for scarce inputs such as airport takeoff and
landing slots. It describes the outcome of an
auction of slots between two carriers, who may

• 2 For further discussion, see Grether, Isaac, and Piott (1989).

• 1 Only one major airport has been built in the United States since
1974, that being the new Denver facility.

• 3 A slot at O'Hare recently rented for $66,000 per month. See
"United Wins TWA Lease," New York Times, March 20,1992.



have existing slots. This allows us to evaluate
the welfare implications of selling slots. It like-
wise describes the outcome of a merger or
takeover battle in which two large incumbents
seek to buy up the slots of small competitors,
if not the competitors themselves.4

The objects for sale (the slots) are sold in a
sequence of auctions. The aggregate value of
the slots, and each bidder's valuation of the
marginal slot, increase as slots become more
concentrated in the hands of one bidder. These
conditions arise naturally in market games,
since control of slots can confer market power
by limiting the competitiveness of one's rivals.
I focus primarily on the case of twro bidders
who start with no slots. The final allocation is
typically unequal, and many different interme-
diate allocations lead to the same final alloca-
tion. In addition, if bidders start with nonzero
holdings of slots, a bidder who holds the en-
tire initial allocation of slots often does not
block new entry. I then discuss the extension
to more than two bidders, starting with three
bidders, and then with more bidders than slots.

While the focus here is on the allocation of
scarce inputs, the analysis contributes to the
general theory of auctions as well.1 Most theo-
retical studies of auctions have considered
''one-shot" auctions in which a single object is
sold or several objects are sold simultaneously.
In reality, related objects are often sold sequen-
tially, either because sellers enter the market
one at a time, or because it is practical for an
individual seller to sell related objects as an on-
going process. (Goods auctioned sequentially
include art, wine, procurement contracts, tim-
ber rights, and mineral rights.) McAfee and
McMillan (1987) note that all levels of govern-
ments of western nations procure goods and
services equal to 10 percent of gross national
product annually, much of it by competitive
bidding. Given the economic importance of
these markets, further study is warranted.

A common feature of many of these settings
is that the value of the object for sale, be it a
contract to produce or a scarce input, depends
on the other objects obtained. If the objects
are identical, then this observation implies that
the total value of the objects obtained is a non-
linear function of the quantity obtained, which
is the case here.

• 4 For an example, see "American Deal Will End Britt O'Hare Opera-
tion," Chicago Tribune, December 20,1988.

• 5 See McAfee and McMillan (1987) for a survey of the literature on
sequential auctions.

I. The Model

Suppose that N identical objects called slots
are offered for sale by one or more sellers.6

Assume that N > 2 and N is an even number.
The sellers could be a government agency-
wishing to allocate some or all of the takeoff
and landing slots at an airport, or they could
be carriers with small holdings of slots. (Large
carriers may wish to take over the small carriers
outright or they may simply wish to purchase
their slots.) Two bidders compete for the slots.

I denote a typical allocation of slots by the
ordered pair (x, y), where x denotes the num-
ber of slots currently held by bidder X, y de-
notes the number of slots currently held by
bidder Y, and 0 < x + y < N. If x + y = N,
then (x, y) is a final allocation. At each nonfinal
allocation, an auction allocates the next slot. Af-
ter all slots are allocated, each bidder receives
a "final payoff that depends on the final allo-
cation. This payoff can be thought of as the
profit from production.

The specific auction format used is the
second-price sealed-bid auction. In this auction,
the high bid wins, and the winner pays the
amount bid by the losing bidder. This format is
used for ease of exposition because its outcome
mimics that of the standard oral ascending-bid
auction. Suppose, for example, that bidder X
was willing to pay up to SI00 for a slot, where-
as bidder Y was willing to pay up to $80. In
an oral ascending-bid auction, where the auc-
tioneer raises the price, bidder Y should not
drop out until the price hits S80 exactly. Thus,
bidder X will win the auction and pay a price
of (approximately) $80. If, instead, the bidders
were asked to write down how much they
were willing to bid, with the understanding
that the bidder who submitted the higher fig-
ure would receive the slot at a price equal to
the loser's figure, then the outcome should be
the same. The latter scheme is the second-
price sealed-bid auction.

