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Abstract

In general equilibrium with nonconvexities, there exist sunspot equilib-
ria with good welfare properties, where sunspots ameliorate the non-
convexities. In these equilibria, we show agents act as if they have
quasi-linear utility. We use this result to construct a new model of
monetary exchange along the lines of the one by Lagos and Wright,
where trade occurs in both centralized and decentralized markets, but
we replace quasi-linearity with general preferences and indivisible la-
bor. This suggests that modern monetary theory is more robust than
one might have thought, and constitutes progress on the classic prob-
lem of integrating money and general equilibrium theory.
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1 Introduction

We study economies with nonconvexities, and in particular with some indi-

visible goods, with several goals in mind. First, extending Shell and Wright

(1993) we show that in the presence of indivisibilities there exist sunspot

equilibria without the usual assumptions needed to generate such equilibria

in convex economies, and that these equilibria have good welfare properties

because sunspots allow convexification, similar to the way lotteries work

in the indivisible labor economy of Rogerson (1988).1 Second, we empha-

size something not appreciated in the existing literature on nonconvexities,

sunspots, and lotteries: in these economies, as long as agents choose interior

solutions, in a sense to be made precise, they act as if they have quasi-linear

preferences.

It is true that it has been noted previously of the Rogerson model that,

when labor is indivisible, under certain additional assumptions that include

additive separability between consumption and leisure, agents act as if utility

is linear in leisure. But the result is far more general. The fact that for quite

general specifications agents act as if they have quasi-linear preferences is

useful for a variety of reasons. For one thing, it means that for the divisible

goods in the economy, wealth effects vanish. This has many implications,

including the law of demand (the demand for each of the divisible goods

1A sunspot equilibrium is one in which extrinsic uncertainty (a random variable with
no impact on preferences, endowments, or technologies) affects the allocation. In convex
economies, sunspot equilibria are necessarily inefficient, because random allocations are
dominated by the average allocation. When some goods are indivisible, however, the
average may not be feasible. For some recent papers on nonconvexities, lotteries, and
sunspots, in addition to those cited here, see the 2002 special issue of JET
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is unambiguously decreasing in its own price). Here we will emphasize the

usefulness of the results for monetary theory, as we now explain.

A tractable model of monetary exchange with microfoundations based

on search theory has been developed recently by Lagos and Wright (2005),

hereafter LW. The LW model is tractable because it gets around the problem

of having to keep track of the distribution of money holdings as a state

variable. It works by allowing agents to periodically trade in centralized

markets, where they can adjust their cash positions by buying and selling

other goods, as well as sometimes forcing them to trade in decentralized

markets, where money is essential. If agents have quasi-linear utility then,

given interior solutions, they all take the same amount of money out of the

centralized market, and hence the distribution in the decentralized market

is degenerate. This makes the framework relatively easy to analyze, and

hence one can extend and apply it in a number of ways.2

Although for some questions one would obviously like to have an en-

dogenous nondegenerate distribution of money holdings, it is useful to have

a benchmark without this complication, and to this extent the LW model

is interesting. One might object, however, that quasi-linear utility is very

special. Our results show that one does not actually need quasi-linearity:

2LW provide examples and references to other applications. An alternative approach
is provided by Shi (1997); Faig (2004) tries to integrate the two models, and gives some
results related to those derived below. For models that are much less tractable, precisely
because one has to keep track of the relevant distribution, see Green and Zhou (1998),
Zhou (1999), Molico (2006), Camera and Corbae (1999), Taber and Wallace (1999), or
Zhu (2003,2005). Earlier search-based models, such as Kiyotaki and Wright (1989,1993),
Aiyagari and Wallace (1991), Shi (1995), or Trejos and Wright (1995), were also very
simple, but only because they avoided the issue by assuming agents could only hold
m ∈ {0, 1} units of money.
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for general preferences, as long as some goods are indivisible, and again

given interior solutions, all agents take the same amount of money out of

the centralized market. Thus, we provide an alternative set of assumptions

that leads to a simple model of monetary exchange with explicit microfoun-

dations.3

We make an effort to describe the centralized market in the model in a

fairly general way – there are few restrictions other than those in standard

general equilibrium (GE) theory. This generality comes at little cost, and

shows that modern monetary theory is not as special as one might think

based on previous presentations (in earlier discussions of the LW model,

e.g., the centralized market has a single consumption good, agents are ho-

mogeneous, and so on). Indeed, our centralized market looks much like the

textbook Arrow-Debreu model, and we can appeal to some standard results

in GE. Moreover, given we combine this with micro-based monetary theory,

one might say that we make a little progress on the classic problem of inte-

grating money and GE theory. Interestingly, we think, progress here comes

not from a Procrustean effort to force money into GE, but from bringing

GE into monetary economics.

