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Introduction

Banks may both initiate and propagate business
cycle fluctuations. For example, recent contro-
versy has arisen over the role that banks' loan
decisions may have played in the initiation of
economic downturns. However, once such a
downturn has begun, business performance
influences bank profits and eventually may in-
fluence loans.

A natural question is whether banks play an
independent role in business cycle movements.
One possibility is that technological advances
specific to banking influence the initiation or
continuation of business cycles. Although
economists have studied the macroeconomic
impact of broad technological advances, they
have not yet focused on the impact of the ob-
vious recent gains in banking technology.

In this paper, I explore the possible link be-
tween financial efficiency and macroeconomic
fluctuations. I present a two-sector real business
cycle model in which there are technological
shocks specific to the banking sector. (For a dis-
cussion of these shocks, see box 1.) I then test the
model's empirical implications, which are inter-
preted with the concept of cointegration. Although
these implications have not yet been investigated

by others, I follow Mitchell (1913) by examining
linear combinations of banking variables. This
approach is linked to the cointegration tech-
niques utilized. Specifically, I test whether a
common stochastic trend exists between bank-
ing variables and industrial production, or
whether the two are subject to distinct stochas-
tic trends. This is equivalent to testing for the
absence of cointegration between the banking
variables and industrial production. Such a find-
ing would imply that the banking sector exerts
independent influence on long-run output.

Other researchers have begun to consider roles
for financial efficiency. On the theoretical side,
King and Plosser (1984) mention financial effi-
ciency, but do not imbed a role for it in the solu-
tion of their model. Greenwood and Williamson
(1989) develop a model with an explicit but con-
stant term for financial efficiency. On the empirical
side, Norrbin and Schlagenhauf (1988) present a
highly disaggregated model, but one that does not
explicitly consider technological change. They
also discuss employment rather than output in the
financial sector, and use a different time period
(1954-1984). Corradi, Galeotti, and Rovelli (1990)
look at the long-run relations among bank vari-
ables in Italy without considering the aggregate
economy. Scotese (1990), in unpublished work,
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Some Examples of Bank Innovations

As an antidote to the rather abstraa theory and empirical work in
the rest of the paper, it may be useful to consider some examples
of the sort of shocks I have in mind. Banks employ many re-
sources in processing traasactions, in maintaining the payments
system, and in screening and monitoring lenders and borrowers.
Advanced information technology has reduced these costs and
created new products. In the period covered by the study (1923-
1978), some efficiency gains stem from outside technological ad-
vances, others are unique to banks, and still others are unclear.

Even in cases where outside technology increases financial
efficiency— Scotch Tape in the 1930s, or calculators and electric
typewriters in the- 1940s — the specific uses and total gain can
vary by industry. For example, using radio and television to dis-
seminate information has meant very different things to the bank-
ing, the soap, and the fashion industries.

Other improvements seem more specific to banks. These in-
clude innovations like money orders and warehouse receipts to
collateralize loans in the 1930s; drive-up windows, account num-
bers, and check routing numbers in the 1940s; and central infor-
mation files in the 1960s. Yet, not all "breakthroughs" look so
stunning in retrospect. In the 1920s, for instance, banks placed a
strong emphasis on graphology, using handwriting analysis to
screen employees and customers.

Today, the contribution of computer technology with image
processing enables payments, credits, and debits to be made
more cheaply, easily, and quickly, especially far from home.
Banks can use this technology' to calculate and adjust exposure
and interest-rate risk. As daily processing becomes common-
place, on-line transaction processing becomes more frequent.
Banks have also reduced the costs of monitoring and screening
and have automated the process of sending out warning letters.
Data bases make all customer accounts accessible, easing credit-
risk analysis and targeted advertising.

One recent innovation, for example, is the "super-smart card."
Resembling a credit card, it fits easily into a wallet anci contains
memory, a processor, keyboard, screen, calculator, and clock.
Debits and credits can be made merely by punching a secret
code, making transactions quicker than is possible with current
credit and debit cards. More secure than an ATM card, the super-
smart card also reduces casts by eliminating the need for point-of-
sale terminals to lie connected to a central location. It holds the
promise of inducing even more radical changes: Pocket currency
could pay interest, or even float against that of other banks. Such
capabilities have the Japanese Ministry of Finance worried about
losing control of the nation's money supply (Abrahams [1988]).