A minimal requirement for an equilibrium
of this game is that each bidder's strategy be
optimal, given the strategy of the other bidder.
This is the requirement that the strategies form
a Nash equilibrium. A Nash equilibrium is self-
enforcing in the sense that neither bidder has
an incentive to change her strategy, given the
strategy of the other bidder.

Unfortunately, there can be many Nash
equilibria, so we must be more discerning.

• 6 The model and the analysis borrow extensively from Gale and Stege-
man(1993).



Suppose, for example, that bidder X values a
slot at $10 while bidder Y values it at $8. In a
second-price auction, it is a Nash equilibrium
for X to bid $10 and for Y to bid any amount
strictly below $10. Neither bidder has an incen-
tive to change her bid. If bidder X submits a
bid above Y's bid, then she receives a surplus
equal to the difference between her valuation
($10) and Y's bid. This holds regardless of X's
exact bid, as long as she wins. Bidder Y has
no incentive to change since he loses and re-
ceives zero surplus currently, whereas if he
were to outbid X, then he would lose $2, since
he would pay $10 for a slot that he values at
$8. Thus, any pair of bids (S10, by) with by <
$10 constitutes a Nash equilibrium, as does any
pair of bids (bx, $8) with bx > $8.

While there are many Nash equilibria, only
one is "robust'' in a certain sense. Once we
consider the possibility that bidders might
make a mistake and submit the wrong bid,
then bidder X should bid $10 and bidder Y
should bid $8. If, for example, Y bids $9.50, ex-
pecting that X will bid $10, but X makes a mis-
take and bids only $9, then Y wins and pays
$9, yielding a net surplus of-SI. Likewise, if X
bids $9, thinking that Y will bid $8, but Y
makes a mistake and bids S9.50, then bidder X
has lost $.50 in surplus that would have ac-
caied had she bid $10. The bids bx = $10 and
by = $8 are referred to as "dominant strategies,"
since they are optimal regardless of the other
bidder's bid. I restrict attention to dominant
strategies, which leaves each bidder with a
unique bidding strategy.

I study the equilibrium sequences of winners
and the associated prices. (Tie bids produce mul-
tiple sequences of winners.) The bidders know
the initial allocation of slots, the auction rules,
and the final payoffs (the profits from produc-
tion, given the final allocation of slots). I focus on
the case in which both bidders start the auction
with no slots, but consider other initial allocations
as the analysis progresses.

A numerical example illustrates the work-
ings of the sequential auction. Suppose that
there are two slots for sale. The two firms re-
ceive a profit from production of $2 apiece if
each of them owns one slot. A firm receives a
profit of $5 if it controls both slots, in which
case the other bidder receives zero. The slots
are sold in a sequence of two second-price
auctions. Suppose that bidder X wins the first
auction. She will be willing to pay up to $3 for

• 7 Strictly speaking, I eliminate, iteratively, all strategies that are
dominated by some other strategy.

the second slot, which is her marginal valua-
tion. Bidder Y is willing to pay up to $2, which
is his marginal valuation. Bidder X will win the
second auction and pay a price of $2. Given
this behavior in the second auction, both bid-
ders are willing to bid exactly $3 in the first
auction. Therefore, the price of the first slot is
$3 and the price of the second is $2. One bid-
der wins both, but both bidders receive net
profits of zero.

Now suppose that owning one slot is worth
$3 instead, all else equal. After the first auc-
tion, the winner has a marginal valuation of
$2, whereas the loser has a marginal valuation
of $3- The loser of the first auction will win the
second and pay a price of $2 for that slot.
Thus, neither bidder will be willing to pay
more than $2 to win the first slot, since by los-
ing he or she will win the second slot. Simi-
larly, each bidder will be willing to pay up to
$2 for the first slot. Since winning the first auc-
tion at any price strictly less than $2 is better
than winning the second auction at a price of
$2, it follows that both bidders will bid $2 for
the first slot. This process generalizes to A'
slots. The equilibrium bids are determined by
backwards recursion, as outlined below.