The rest of the paper is organized as follows. In Section 2 we discuss

indivisibilities and sunspots in GE, without money. We show that agents not

at a corner solution act as if they have quasi-linear utility: their demands for

3We usually interpret the indivisible good as labor. Although this is not necessary for
any of the results, it is a common interpretation in macroeconomics. In addition to Roger-
son (1988), a sample of well-known papers adopting the indivisible labor model includes
Hansen (1985), Cooley and Hansen (1989), and Christiano and Eichenbaum (1992); some
more recent examples include Prescott (2006) and Sargent and Lunqvist (2006).

4



divisible goods are independent of wealth, and their indirect utility functions

are linear in wealth. We also discuss conditions to guarantee interiority. In

Section 3 we consider monetary economies. We begin with brief review of

LW, then present the new model and compare results. In Section 4 we

conclude. Some technical results are relegated to the Appendix.

2 General Equilibrium with Nonconvexities

2.1 Equilibrium: Definition

We begin with a static GE model.4 There is a measure space (I,Ω, α) of

consumers, where I = [0, 1], Ω a σ−algebra of subsets of I, and α the

uniform distribution over I.5 There are K firms indexed by k = 1, ...K.

There are J + 1 commodities: J standard consumption goods indexed by

j = 1, ...J , and one indivisible good. We call the indivisible good leisure,

following some examples in macro, although this label means little for now.

By saying leisure is indivisible, we mean that it must either be consumed in

a single unit or not at all.

Agent i starts with 1 unit of leisure, and an arbitrary endowment of the

other goods ei ∈ RJ
+, where ei : I → RJ

+ is I−measurable and ē =
∫

eidi.

4By static, we do not mean the economy is timelss, since as usual one can interpret
goods as indexed by dates. We simply mean that there is a single market that convenes
before any production and consumption take place. Later we consider sequential-market
models.

5We take this specification from Aumann (1964,1966), who first studied equilibrium
with a continuum of agents. We do not actually need a continuum here, but it is adopted
because in the monetary models discussed below, as in much of the literature, when
combined with random matching it generates anonymity. It is worth mentioning that
we could get away with a finite number of agents (for the GE results, and also for the
monetary results as long as we have some other way to motivate anonymity) because we
use sunspots as opposed to lotteries; the latter generally need the law of large numbers
while the former do not (Shell and Wright 1993; Garratt, Keister and Shell 2004).
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Consumer i has preferences represented by a von Neumann-Morgenstern

utility function U i(c, h), where c ∈ RJ
+ is consumption and h ∈ {0, 1} is

labor, which equals 1 minus leisure. The consumption set for each agent is

denoted C = RJ
+×{0, 1}. We assume U i is twice continuously differentiable,

strictly increasing in c, strictly decreasing in h, and strictly concave. To ease

the presentation, assume Uj(c, h) → ∞ as cj → 0 for all j, where Uj is the

partial derivative with respect to cj , to guarantee cj > 0.

Consumption goods are produced by firms using labor as the only in-

put. Firm k has a technology represented by production function fk
(
nk

)
=[

fk
1 (nk), ...fk

J (nk)
]
∈ RJ

+, where fk
j (nk) is output of good j. Assume fk

is continuously differentiable, increasing and concave. It is possible that

fk
j (nk) = 0 for all n for some j – i.e. each firm k does not necessarily pro-

duce every good – but for any good it does produce fk
j is strictly increasing

and concave. Profit for firm k (defined below) is Πk, and the share of Πk

paid to consumer i is ηi
k ∈ R+ where

∫
ηi

kdi = 1. Thus total dividend income

for consumer i is ∆i =
∑

k η
i
kΠ

k.