One indicator of technology's influence is the substantial con-
sulting industry that banks support to help them manage exten-
sive technological change. Estimates suggest that the largest of
the 25 consulting firms profiled in a recent issue of American
Banker collects $400 million annually from bank technology
consulting alone (Gullo [1991D.

examines the relation between economic growth
and financial innovation, but models technologi-
cal changes differently and examines fewer
banking variables than I do. She also uses quar-
terly data from 1959 to 1990, whereas I use a
longer data series (1923-1978.)

The remainder of the paper proceeds as fol-
lows. Section I presents the simple model and
explains why technological shocks imply no co-
integration between banking and real variables.
Section II describes the data, the method of testing,
and the test results. Contrary to the prediction of
the model, banking and real variables are cointe-
grated. Section II further explores the interaction
with vector autoregression methods, and section
III concludes.

I. Lessons from
a Simple Model

To consider the effects of shocks to financial
efficiency, I begin with a dynamic stochastic
model: a two-sector real business cycle model
with technological shocks to both sectors. This
two-industry version of the Long and Plosser
(1983) model has testable predictions and indi-
cates the progress that can be made by treating
banks like any other industry. It retains a some-
what traditional flavor, however, because it
places transactions services directly into both
the utility function and the production function.

Consider a model economy with two goods
and a representative agent who chooses a produc-
tion and consumption plan. The infinitely lived
agent has resources, technologies, and tastes simi-
lar to those in Long and Plosser, and has a lifetime
utility function of U= Xp' u(Ct,Zt), where Ct is a
2x1 vector denoting period t consumption of
goods (CG) and banking services (CB). Zt meas-
ures the quantity of leisure consumed in period t.
Each period's utility function, u (Ct, Zt), is given
by

(1) u(Ct ,Z) = %lnZt dG lnCGt lnC
Bt.

The agents face two resource constraints: Total
time H may be spent at work or at leisure, and
output Yt may be consumed or invested.

Zl+LGl+LB=H(2)

(3)

Thus, labor can be divided between produc-
ing transactions services in the banking sector
or output in the goods sector, just as the goods



(output and banking services) can be consumed
or invested. X( denotes the amount of good j
invested in process i. For example, XGB is the
amount of banking services used to produce the
manufactured good. Output is determined by
Cobb-Douglas (1928) technology with a ran-
dom productivity shock.

This means that the difference equation for out-
put, (6), can be expressed as

(8)

a (XGG) *ca (XGB)
Gt

where Xt t+1 is a random productivity shock
whose value is realized at the beginning of period
t + 1, and the exponents are positive constants
with bt + aiB + aiG = 1. For future reference, de-
fine the matrix of input-output coefficients a(- to
be matrix A. Because the state of the economy in
each period is fully specified by that period's out-
put and productivity shock, it is useful to denote
that state vector St = [ Y't X't]. To further simplify
the problem, all commodities are perishable, and
capital depreciates at a 100 percent rate.

Subject to the production function and re-
source constraints in equations (2), (3), and (4),
the agent maximizes expected lifetime utility.
This problem maps naturally into a dynamic
programming formulation with a value function
V(St) and optimality conditions. By assuming
log utility, it is straightforward to discover and
verify the form of V(S). Thus, the first-order
conditions for the optimality equation specify
the chosen quantities of consumption, work
effort, investment, and leisure. Because they are
just special cases of Long and Plosser (1983),
the first-order conditions are not reported here.

Of greater interest is the time series of output,
which can be calculated from the production func-
tion and the decision rules for consumption and
investment. Lettingyt = lnYt and r\t= lnXtand k
be an appropriate vector of constants, quantity
dynamics come from the difference equation

(5) yl+l = Ayt+k+r\t+r

Since the focus is on technological change and
increasing efficiency, a particular process for T|
can be chosen in order to capture the accumula-
tion of knowledge. Thus, it seems appropriate to
model Xt as a multiplicative random walk:

which implies

(7) T1,+ 1=T1

Expanding this leads to

(9)
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This representation has several notable features.
First, innovations in one industry will affect the
other. Second, the A matrix provides rich dynam-
ics for both individual series and comovements.
Even this simple approach captures two essential
points: (1) banks complicate the transmission of
aggregate disturbances, and (2) banking changes
serve as a source of such disturbances.