At any point during the sequence of auctions,
the current allocation of slots is an ordered
pair (x, >'), where bidder X owns x slots and
bidder Y owns y slots. The allocation (x, y) is
followed by (x + 1, y) or (x, y + 1), depending
on who wins at (x, y). For each number of
slots, x = 0, 1, ..., N and each bidder i = X, Y;
/• (x) denotes the final payoff given to bidder i
if the final allocation is (x, N— x). Since the
slots are assets, fx is increasing in x and/K is
decreasing. Each bidder i seeks to maximize
the difference between her final payoff f{ (x)
and her total expenditure for slots purchased
in auctions.

Let Vt(x, y), i = X, Y, denote bidder i 's valu-
ation of allocation (x, y). In other words, Vi

(x, y) is bidder z's equilibrium payoff in the
game commencing at (x, y). The valuation of a
final allocation is the final payoff:

CD Vl(x,N-x)=fj(x),

x =0, 1, 2, ...,N; z= X,Y.

The valuation of an intermediate allocation
(x, y) depends on the valuations of its sequels
(x + 1, y) and (x, y + 1). There is a unique val-
uation of (x, y) if each bidder adopts the strat-
egy in auction (x, y) and in all subsequent
auctions of bidding the increment to value re-
sulting from obtaining the next slot. (As noted



above, any auction in which the resulting bids
are unequal has many Nash equilibria, but the
possibility of mistakes justifies the assumption
that bidders will play dominant strategies.)

Consider first the penultimate allocations
(x, y), where 0 < x, 0 < y, and x + y = N- 1.
The value of that next slot to bidder X, say, is
the difference between her final payoff when
she wins and when she loses: Vx (x + 1, y) -
Vx (x, y+ 1). It is a dominant strategy for bid-
der i to bid B((x, y) in auction (x, y), where

slots increases, while assumption (3d) means
that aggregate final payoffs increase with the
final concentration of slots. (Note that Be] says
that bidder Y's final payoff is increasing and con-
cave in his own number of slots.) Finally, assump-
tions (3e) and (30 are invoked for concreteness.
The example discussed below satisfies these
conditions, but the results of Theorem 1 do not
require them.

(3a) fx(x) = fY(N-x) for all x.

(2a) Bx(x,y) = Vx(x+l,y)- Vx(x,y+l); (3b) fx(x)is strictly increasing and convex,

(2b) BY(x,y) = VY(x, y+ 1) - Vy(x+l,y).

If Bx(x, y) > By(x, y), then bidder X wins the
next slot and pays bidder Y's bid. If Bx(x ,y)
< By(.x, >'), then bidder Y wins the next slot. If
Bx (x, y) = BY(x, y), then the tie-breaking rule
determines the winner.

The valuations at each penultimate allocation
can now be calculated, given these equilibrium
bids. This allows bids to be determined one auc-
tion earlier, at the antepenultimate allocations,
and so on. Bids at any earlier allocation also take
the form of (2). The bidders' valuations of each
allocation can be calculated recursively. The price
paid in auction (x, y) is min [Bx (x, y), By(x, y)].
The tie-breaking rule, which I leave unspecified
for now, cannot affect bids or valuations in
any given auction.

The equilibrium of the auction game com-
prises the bidding functions Bx (x, y) and BY

(x, y), for all (x, y). Henceforth, I assume that
the bidders are symmetric with respect to their
final payoffs. The outcomes will typically not
be symmetric, however.

II. Competition for
Scarce Inputs

I now put some additional structure on the
model. First, symmetry of bidders is imposed
in (3a). Second, aggregate final payoffs, and
each bidder's valuation of the marginal slot,
are assumed to rise as the final concentration
of slots increases (that is, as the allocation of
slots between bidders becomes more un-
equal). These conditions arise naturally for
scarce inputs because higher concentration
typically leads to higher output prices, increas-
ing both aggregate profits and the value of
marginal output. Assumptions (3b) and (3c)
mean that each bidder's valuation of the mar-
ginal slot rises as the final concentration of

for x > N/;

(3c) fY (x) is strictly decreasing and concave,

for x> N/2.

(3d) f(x) = fx(x) +fy (x) is strictly increasing,

for x > N/2.