Consumers are generally heterogenous, but for simplicity we assume

there are only a finite number of types T ; that is, I = ∪T
τ=1Iτ , where

U i = U τ , ei = eτ and ηi
k = ητ

k for all i ∈ Iτ . Also, for simplicity, there is

no intrinsic uncertainty: all of the fundamentals are deterministic. However,

there is extrinsic uncertainty, represented by the probability space (S,Σ, π),

where S = [0, 1] is the set of states representing “sunspot activity,” Σ the

Borel sets on S, and π the uniform distribution over S. For what we do here,

the choice of a uniform distribution is without loss in generality (Garratt,
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Keister, Qin and Shell 2002). Although the realization of s ∈ S does not

affect preferences, technology or endowments, in principle it could still affect

individual’s behavior.

Given indivisible goods, having allocations potentially depend on ex-

trinsic uncertainty allows a certain convexification, that can lead to effi-

ciency gains over nonrandomized allocations.6 We formalize this by assum-

ing complete Arrow-Debreu markets in sunspot-state-contingent commodi-

ties. Thus, the commodity space is the set of π-measurable functions from

S into C. Similarly, nk(s) is firm k ′s employment rule, a π-measurable

function from S into R+. Let p(s) = [p1(s), ...pJ(s)] ∈ RJ
+ be the price

vector of consumption goods and w(s) ∈ R+ the price of labor in state s.7

For all S̃ ⊂ S,
∫
S̃ pj(s)ds is the cost of a unit of good j if event S̃ occurs.

Let
[
ci(s), hi(s)

]
list a point in commodity space for every consumer i, and[

nk(s)
]

an employment rule for every firm k.

Definition 1 An equilibrium is a list
{[

ci(s), hi(s)
]
,
[
nk(s)

]
, [p(s), w(s)]

}
satisfying:

(i) given [p(s), w(s)], ∀i
[
ci(s), hi(s)

]
solves

W i = max
ci(s),hi(s)

∫
S
U i[ci(s), hi(s)]ds (1)

s.t.
∫

S

[
p(s)ci(s)− w(s)hi(s)− p(s)ei −∆i

]
ds ≤ 0; (2)

6One can define competitive equilibrium without sunspots in the model. By the First
Welfare Theorem, which does not require convexity, if it exists such an equilibrium is
Pareto optimal within the set of nonrandomized allocations. It is easy to provide robust
examples, however, where it is Pareto dominated by randomized allocations, including
sunspot equilibrium allocations (see e.g. Shell and Wright 1993).

7We restrict attention to price systems that have an inner-product representation (see
Stokey and Lucas with Prescott 1989, ch.15, e.g., for a discussion).
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(ii) given [p(s), w(s)], ∀k nk(s) solves

Πk = max
nk(s)

∫
S

{
p(s)fk[nk(s)]− w(s)nk(s)

}
ds; (3)

(iii) ∀s ∈ S,

∑
k

nk(s)−
∫

I
hi(s)di = 0 (4)∫

I
ci(s)di−

∑
k

fk
(
nk

)
− ē = 0. (5)

Garratt et al. (2002, Theorem 1) show that in this kind of model, every

sunspot equilibrium allocation can be supported by prices, when adjusted for

probabilities, that are constant across states.8 Therefore, in the following,

we can set [p(s), w(s)] = (p, w) for all s ∈ S. Based on this it is immediate

that the solution to the firm problem in (3) is constant across all states (to

be accurate, almost surely with respect to π, but to ease the presentation

we describe results as holding in all states).

Lemma 1 ∀k, nk(s) = nk ∀s ∈ S.

Proof. The result follows directly from the strict concavity of fk
j in any

good j that firm k produces.

Something similar is true for consumers, except that in general we must

distinguish between states where they are employed and those where they

are not. Let Si
1 =

{
s ∈ S : hi(s) = 1

}
be the set of states where i is employed

and Si
0 = S\Si

1, where we assume Si
1,S

i
0 ∈ Σ. Also, let `i = π(Si

1) be the
8This is a very intuitive arbitrage-like result: since fundamentals are state-invariant,

a good delivered if s occurs better have the same price as a good delivered if s′ occurs,
given s and s′ occur with equal probability.
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probability that i is employed. Then consumer choices are constant across

states (again, almost surely) in each of these sets.