Econometric
Modeling

Exploration of the empirical implications of
equation (9) requires introducing some con-
cepts from time-series analysis. The objective is
to assess the connection between the banking
sector yB and the industrial sector yG. If shocks
have a permanent effect on output, as equation
(9) assumes, traditional econometric methods
such as correlation or regression become inap-
propriate. Those methods can miss existing rela-
tions and spuriously uncover nonexisting ones.1

Fortunately, natural analogues exist in the no-
tions of common trends and cointegration.

As described in Engle and Granger (1987)
and Box and Tiao (1977), cointegration is a
restriction on how far two series may wander
apart. For example, two unrelated random walk
series, such as GNP and quasar light intensity,
should drift far afield. Two related series, such
as income (I) and consumption (C), may each
individually be a random walk, but will never
drift very far apart. Engle and Granger formalize
this with the concept of cointegration, where
a linear combination (for example, I - C) is sta-
tionary. Stock and Watson (1988) describe co-
integrated series as having "common stochastic

• 1 More formally, with a random walk error term, estimated regression
coefficients do not have finite moments and may be inconsistent (Plosser
and Schwert [19781). Informally, the high autocorrelation of the errors
means that if the first error is positive, the following several errors will also
be positive, making the estimated regression line lie above the "true" regres-
sion line (Theil [1971], section 6.3). With the pronounced tendency of a ran-
dom walk to wander, the differences could be substantial.



trends." The same underlying random walk
drives both series, though each will have noise
on top of the random walk.

In terms of this paper's model, banking and
output are cointegrated if each is integrated —
so that shocks become embedded in the series
— but some combination of the variables is sta-
tionary. I interpret a cointegrating relationship as
evidence that the same unobservable force drives
both series. It is also possible that each series may
be integrated, while the two series are not cointe-
grated. In this case, shocks tend to have a perma-
nent effect on the series, but there is no evidence
that the same shock affects both series. Finally, it
may be that neither series is integrated.

More generally, if Xt is an nxl time-series vari-
able, with each element first-difference stationary,
Xt is cointegrated (of order [1,1]) if at least one
linear combination of Xt is stationary. Expressing
the change in Xt as a moving average, I get

(10) AX,= [i+C(L)£t,

where u. is an nxl vector of means; C (Z) =

Y Ct L ' with each Ct nxn; e( is nxl and inde-
i = 0

pendent and identically distributed; and A =
1 - L, with L the lag operator. Cointegration
places restrictions on C(L) (Stock and Watson
[1988]). Thus, if Xt is cointegrated, the matrix C(l)
will have rank k< n, with r= n- k denoting the
number of cointegrating vectors. Equivalently,
there will exist an nxr matrix B such that B '\i. = 0
and B 'C(L) = 0. The columns of B are termed the
cointegrating vectors (Engle and Granger [1987]).

The two properties of the B matrix, B 'u. = 0
and B'C(L) = 0, summarize the meaning of co-
integration. The first indicates that the expected
net impact of the shock on some combination of
the series is zero. The second means that the long-
run impact on that same combination is zero. This
is the essence of cointegration: Although shocks
have a permanent effect on the level of the inte-
grated series, they have only a transient effect on
some combination of the series.

With this machinery in hand, I rearrange
equation (8) as

(11) (7 - AL) (Ay,+ j) - u,+ r

Making a standard assumption to rule out ex-
plosive growth, the matrix I - AL inverts (the
Hawkins-Simon [1949] conditions), yielding

(12) Ayt+l = {I-AL)-^^r

Assuming invertibility assumes away cointe-
gration: To invert, the matrix must have full rank.
In the standard case, then, we do not expect to
find cointegration. Another interpretation empha-
sizes that equation (12) has two stochastic trends,
ruling out the single, common trend that is the
sine qua non of cointegration.

Cointegration can occur in special cases. Con-
sider a degenerate version of equation (5) where
the same permanent output shock affects bank-
ing and industry:

Here, the stationary linear combination is ya+ l -
yBI+v This example highlights the intuition be-
hind identifying cointegration with a common
stochastic trend. The same stochastic produc-
tivity trend drives both industrial output and
banking output. Hence, single-sector models,
such as in King, Plosser, Stock, and Watson
(1991), imply cointegration between variables.
Multisector models, such as the one considered
here, with each sector driven by its own technol-
ogy shock, imply the opposite. Testing for co-
integration determines whether the stochastic
trend is common.