(3e) 5 x x 2 / 2 , and

(30 fy(x) = ay+ p r x - 5yx2/2,

where 8> > 0.

Assumptions (3a) - (3d) place additional restric-
tions on the parameters, which I leave unspeci-
fied for now.

Winning a particular slot affects a bidder di-
rectly by increasing her current holdings of
slots, but it also affects the competition for the
remaining slots. Two countervailing effects de-
termine the number of slots won by, say, bid-
der X. The first effect argues for one bidder to
acquire all slots, since that outcome maximizes
the sum of the final payoffs. This effect is coun-
tered by the fact that the more slots bidder X
wins, the higher is the marginal valuation of
another slot to bidder Y (presuming that y < x),
and the fiercer is the competition for the mar-
ginal slot. If bidder Y ends up with very few
slots, then bidder X is a near-monopolist. Bid-
der Y benefits from X's relative passivity in the
production game, so marginal capacity is most
valuable to bidder Y when he has very little.
(Empirically, airlines that dominate airports tend
to have the highest fares. See Borenstein [1992].)
This trade-off leads to an equilibrium alloca-
tion of slots that is typically neither symmetric
nor monopolistic.

A heuristic argument provides some intuition
for the determinants of the equilibrium alloca-
tion of slots. I proceed by conjecturing the form



of the equilibrium. I then show that it is optimal
in each auction for bidders to bid in the way
prescribed. The heuristic argument for deter-
mining the equilibrium allocation is now given.

Consider an allocation (x, y) such that, in
equilibrium, bidder X wins any auction (x', y')
> (x, y) such that y' < y + 2. In other words, if
bidder X has at least x slots and bidder Y has
y, v + 1, or y + 2 slots, then bidder X will win
all remaining slots in equilibrium. If a deviation
at (x, y) causes bidder Y to win one more slot,
then any additional slot that bidder Y wins will,
in equilibrium, be his last slot. Therefore, fol-
lowing the deviation, bidder Y bids the value
of that last slot, BY(N- y- 2, y + 1), in every
remaining auction. If the deviation did not oc-
cur, bidder Y would bid By(N- y- 1, y) in
every remaining auction. Since bidder X wins
all remaining slots, even if a deviation causes
her to lose one of those slots, the marginal con-
tribution to her final payoff of winning auction
(x, y) is equal to the marginal value of winning
the last auction, BX(N- y- 1, y).

By winning auction (x, y), bidder X in-
creases the price that she must pay upon win-
ning the remaining N— x — y— 1 auctions by
ABY(N- y- 2, y+ 1) = By(N-y- 1, y)-BY

(N—y—2,y+ 1). Therefore, bidder X wins
auction (x, y) if and only if BX(N- y- 1, y) >
(N-x-y-l )ABY(N-y-2,y+ 1) +
BY(N-y- l,y). Recalling that/(x) = fx(x) +
fY(x), the condition can be rewritten:

(4) / (A?_ y) - f(N-y-\)>

(N-x-y- l)ABy (N -y-2, y+ 1).

In other words, bidder X wins auction (x, y)
only if the increment to aggregate final payoffs
(the left-hand side) exceeds the increment to
total prices paid (the right-hand side).

Define |J. to be the smallest integer such that
(>• + 2, y) satisfies (4) for y = |J., u + 1, N/2 - 2.
The equilibrium allocation will be (TV- n., (J.),
which I call the "modal allocation," or its sym-
metric counterpart.

Theorem 1. When (3) holds, either bidder X
wins N- [l slots and bidder Y wins |I, or the re-
verse holds.

The equilibria of the original game and the
game starting from any intermediate allocation
have a regular form. From here on, I assume
that ties are won by bidder X if the allocation is
even. This tie-breaking aile ensures that bidder
X always has at least as many slots as bidder
Y, so the equilibrium allocation in this case is
(/V- |0., (J.). If x = y, then there will be a tie in
the next auction, which buyer X wins by the tie-

breaking rule. Buyer X also wins the next auc-
tion to maintain her lead. Thereafter, different
patterns are possible. If I assume that bidder Y
wins all ties when he is behind, then the bidders
alternate victories until buyer X commences
her final string of victories, and the modal allo-
cation is reached. If x > y, then buyer Y wins a
string of auctions first, but not enough to catch
up. Either buyer Y catches up to within one slot,
and then a pattern of alternation persists until
the modal allocation is reached, or else he
never catches up to within one, in which case
buyer X wins all auctions after Y's string of vic-
tories. The point at which buyer X commences
her string of victories is determined by (4).