Lemma 2 ∀i, ci(s) = ci
1 ∀s ∈ Si

1 and ci(s) = ci
0 ∀s ∈ Si

0.

Proof. Given [p(s), w(s)] = (p, w), we can rewrite the consumer problem

as

max
∫

S1

U i[ci
1(s), 1]ds+

∫
S0

U i[ci
0(s), 0]ds (6)

s.t. p
∫

S1

ci(s)ds+ p
∫

S0

ci(s)ds− w`i − pei −∆i ≤ 0, (7)

where the maximization is over the sets Si
1 and Si

0, as well as ci
1(s), which

is consumption in state s ∈ S1, and ci
0(s), which is consumption in state

s ∈ S0. The result now follows from the strict concavity of U i.

Lemma 2 implies (6) can be reduced to `iU i(ci
1, 1) + (1 − `i)U i

(
ci
0, 0

)
,

and (7) to `ipci
1+(1−`i)pci

0−w`i−xi ≤ 0, where xi = pei+∆i is non-labor

income or wealth (implicitly, xi depends on p). Clearly, i cares about the

probability that he works, `i = π(Si
1), but not about which states are in Si

1.

Also, while ci
1 does not equal ci

0, in general, it does for some specifications:

the following says that if some commodities enter U i separably from h, the

demand for these commodities is the same whether or not i is employed. As

a special case, if U i(ci, h) = ui(ci) + vi(h), then ci
1 = ci

0.

Lemma 3 Suppose we can partition ci = (ĉi, c̃i), so that U i(ci, h) = ui(c̃i)+

vi(ĉi, h). Then c̃i(s) = c̃i ∀s ∈ S.

Proof. The result follows directly from strict concavity.
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Given Lemmas 1 and 2, we can summarize the decisions of all firms

by (nk) and consumers by
(
ci
1, c

i
0, `

i
)
, which allows us to present a much

simpler definition of equilibrium.9 First, one more piece of notation: let

I1(s) =
{
i ∈ I : hi(s) = 1

}
= {i ∈ I : s ∈ Si

1} be the set of agents who are

employed, and I0(s) = I\I1(s) the set unemployed, for each s, where we

assume I1(s), I0(s) ∈ Ω. We need to include I1(s) in our list of equilibrium

objects because we need to know who is working (and not just the measure

of employed agents) in each state.

Definition 2 An equilibrium is now a list
{(

ci
1, c

i
0, `

i
)
, (nk), (p, w), I1(s)

}
satisfying:

(i) given (p, w), ∀i (ci
1, c

i
0, `

i) solves

W i = max
ci
1,ci

0,`i

{
`iU i

(
ci
1, 1

)
+ (1− `i)U i

(
ci
0, 0

)}
(8)

s.t. `ipci
1 + (1− `i)pci

0 − w`i − xi ≤ 0; (9)

(ii) given (p, w), ∀k nk solves

Πk = max
nk

{
pfk

(
nk

)
− wnk

}
; (10)

(iii) ∀s ∈ S, ∑
k

nk = α [I1(s)] (11)

ē +
∑

k

fk
(
nk

)
=

∫
I1(s)

ci
1di+

∫
I0(s)

ci
0di; (12)

(iv) ∀i

`i = π {s : I1(s) 3 i} . (13)
9It is simpler mainly because the firm problem has been reduced to choosing nk and

the consumer problem to choosing (ci
1, c

i
0, `

i), which are finite-dimensional objects.
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Labor demand on the left side of (11) is constant across states; hence

so is labor supply on the right side. This means we have to construct I1(s)

so that the same measure of workers are employed for all s, and the last

consistency condition says that we need to do so in such a way that each

agent i is working with his chosen probability `i. For example, suppose

we have homogeneous consumers, so `i = ¯̀ for all i. Then in equilibrium∑
k n

k = ¯̀. We have to construct I1(s) so that a fraction ¯̀ of consumers are

working in every state, and they are all working in a fraction ¯̀ of the states.