Neither assumption obviously is a better
approximation of reality. Long and Plosser
(1983, p. 61) assume independent random-walk
shocks to "...avoid comovements arising from
common shocks." If one contemplates improved
ways of working, of organizing and running a
firm, and of adapting existing science to create
further specialized breakthroughs, it makes
sense that production shocks may be relatively
independent. On the other hand, the develop-
ment of transistors, computers, and phones
helped all sectors to increase productivity, so it
makes sense that productivity may have a sub-
stantial common component.

This simple model implies a sharp prediction:
Banking should not be cointegrated with aggre-
gate output. This is somewhat counterintuitive,
since other approaches (such as King et al.) sug-
gest that important relations exist if variables are
cointegrated. Here, financial efficiency matters
in the long run only if no common trend links
banks and the economy. Finding otherwise
means rejecting the model.

II. Data Analysis

Implementing the tests suggested in section I re-
quires several decisions about data and specifi-
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SOURCE: Author's calculations based on data from the Board of Governors of
the Federal Reserve System and from U.S. Department of Labor, Bureau of
Labor Statistics.

cations. I take as my guide the work of Wesley
Clair Mitchell (1913), who early in the century
commented on the comovements of loans, de-
posits, and reserves within the business cycle.
He stressed that several combinations, such as
the loan-to-deposit ratio, track the cycle more
closely than do individual series. This suggests a
stationary linear combination, and ties in natur-
ally with the cointegration framework proposed
above. I first test for cointegration among vari-
ous measures of bank output and industrial pro-
duction with the methods of Johansen (199D
and Johansen andjuselius (1989). To obtain a
richer picture of the dynamic interactions, I then
examine the vector representation of the model.

Following Mitchell and using loans, deposits,
and reserves is not the only way to measure the
output of the banking industry (for other methods,
see Fixler and Zieschang [1991])- However, using
financial variables is a sensible way to consider
output when the Modigliani-Miller (1958) theorem
does not hold. That is, real effects can depend on
more than net worth, total wages, or other factor
payments; the asset-liability structure also matters.

Because cointegration is a long-run property, I
use semiannual data from 1923 to 1978, which
represents a longer, if somewhat sparser, data set
than the usual postwar quarterly series. This
covers the years for which the Federal Reserve
and the Comptroller of the Currency reported data
on Federal Reserve member banks (all national
banks and state member banks). The underlying
figures are from the Federal Financial Instiaitions
Examination Council's Reports of Condition and
Income (call reports), which until recently were
tabulated only twice a year. After 1978, changes in
the membership of the Federal Reserve System
made the numbers less representative, and report-
ing procedures made the data more difficult to ob-
tain. The figures for reserves, deposits, and loans
are from Banking and Monetary Statistics 1914-
1941 and 1939-1970, as well as from various
issues of the Federal Reserve Bulletin. Details
about revising the series for consistency are in sec-
tion 2 of the 1976 edition. Note that these are
stock variables, reported at the end of June and
December. The Consumer Price Index for all
urban consumers (CPI-U) is used for deflating
purposes, and aggregate output is measured by
the monthly Index of Industrial Production. Both
were obtained from the DRI/McGraw-Hill U.S.
data base for the month of the call report. All num-
bers are not seasonally adjusted.

Before moving to the more formal statistical
work, it is worthwhile to examine the data
directly. Figures 1-6 provide such an overview.
Figures 1,2, and 3 plot the log of real loans,
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Growth of Banking Variables,
1923-1978
(Millions of dollars)

Reserves
Nominal
Real
%ofGNP

Deposits
Nominal
Real
%ofGNP

Loans
Nominal
Real
%ofGNP

1923

1,898
10,970

2.2

28,507
164,780

34.1

18,892
108,910

22.5

1

1939

11,604
82,890

1.27

49,340
352,430

54.3

13,962
99,730

15.4

1952

19,810
74,190

0.57

147,527
552,540

42.3

55,034
206,120

15.8

1978

31,150
46,010

0.14

716,300
1,058,100

33.1

558,300
824,670

25.8

SOURCES: Board of Governors of the Federal Reserve System (1943,1976),
Gordon (1986, appendix B), and Wharton Econometric Forecasting Associates.