The theorem is illustrated by the following
numerical example. Suppose that each slot repre-
sents one unit of capacity in a subsequent pro-
duction game, where the inverse demand is P =
24 - Q and average cost is zero, up to capacity.
If bidder X has x slots, then she is able to pro-
duce up to x units of output. For quantities
strictly less than x, marginal and average cost
both equal zero, but for quantities strictly above
x, marginal and average cost are infinite.8

Suppose that the firms behave like Cournot
duopolists in the production game. In a Cour-
not duopoly, each firm chooses the optimal
quantity to produce, given the level produced
by its competitor. In the absence of capacity
constraints, each duopolist produces eight units
of output in the Cournot equilibrium. To see
this, note that if bidder X produces qx units of
output, then bidder Y's profit from producing
q units is (24 - qx - q) q, a concave function
that takes its maximum at q = (24 — qx)/2. Like-
wise, if Y produces qY, bidder X's optimal
strategy is to produce q = (24 - qY)/2. If both
bidders are unconstrained, then the unique
Cournot equilibrium has qx = qy= 8.

Assume, however, that exactly 7V= 16 slots
are available, and x > 8. Concavity of the profit
function ensures that the best responses for
the two bidders are

(5a) qx = min{(24 -qY)/2,x\

(5b) qY = min 1(24 - qx) 12, 16 - x).

There are now four possibilities, depending on
whether the bidders are constrained. The bid-
ders cannot both be unconstrained, since that
would require that bidder Y produce eight units,
which exceeds his capacity. It is also immediate

• 8 In reality, the capacity constraint is not absolute, since more seats
can be put on an airplane, but the qualitative properties need not change
when this possibility is permitted.
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Possible Sequences
of Equilibrium Victories
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SOURCE: Author's calculations.
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that the bidders cannot both be constraineci. If
Y produced 16 - x units, X would wish to
produce only [24 - (16 - x)]/2 = 4 + (x/2),
whereas he has available x units of capacity.
Because x > 8, 4 + (x/2) < x. Now suppose
that X is constrained and Y is unconstrained. If
qx = x, qy = min 1(24 - x)/2, 16 - x \ = 16 - x,
which is a contradiction. The only remaining
possibility is that bidder X is unconstrained and
bidder Y is constrained. It is straightforward to
confirm that qx = 4 + (x/2) and qy = 16 - x are
the unique equilibrium outputs. Total output is
20 - (x/2). The price of output is (8 + x)/2,
so the final payoffs (that is, the profits in the
Cournot production game) are

(6a) fx(x) = (8 + x)2/4,

(6b) fy(x) = (8 + x)(l6 - x)/2.

Note that these final payoffs are consistent
with (3a) - (30.

I now return to the auction. The different
possible sequences of equilibrium victories are
noted in figure 1. Arrows indicate which alloca-
tions can follow a given allocation. For exam-
ple, starting from the allocation (2,0), where
bidder X currently has two slots and bidder Y
currently has none, the allocations (3,0) and
(2,1) can both be reached. This means that the
two bidders submit the same bid at (2,0), and
the tie-breaking rule determines whether X

wins and (3,0) is reached or whether Y wins
and (2,1) is reached.

The modal allocation is (10,6) here. Straight-
forward calculations confirm that (4) amounts to

(7) (2y+ -2y),

or y > 5.1. Thus, (I = 6. Price drops occur be-
tween auctions separated by double cross
marks. On any path from the origin, the price
is 10.5 in the first auction, 6.25 in the next 12
auctions, and 5.5 in the last three auctions. The
equilibrium paths in the example have several
other properties.