figure 1 about here

This type of construction can be done by generalizing the method in Shell

and Wright (1993). Consider an example with two types of consumers: the

set [0, α] are type 1 and wish to work with probability `1, while the rest are

type 2 and wish to work with probability `2. Set Si
1 =

[
i
α ,

i
α + `1

]
modulo

`1 for i ∈ [0, α], and Si
1 =

[
i−α
1−α ,

i−α
1−α + `2

]
modulo `2 for i ∈ (α, 1]. Figure 1

shows as the shaded area pairs (s, i) such that i is employed in state s. Then

every consumer is working with the desired probability, and the measure of

I1(s) (total employment) is α`1 + (1 − α)`2 for all s. However, there is a

simpler alternative when we have a continuum of consumers. If type τ want

to work with probability `τ , in each state s set hτ = 1 with probability

`τ , and by the law of large numbers a measure `τ will be working in each

state.10

10Again, we do not need the law of large numbers for sunspot equilibrium, as one does
for lottery equilibrium, but it does simplify things slightly.
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2.2 Equilibrium: Properties

Now that we have defined equilibrium, we provide some substantive results.

First note that (11)-(12) can be rewritten after some manipulation as

∑
k

nk −
∫

I
`idi = 0 (14)∫

I

[
`ici

1 + (1− `i)ci
0

]
di− ē−

∑
k

fk
(
nk

)
= 0 (15)

This suggests that our economy has a reduced form that looks like a model

with no sunspots, where agents simply trade a probability of working `i for

wages, and use it to buy consumption, in the spirit of lottery models such

as Rogerson (1988).

A particularly simple case is the one where U i(ci, hi) = ui(ci) + vi(hi)

is separable in h, since then Lemma 3 implies ci
1 = ci

0 = ci. Without loss in

generality, set vi(1) = 0 and vi(0) = Ai > 0. Then the consumer problem

can be simplified further to

W i = max
ci,`i

{
ui

(
ci

)
−Ai`i

}
(16)

s.t. pci − w`i − xi ≤ 0. (17)

In this case, it is as if the consumer had a utility function that was linear in `i.

Assuming an interior solution, the first-order condition for any commodity

j is ui
j(c

i) = Aipj/w. This immediately implies ∂cj/∂xi = 0, ∂cj/∂pj =

Aipj/wu
i
jj < 0, and ∂W i/∂xi = Ai/w. Hence, in this case, it is obvious

that wealth effects are 0, demand curves slope downward, and the indirect

utility function is linear in xi.
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We now show these results are general: we do not require U i to be

separable in hi, although we do still need interiority.

Proposition 1 Suppose `i ∈ (0, 1) and w−pci
1+pci

0 6= 0. Then ∂ci
hj/∂x

i =

0 ∀i, j, and h = 0, 1.

Proof. Consider the Lagrangian

W = `U (c1, 1) + (1− `)U (c0, 0) (18)

+λ [w`+ x− `pc1 − (1− `)pc0]

where λ > 0 is the multiplier, and we leave off the index i where there is no

risk of confusion. In the Appendix we show that there is a unique solution

to this problem, and assuming ` ∈ (0, 1) it uniquely satisfies the first-order

conditions:

c1 : Uj(c1, 1)− λpj = 0 ∀j (19)

c0 : Uj(c0, 0)− λpj = 0 ∀j (20)

` : U (c1, 1)− U (c0, 0) + λ (w − pc1 + pc0) = 0 (21)

λ : w`+ x− `pc1 − (1− `)pc0 = 0 (22)

Notice that x does not appear in (19)-(21). By the Implicit Function Theo-

rem, these 2J+1 equations determine (c1, c0, λ) independently of x, as long

as  H1 0 −pT

0 H0 −pT

0 0 w − pc1 + pc0
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is nonsingular, where Hh is the Hessian matrix with (i, j) term Uij(ch, h) and

pT is the transpose. By strict concavity of U , |Hh| < 0 and so nonsingularity

is equivalent to w − pc1 + pc0 6= 0.