F I G U R E 5

Log of Deposit/Loan Ratio

o.o
1923 1933 1943 1953 1963 1973

F I G U R E 6

Log of Reserves/Loan Ratio

Log

1923 1933 1943 1953 1963 1973

SOURCE: Author's calculations based on data from the Board of Governors of
the Federal Reserve System and from U.S. Depanment of Labor, Bureau of
Labor Statistics.

deposits, and reserves. Note the major influ-
ences of the Great Depression and World War II
years. Figure 4 plots industrial production, and
figures 5 and 6 show some combinations sug-
gested by Mitchell (1913). Here, note the large
relative increase in reserves during the Depres-
sion and the surge in the deposit/loan ratio dur-
ing World War II. Figure 7 plots the ratio of loans
to industrial production, a rough measure of the
relative size of the banking sector. Table 1 pro-
vides another view of this growth, comparing
nominal levels, real levels, and percent of GNP for
reserves, deposits, and loans for four different years.

Because looking for cointegration makes
sense only for integrated variables, I first test for
the presence of unit roots in the individual
series. Inference about unit roots can be a deli-
cate, even controversial, matter. Individual tests
make different assumptions and offer different
degrees of robustness to deviations from those
assumptions. However, if a variety of tests agree,
more confidence can be placed in the results.
This section uses the Dickey-Fuller (1979) test
and the Phillips-Perron (1988) test, both with
and without trends.

The Dickey-Fuller test assumes a time series
of the form

(14) f+p

The test is a t-test or "normalized bias" test for
p = 1 . Under the null hypothesis that p = 1, the
test statistic has a nonstandard distribution and
requires the use of Dickey-Fuller tables. The test
can be run with or without the trend term fit.

Phillips and Perron (1988) allow more com-
plicated error terms by using the residual auto-
correlations from a rearrangement of equation
(14) to adjust the Dickey-Fuller statistics. The
Phillips-Perron statistics have the same limiting
distributions as those of Dickey-Fuller, so the
same tables can be used in the tests.

Table 2, panel A reports the results of the
tests with no trend. At the 5 percent level, I
accept the null hypothesis of a unit root in the
series in every case except for reserves. Even for
reserves, I accept the null hypothesis at the 1
percent significance level. A comforting feature
is that the Dickey-Fuller and Phillips-Perron
tests generally agree.

Table 2, panel B reports the results of the tests
with a trend. Here, the findings argue for rejecting
the null hypothesis of a unit root in both industrial
production and deposits. Again, the Dickey-Fuller
and Phillips-Perron tests concur.



T A B L E 2

Unit Root Tests

A. No trend case
Industrial production
Loans
Deposits
Reserves

B. Trend case
Industrial production
Loans
Deposits
Reserves

Dickey-Fuller
T(p-l) testT

-0.35
0.79

-1.57
-3.46

-18.50
-2.62
-8.10
-2.07

No.

1%
3.51

1%
3.51

Critical Values
of Observations =

5%
2.89

5%
2.89

100

10%
2.58

10%
2.58

Phillips-Perron
Test T (4 lags)

-0.21
0.58

-1.61
-3.74

-19.93
-3.81
-9.78
-2.50

NOTE: All variables are real, logs, and not seasonally adjusted.
SOURCE: Author's calculations using the RATS (DFUNIT, PPUNIT) program from Estima.

F I G U R E 7

Log of Loans/
Industrial Production Ratio

1923 1933 1943 1953 1963 1973

SOURCE: Author's calculations based on data from the Board of Governors of
the Federal Reserve System and from U.S. Department of Labor, Bureau of
Labor Statistics.

Tests for
Cointegration

Although the results are sensitive to the inclu-
sion of trends, I provisionally continue with the
next step of the exercise — testing for cointegra-
tion— for two reasons. First, given the ambigu-
ous results of the unit root tests, if I hold as a
null hypothesis that the series are integrated, I
have not decisively rejected that view. Second,
Schwert (1989) shows that when the time series
possess a moving-average component (as many
economic time series are thought to do), the
unit root tests used above reject unit roots in
favor of stationarity too often.2

The Johansen approach to cointegration
(based on Johansen [1991] and Johansen and
Juselius [1989D uses a maximum-likelihood esti-
mation procedure. This procedure treats the
error-correction representation of the cointe-
grated time series as a reduced rank regression.