1. While the leader may ultimately win con-
siderably more slots than the follower, the
leader strictly outbids the follower only when
his lead is reduced to one or after the follower
has already won all of her slots. A consequence
is that there is an equilibrium path in which
bidder X wins the first two slots, then bidder Y
wins one, and then they alternate victories un-
til the allocation (u +1, (J.) is reached. At that
point, bidder X wins all remaining slots.

2. The trade-off that determines the num-
ber of slots that the leader wants to win, along
with the preceding observation, ensures that
many intermediate allocations lead to the same
final allocation. Any initial allocation (x, y) at
which 0 < y< x<\i+ 1 and (x, y) * (\i + 1,
|I + 1) leads to the same final allocation. In the
example, the modal allocation is (10,6), and any
initial allocation (x, y) with 0 < y < 7, except-
ing only (7, 7), leads to the modal allocation.
Thus, many different histories lead to the same
equilibrium allocation of slots. This implies that a
sizable initial advantage need not be maintained.

3. If the initial allocation is (0,0), then the
price drops either once or twice. It drops im-
mediately after the leader is established (which
equalizes net profits). It also declines immedi-
ately after the follower wins his last slot if a de-
viation causing him to lose that slot would have
caused him to lose all subsequent slots as well.
Since the follower loses some surplus in that
case, he bids more than he would bid if a loss
would be compensated by his winning another
auction subsequently. The existence of at most
three distinct prices depends on the precise
functional form assumed.

4. An incumbent monopolist typically does
not block entry if new slots become available.
For instance, suppose that the initial allocation
of slots is (12,0), which effectively makes firm
X an unconstrained monopolist. Calculations
show that if four new slots become available,
then the prospective entrant, firm Y, wins the
first two slots before firm X wins the last two.



The reason for this is simply that it is often too
costly to preempt an entrant completely, since
the incumbent monopolist would leave the ca-
pacity idle whereas the entrant would find the
capacity very valuable because the incumbent
would still be a near-monopolist after entry.

III. More Bidders

In many markets, there are exactly two com-
petitors of consequence. This is particularly
true at many airports and in many airline mar-
kets, so the assumption of two bidders is realis-
tic in such contexts. I now consider the impact
of having more than two bidders. The exten-
sion is qualitatively different because the value
of winning a slot typically depends on which
rival would otherwise win it.9 Hence, a bidder
often has no dominant strategy, so I focus on
the equilibria in which each bidder bids the
value of the next slot to her, assuming that the
rival making the highest bid would otherwise
win the auction.

Multiple equilibria are common when produc-
tive capacity is sold, because keeping capacity
away from constrained bidders is a public good
that the unconstrained bidders may individually
prefer not to provide. Thus, at an airport with
two dominant incumbents, if new capacity be-
comes available, each incumbent may prefer that
the other buy the new capacity and keep the en-
trant out. The following example illustrates the
public good aspect in a case where all bidders
start with no capacity.

Suppose that three firms bid for three slots.
Each slot represents one unit of capacity, where
inverse demand is P = 8 (4 - Q) and production
is again costless up to the capacity constraint.
In the post-auction production game, the firms
again act as Cournot competitors. The final al-
location (3,0,0) returns final payoffs of 32, zero,
and zero, respectively. The allocation (2,1,0)
returns payments of 18, 12, and zero. The allo-
cation (1,1,1) returns a payment of 8 to each
bidder. The payments from the other final allo-
cations are determined symmetrically.

Equilibria are computed through backwards
recursion. (The price paid in the second-price
sealed-bid auction is the larger of the two losing
bids here.) Consider the allocation (2,0,0). The
last slot is worth 14 to the leader and bidder X,

• 9 This is reminiscent of the situation in baseball pennant races,
where contending teams attempt to trade for a player whose team is out of
the race. How much a team is willing to pay depends on whether the other
team vying for that player's services is in the same division.

and 12 to the others. Therefore, the leader pays
12 for the last slot. The payoff to entering this
"subgame" (the game that takes place when the
initial allocation is (2,0,0)) is 32 - 12 = 20 for
the leader and zero for the followers.