In the above result we rule out the possibility w−pc1 +pc0 = 0, which

is equivalent to U (c1, 1) = U (c0, 0) by (21). It is well known that this

possibility arises for a very special utility function in the case of 1 good,

U(c, h) = u[c+ v(h)].11 More generally, consider U(c, h) = u[cJ + v(c−J , h)]

where c−J = (c1, ...cJ−1) (i.e. a concave transformation of a utility function

that is linear in some good, where we assume without loss in generality that

this good is cJ). The first order conditions (19)-(22) still hold, but now notice

that for good J , (19) and (20) tell us u′[c1J +v(c−J
1 , 1)] = u′[c0J +v(c−J

0 , 0)],

and so

c1J + v(c−J
1 , 1) = c0J + v(c−J

0 , 0). (23)

Hence in this case U (c1, 1) = U (c0, 0) and (21) implies w−pc1 +pc0 =

0. Now we cannot solve (19)-(21) for (c1, c0, λ) independently of x. Indeed,

(22) implies pc0 = x. However, (19)-(20) tell us that, for j 6= J , we have

u′[c1J + v(c1, 1)]vj(c1, 1) = λpj ⇒ vj(c1, 1) = pj/pJ , j = 1, 2...J − 1

u′[c0J + v(c0, 0)]vj(c0, 0) = λpj ⇒ vj(c0, 0) = pj/pJ , j = 1, 2...J − 1

We can solve these for c−J
1 = c−J

1 (p) and c−J
0 = c−J

0 (p). Then (23) implies

c1J − c0J = v[c−J
0 (p), 0]− v[c−J

1 (p), 1].

11See e.g. Cooper (1987) or Rogerson and Wright (1988).
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Now we can conclude two things. First, normalizing pJ = 1,

w = p(c1 − c0) = p−J [c−J
1 (p)− c−J

0 (p)] + v[c−J
0 (p), 0]− v[c−J

1 (p), 1],

which says that w must be a particular function of p.12 Second, from pc0 =

x we have

c0J = x− p−Jc−J
0 ;

in this case it is c0J that adjusts with x to satisfy the budget equation, and

all other variables are independent of x. Given that we have explained how

to handle the above special case, to conserve space, from now on we ignore

it and assume w − pci
1 + pci

0 6= 0.

Proposition 2 Under the conditions in Proposition 1, ∂ci
hj/∂pj < 0 ∀i, j

and h = 0, 1.

Proof. Exercise.

Proposition 3 Under the conditions in Proposition 1, ∂W i/∂xi = λi is

independent of xi.

Proof. We can rearrange (18) as

W = U (c0, 0) + λx− λpc0

+` [U (c1, 1)− U (c0, 0) + λ(w − pc1 + pc0)] .

12This may look to be nongeneric, in partial equilibrium, but it occurs naturally in
general equilibrium. Suppose that consumers are homogeneous, J = 1, and there is a
representative firm with f ′(0) = ∞ and f ′(1) = 0. Then ` = n ∈ (0, 1) in equilibrium so
w will adjust to satisfy the relevant condition, which with J = 1 is w/p = v(0) − v(1).
That is, the real wage exactly compensates workers for lost leisure.
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By (21), the term in brackets vanishes. From Proposition 1, c0 and λ are

independent of x, and the result follows.

We now provide something along the lines of an aggregation theorem.13

Start with an economy where consumers have homogeneous preferences

and wealth, and consider any equilibrium. Now change the distribution

of wealth. Then there is an equilibrium where prices, consumption, and

aggregate employment are exactly the same as in the homogeneous-wealth

economy. The only requirement is interiority for `i, which (as we discuss

below) can be guaranteed by assumptions on primitives, including some

bounds on the extent of wealth heterogeneity.

Proposition 4 Assume U i = U ∀i. Let
{
ĉ1, ĉ0, ˆ̀, (n̂k), p̂, ŵ

}
be an equilib-

rium when xi = x̂ ∀i, satisfying the conditions in Proposition 1. Give each

consumer i a transfer ti in units of the numeraire good, so that xi = x̂+ ti,

where
∫
I t

idi = 0. Then there exist x > 0 and x < x, constructed in the

proof, with the following property: if xi ∈ (x, x) ∀i, then an equilibrium ex-

ists with `i ∈ (0, 1) ∀i and it has the same (p̂, ŵ) and
(
ci
1, c

i
0

)
= (ĉ1, ĉ0) ∀i.