The procedure first regresses AYt on AYt_ j ,
A Yt _ 2, . . . , A Yt_p+ j to obtain residuals rQt and
then regresses Ytl on the same lags to obtain re-
siduals rlt. The reduced rank regression is then

(15)

Testing for cointegration means testing for the
rank of the matrix A = F a '. This can be done
using a likelihood ratio statistic. Johansen ex-
tends this approach to test hypotheses about the
cointegrating vector and the form of the multi-
variate model.

Table 3 reports the results of the Johansen trace
test for the number of cointegrating vectors, test-
ing whether there are zero, one or fewer, two or
fewer, or three or fewer common trends. The table
also lists the distribution of the trace statistic, taken
from table D.I of Johansen and Juselius (1989).

The statistics in table 3 indicate that we can re-
ject the null hypothesis of no cointegrating vectors,
but that we cannot reject the hypotheses that the

• 2 The unit root tests deserve some discussion of their ability to dis-
tinguish between the two hypotheses. I) the trend is omitted, I fail to reject
the null of integration. If the trend is included, I do reject the null (lor two
series). Unfortunately, the test without a trend is inconsistent against the
alternative of a trend, which is the alternative of interest (that is, even with
an infinite amount of data it can give the wrong answer). The trade-off is
power versus consistency; that is, the test without a trend is more likely
to reject the null if the null is false. For a more detailed discussion, see
DeJong and Whiteman (1991).



T A B L E 3

Cointegration Tests: Johansen
Trace Test Statistics8

Number of Cointegrating Vectors

0

73.61

50%

33.67

<1

31.91

<2

9.31

Distribution of Statistic (4 variables)

90%
43.96

95%
47.18

<3

0.63

99%
53.79

a. Number of observations = 108.
SOURCE: Author's calculations (using modified Rasche RATS pro-
gram) and Johansen andjuselius (1989, table D.I).

T A B L E 4

Wald Tests"

Component level

Industrial production
Reserves
Deposits
Loans

Wald Test
Statistic

-567
-580

-34,411
-28,970

Significance

>99.9
>99.9
>99.9
>99.9

a. Tests to determine whether components of cointegrating vector
equal zero.
SOURCE: Author's calculations.

number of cointegrating vectors is less than or
equal to one, two, or three. This indicates the
existence of only one cointegrating vector or, in
the terminology of Stock and Watson (1988),
one common stochastic trend.

In examining table 3, it is useful to keep in
mind the hypothesis generated earlier. First,
from the model, if innovation in the banking
sector has an effect on aggregate output, no
common trend is anticipated. (I take as a given
that some macroeconomic shocks over the
period — the drought in the 1930s, World War
II, and the oil embargo of the 1970s — were not
driven by the banking sector.) Only in extreme
cases, such as when banking has no separate ef-
ficiency gains of its own, will a common trend
emerge. Second, I seek confirmation of
Mitchell's observation that combinations of
banking variables track the cycle more closely
than any single series. That is precisely what the

multivariate cointegration tests reveal: which
linear combinations are stationary.

In this four-variable system, finding one com-
mon trend does not immediately show cointegra-
tion between the banking and industrial sectors.
Perhaps the trend relates only the three banking
variables. Formally, this would mean the industrial
production term would be zero; the stationary
combination would be a linear combination of the
three banking variables. Table 4 uses a Wald test
for this possibility, checking whether the loans,
deposits, or reserves term is zero.3 None of the
four components is zero.

Finding cointegration between the banking sec-
tor and the industrial sector has mixed implica-
tions. On the one hand, the simple model of
section I predicted no cointegration. Within the
context of the model, this means that the long-run
pace of bank efficiency and technological change
is not distinct from that of the rest of the economy;
one stochastic trend drives them both. The model
still allows banks to affect the economy by trans-
ferring and propagating shocks originating in the
industrial sector. In a broader model, banks could
propagate other shocks not modeled here, such
as monetary disturbances.

On the other hand, the result confirms the in-
tuition of Mitchell, that combinations of bank-
ing variables track the rest of the economy well.
Mitchell points out that one of the best barom-
eters of the business cycle is the deposit-to-loan
ratio. The common trend between financial vari-
ables and industrial production reinforces a
more elaborate version of this intuition. The re-
sults uncover a more complicated long-run rela-
tion between industrial production and a linear
combination of loans, deposits, and reserves.