Consider next the allocation (1,1,0). The last
slot is worth 10 to a leader if it would other-
wise go to the follower, bidder Z, but it is
worth only 6 if it would otherwise go to the
other leader. It is worth 8 to the follower. If tie
bids are broken fairly, then there are three
equilibria of interest. The follower bids 8 in all
three equilibria. In one equilibrium, one leader
bids 10 and the other 6; in another, their roles
are reversed; in the last, they both bid 8. In the
first two equilibria, the payoff to entering this
subgame is 10 for the leader who wins, 12 for
the other leader, and zero for the follower.
Both leaders are willing to bid enough to shut
out the follower, but each prefers that the other
do it. If we assume that the leaders randomly
coordinate on one of the two equilibria, the
average payoff to entering this subgame is thus
11 for each leader and zero for the follower.

At the allocation (1,0,0), the next slot is
worth (32 - 12) - 11 = 9 to the leader and 11
to each follower. (If the leader wins, he goes
on to win the third slot at a price of 12.) One
of the followers wins, and the payoffs to enter-
ing this subgame are 11 for the leacier and
zero for the followers. At the initial allocation
(0,0,0), each firm bids 11.

Summarizing, the assumption that firms ran-
domly coordinate among equilibria at the time of
the auction generates an equilibrium allocation
that is a permutation of (2,1,0). The final payoffs
to the firms are 18, 12, and zero, and the equi-
librium prices are px = 11, p-,= 11, and pi = 8.

It is possible for three firms to earn higher
profits if they coordinate on an equilibrium be-
fore the auctions begin. In particular, suppose
that they coordinate on the equilibrium in
which firm X wins auctions (1,1,0) and (1,0,1)
and firm Y wins auction (0,1,1). Then the
leader's payoffs in these subgames are either
10 or 12, instead of 11. In auction (1.0,0) the
equilibrium price is 12, and in auctions (0,1,0)
and (0,0,1) the equilibrium price is 10. The pay-
offs in these three subgames are now 10 for
the leader and zero for the followers, except
that firm Z's payoff in subgame (0,1,0) is 2 in-
stead of zero, and its payoff in subgame (0,0,1)
is 12 instead of 10. If tie bids are broken fairly,
then firm Z wins the initial auction (0,0,0) with
a bid of 11 and pays a price of 10. Since the
payoff to winning is 12, firm Z earns profits of
2, unlike the zero profits earned without advance



coordination. The price sequence is p1 = 10,
p7 = 10, p5 = 8. Profits appear because advance
coordination creates an asymmetry that gives
firm Z an advantage from the start. This holds
because firm Z is never put in the position of
purchasing capacity that will not be fully util-
ized, since the other leader is assumed to win
at (1,0,1) and at (0,1,1). In those cases, the
other leader produces only 1.5 units even
though it purchases 2.

Finally, consider the possibility of there be-
ing more bidders than slots available. In
Krishna (1993), an incumbent monopolist and
potential entrants bid for new capacity. The
monopolist wins only the last unit of new ca-
pacity, assuming that marginal costs are con-
stant, market demand is concave, and entrants
always produce to capacity. The presence of
potential entrants, each of whom will produce
up to capacity, means that the bid from an en-
trant is always the equilibrium price of output
should the entrant win. With two or three bid-
ders, all bidders may have some slots, in which
case they all internalize the impact of increased
(aggregate) production on the value of their
current holdings. This makes the potential en-
trants less competitive in the small numbers
case, so an incumbent monopolist will win
more slots.
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IV. Concluding
Remarks

This paper has provided a framework for ana-
lyzing competition for scarce inputs such as air-
port takeoff and landing slots. The analysis
describes the outcome of an auction of slots
between two carriers, who may have existing
slots, and it also depicts the outcome of a
merger or takeover wave. The equilibrium allo-
cation of slots is typically asymmetric, even
though firms are ex ante identical. It is not typi-
cally monopolistic, however, since the more
concentrated the allocation of slots becomes,
the higher is the price that the leader must pay
for the marginal slot.

Many different histories, and many different al-
locations of slots, lead to the same equilibrium
allocation of slots, implying that an initial advan-
tage need not be maintained. Thus, the concern
with monopolization may be misplaced. Future
work will consider risk aversion, capital con-
straints, and matching of slots between airports.