Although `i may differ with i,
∫
I `

idi = ˆ̀.

Proof. In the homogeneous-wealth economy, from the budget equation,

ˆ̀=
p̂ĉ0 − x̂

ŵ + p̂ĉ0 − p̂ĉ1

∈ (0, 1) (24)

by assumption. Now consider the economy with transfers, and set (p, w) =

(p̂, ŵ). From (10), nk = n̂k and Πk = Π̂k. From Proposition 1, if `i is
13To be clear, these results concern a representative agent representation of an economy

with heterogeneous wealth, not heterogeneous preferences.
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interior ∀i then (ci
1, c

i
0) = (ĉ1, ĉ0). From the budget equation,

`i =
p̂ĉ0 − xi

ŵ + p̂ĉ0 − p̂ĉ1

. (25)

Integrating across agents,
∫
I `

idi = ˆ̀. Since all aggregate quantities are the

same, markets clear.

It remains to give conditions on the distribution such that `i ∈ (0, 1) ∀i.

Suppose ŵ + pĉ0 − pĉ1 > 0. Then

`i > 0 iff xi < x = p̂ĉ0

`i < 1 iff xi > x = p̂ĉ1 − ŵ.

Now suppose ŵ + pĉ0 − pĉ1 < 0. Then

`i > 0 iff xi > x = p̂ĉ0

`i < 1 iff xi < x = p̂ĉ1 − ŵ.

Note that in both cases x > 0 and x < x. As long as xi ∈ (x, x) ∀i, then

`i ∈ (0, 1) for all i. Note that xi ∈ (x, x) ∀i is possible because x̂ ∈ (x, x) by

(24). This completes the proof.

One can generalize Proposition 4 so that it holds without the assumption

of homogeneous preferences.

Corollary 1 Suppose there are T consumer types, with U i = U τ for all

i ∈ Iτ , where ∪T
τ=1Iτ = I. Suppose there is an equilibrium when xi = x̂τ

∀i ∈ Iτ satisfying the conditions in Proposition 1. Give each consumer i a

transfer ti so that now xi = x̂τ + ti, where
∫
Iτ
tidi = 0 ∀τ . Then there exist

xτ > 0 and xτ < xτ with the following property: if xi ∈ (xτ , xτ ) ∀i ∈ Iτ , ∀τ ,
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then an equilibrium exists with `i ∈ (0, 1) ∀i and it has the same prices, the

same consumption, and the same total employment for every type.

Proof. Exercise.

These results say that, as long as it is not too disperse, the wealth dis-

tribution does not matter for consumption or aggregate employment. When

wealth differs across agents, rich agents will work less and poor agents more,

but nothing else changes. This is useful in the monetary economy studied

below, where it implies that even if agents enter the market with different

amounts of money, they exit with the same. To preview how this works,

we present an example where we put money in the utility function directly,

although we commit this sin here only for purposes of illustration (in the

next section, the value of money will be derived from first principles).

Thus, in addition to leisure, there are two goods, consumption and

money: c = (c, m̂). The endowment is ei = (0,mi) with
∫
midi = M

(here m is money brought into the market and m̂ is money taken out). We

normalize the price of money to 1, so p is the nominal price of c. Money

cannot be produced; c is produced according to c = Bn, so that the real equi-

librium wage in units of c is B.14 Suppose U(c, m̂, h) = log c− v(h)+V (m̂),

with v(1) − v(0) = A > 1. Since U is separable, we know c0 = c1 = c and

m̂0 = m̂1 = m̂. Hence the consumer problem is

W (m) = max
c,m̂,`

{log c+ V (m̂)−A`}

14The fact this production function is not strictly concave does violate assumptions
made above, but this causes no problems, since we can solve the example explicitly.
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s.t. c−B`− m− m̂

p
≤ 0.

Or, substituting from the budget constraint at equality,

W (m) = max
c,m̂

{
log c+ V (m̂)− A

B

(
c− m− m̂

p

)}
.