VECM Results

The cointegration tests do not estimate the rela-
tionships between the variables and hence pro-
vide only qualitative information about series
comovements. Two other approaches offer a more
quantitative picture. One approach estimates the
cointegrating vector itself. The other uses vector
autoregression techniques to look at the variables'
comovements. Since the variables exhibit cointe-
gration, the regular vector autoregreasion should
be replaced by Engle and Granger's (1987) vector
error-correcting model (VECM).

The estimates of the cointegrating vector and
the VECM are natural complements to the cen-

• 3 For a good description of the general Wald test, see Judge etal.
(1985). For the specific use here, see Johansen and Juselius (1989).



T A B L E 5

Vector Error-Correcting
Representation

lALoan\
lADep, \
I AResvt I =
\AIP, J

0.402 -0.205
-0.208 -0.102

0.052 -0.189
-0.198 0.602

0.097 0.071
0.124 -0.055
0.057 -0.227
0.115 -0.008

"-0.157 -0.164 0.151 0.026
-0.080 -0.099 0.018 0.199
-0.176 -0.030 0.101 -0.004
-0.119 -0.311 0.173 -0.328

( 0.792\ / 0.050\ DSEAS
0.560 \ + [ 0.066 \

-0.597 I I 0.050 I
-0.404/ \-0.034y

I ALoatit-\
I ADept-i
I AResvt-i I +
\AIP,-i

I

/ ADept-i I +
I AResvt-i
\AIPt-i

-0.076 0.163 0.034 0.151
-0.389 -0.064 0.086 0.247
-0.365 0.332 -0.001 0.100

0.261 0.229 -0.351 0.091

' 0.072
0.051

-0.053
-0.039

0.140
0.099

-0.103
-0.076

0.008 -0.197
0.006 -0.140

-0.006 0.145
-0.005 0.108

( ALoant-2\
ADept- 2
AResvt-2
AIPt-2

II Dept-4
I Resvt-4
\IPt-4

SOURCE: Author's calculations.

F I G U R E 8

Stationary Vector from Data

1923 1933 1943 1953 1963 1973

SOURCE: Author's calculations based on data from the Board of Governors of
the Federal Reserve System and from U.S. Department of Labor, Bureau of
Labor Statistics.

tral test of the model. Although the test rejects
the hypothesized form of long-run interaction, it
yields an estimate of both long-run and short-
run interactions. This can offer insight into why
the model failed, guide future hypotheses, and
further explore the relation between the bank-
ing sector and business cycles.

The estimate of the cointegrating vector is
(-4.865, -9.498, -0.569, 13.394). Normalizing the
vector to give the industrial production (IP) com-
ponent a value of one yields a stationary series of
Zt = IPt -0.36LOAN, -0.11DEP, -0.04RESVt.
Notice how every banking component is nega-

tive and has an absolute value smaller than one.
The scale undoubtedly reflects the units used,
but the sign suggests that the stationary vari-
able, or stable long-run relationship, is between
IP and a weighted average of the banking vari-
ables. This relation was estimated in logs, so in
levels it indicates a relation between IP divided
by all three banking variables.

Figure 8 plots this series and represents a
modern distillation of Mitchell's ideas, confirming
that a combination of banking variables tracks the
rest of the economy. Since it is not a straight line,
it also shows the imperfections in that tracking.

More detail emerges from the VECM repre-
sentation. The Granger representation theorem
(Engle and Granger [1987]) states that cointegrated
series have a VECM representation. Intuitively, this
treats the observed series as a combination of two
parts. The first, the stationary linear combination of
variables, defines the "long-run equilibrium" rela-
tion of the variables. The second describes the reac-
tion to shocks and superimposes the adjustment
back toward the long-run relation (error correction).

The estimate for my system of industrial pro-
duction, loans, deposits, and reserves uses four
lags, a constant and a seasonal dummy, and
thus takes the general form

(16)

.t+y DSEAS.



The difference between equation (16) and a vec-
tor autoregression in differenced form is the undif-
ferenced term W Xt_v Table 5 shows the actual
estimates for the system.

In interpreting table 5, keep in mind that
since the data are in logs, the coefficients repre-
sent elasticities. For example, a 1 percent in-
crease in loan growth last period (ALoant_,) is
associated with a four-tenths of 1 percent in-
crease in industrial production this period. This
estimation is not meant to imply causality. Some
of the patterns may result from some third in-
fluence, such as monetary or fiscal policy. Or,
banks may increase loans when they forecast an
economic recovery; loans would lead industrial
production, but not cause it. The shift in loans
itself may not be an exogenous decision of
banks, but rather may be a response to another
stimulus, such as a shift in deposits. Thus, the
coefficient would not represent the effect of,
say, a regulatory change that increased the num-
ber of loans.

Two features in table 5 stand out. First, the in-
teractions among the four variables are quite
complicated, varying in size and sign across lag
lengths. Second, the impact of financial vari-
ables on industrial production (seen as the last
row of each matrix) is generally large compared
with other effects. Though banks may not origi-
nate business cycles, they do serve to transmit
and propagate them.

Delving more deeply into the error-conecting
form of table 5 can unlock more information. First,
we must understand how such a model works.

The simplest type of error-correcting mecha-
nism looks like

(17) Ax,= -'yz,_1 + ut.

The change in xt depends on the errors zt_ A, or
deviations from equilibrium; xt adjusts back to
the equilibrium levels. But we have a model of
what the equilibrium is (what cointegration tells
us), so the definition of the errors is then just
zt _ j = a ' xt _ j , where a is the cointegrating vector.

The system can adjust toward equilibrium in a
more complex fashion than described by equa-
tion (17). Building in this adjustment filter, the
general VECM takes the form A{L) Axt=-yzt_l

+ ut. Table 5 has this form.
The error-correcting form clearly highlights

the identification problem that prevents deriving
structural conclusions from the reduced-form
model. Any invertible matrix R can be used to
rewrite y a ' as (y R) (R ~l a') . To identify
either the cointegrating vector, the structural
long-run relationship, or the error-correcting

mechanism, R must be somehow restricted, per-
haps by bringing in economic theory.

The theoretical model of section I does not
place enough restrictions on R to identify the
system. With only one cointegrating vector,
however, information can be obtained from the
sign pattern of the error-correction term. The
4x4 matrix on x,_4 in table 5 decomposes into
a 4x1 y vector and a 1x4 cointegrating vector. In
this case, the R matrix must be scalar. This still
prevents identification, but it allows some infer-
ences about the sign pattern of y.

If we assume R > 0, then -y has sign pattern
(-,-,+ ,+), where the variable order is loans, de-
posits, reserves, and industrial production. If
R < 0, -y takes the opposite sign. This sign pat-
tern hardly reveals a detailed structural model,
but it does uncover some broad features of such
a model. Some series move the system toward
equilibrium and serve to dampen fluctuations,
while others move the system away from equi-
librium and intensify fluctuations. The difference
hinges on which sign is chosen for R. Imposing
a restriction chooses between the cases, but this
is unnecessary. Industrial production and re-
serves work in the same direction, opposite to
loans and deposits.

Some conclusions also follow from looking at
the filter, or the adjustment process defined by the
coefficients on differenced lags in table 5- The ad-
justment process is complex; a shock to one vari-
able today will affect not only the variable's future
values, but future values of the other variables,
which in turn will impinge on each other.

To make some sense of the complexity, recall
my basic purpose of exploring the effect of bank-
ing shocks on aggregate output. Looking at the
error-correcting component reveals die effect of
temporary shocks. It then makes sense to concen-
trate on the industrial production components.
The largest single effect comes from the first lag of
deposits. The pattern of adjustments shows that
the effect of loans on industrial production
changes sign and exhibits a humped shape.

III. Conclusion

This simple study establishes some interesting
points. It shows that common trends should not
be expected between banking and industrial
sectors, and emphasizes the rich dynamics in-
herent in that interaction. A long-run equilibrium
relationship exists between banking variables
and industrial production. This implies that bank-
ing is not driven by a separate long-run technol-
ogy shock independent from the industrial



sector. Short-run shifts do have an impact,
which varies by sign, size, and time pattern
across banking variables. Though invalidating
the particular theory of section I, the results con-
firm and update Mitchell's insight on the close
connection between banks and business cycles.

Future research could unveil some further
possibilities. It would be useful to have a model
that could discuss the monetary effects of finan-
cial innovations and delineate the separate roles
of money and credit. Such a distinction is sug-
gested by the finding that reserves and deposits,
monetary variables, do not share a common
trend with loans, a credit variable. Finally, a
cross-country comparison would provide
needed perspective, especially with a country
like Japan, whose banking sector is more
dominant in credit markets and more closely
tied to the industrial sector.
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