The first-order conditions for an interior solution imply c = B/A and

V ′(m̂) = A/Bp; hence, c and m̂ are indeed independent of m. Given c, the

technology implies n = c/B = 1/A ∈ (0, 1). From the budget equation,

` =
1
B

(
c− m− m̂

p

)
=

1
A
− (m−M)V ′(M)

A
,

after inserting market clearing, m̂ = M , and p = A/BV ′(M). Clearly, ` is

decreasing in m, and ` ∈ (0, 1) iff m ∈ (m,m), where

m = M − A− 1
V ′(M)

and m = M +
1

V ′(M)
.

This example is particularly easy due to separability, but in Appendix 3 we

work out a case where U is not separable. In any case, as one can see, it is

not hard to solve examples and construct (m,m) explicitly.

2.3 Equilibrium: Existence.

We close this section with a discussion of existence in the general model.

Define excess demand for labor and goods by

N(p, w) ≡
∑

k

nk −
∫

I
`idi (26)

Z(p, w) ≡
∫

I

[
`ici

1 + (1− `i)ci
0

]
di− ē−

∑
k

fk
(
nk

)
(27)
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We claim the following is true: (i) As we show in the Appendix, even though

W i is not strictly quasi-concave, there is a unique solution to the consumer

problem (ci
1, c

i
0, `

i) and it is continuous in (p, w). Also, profit maximization

determines nk as a continuous function of (p, w). Hence, excess demand

is a continuous function of (p, w). (ii) It is clear that excess demand is

homogeneous of degree 0. (iii) Integrating the budget equations over agents,

Walras’ Law holds: wN(p, w)+pZ(p, w) = 0. (iv) Z(p, w) and N(p, w) can

be bounded below, as long as we bound the production function fk for all k.

(v) max [Zj(pn, wn), N(pn, wn)] → ∞ for any sequence (pn, wn) → (p, w)

with pj = 0 or w = 0, as long as U i and fk are strictly increasing.

Properties (i)-(v) allow us to apply a standard existence result, such as

Proposition 17.C.1 in Mas-Collel, Whinston and Green (1995). Basically,

by reducing the model to something that resembles a standard GE economy

we can show an equilibrium exists using textbook methods – the one detail

being that W i may not generally be strictly quasi-concave, but we can show

directly that there is a unique solution to the consumer problem.

Proposition 5 Given assumptions in the text, ∃(p, w) such that Z(p, w) =

0 and N(p, w) = 0.

Of course, existence does not guarantee `i ∈ (0, 1) for all i. Since many

of our results about the properties of equilibrium depend on it, it would be

good to have some additional conditions to guarantee interiority. One way

one might imagine proceeding is to put curvature restrictions on technology.

Thus, if we assume that for at least one firm k and good j, ∂fk
j (n)/∂n→∞
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as n → 0, then clearly aggregate labor demand satisfies ` =
∑

k n
k > 0

in any equilibrium. And if we assume that for every firm k and good j,

∂fk
j (n)/∂n → 0 as n → n̄k where

∑
k n̄

k ≤ 1, then ` =
∑

k n
k < 1 in any

equilibrium. However, this assumption would contradict property (v) that

we used for existence. Therefore, we take a different route.

To illustrate the logic, consider the case with J = 1 good, K = 1 firm,

and homogeneous consumers. If n = 1 in equilibrium then the utility of a

representative consumer is U [f(1) + e, 1]. To rule-out such an equilibrium

assume

U [f(1) + e, 1] < U [f(1) + e− f ′(1), 0]. (28)

If (28) holds then a consumer would be better off choosing ` = 0 instead

of ` = 1. Condition (28) holds provided f ′(1) < ω̄, where ω̄ > 0 solves

U [f(1) + e, 1] = U [f(1) + e − ω̄, 0]. Hence, in a homogeneous consumer

economy, in any equilibrium ` ∈ (0, 1) provided (28) holds. By Proposition

4, if wealth is heterogeneous there is still an equilibrium where `i ∈ (0, 1)

∀i, as long as wealth is not too heterogeneous.

One could generalize this logic to J goods as follows. Define

Ŵ (1) = max
c1

U (c1, 1) s.t. p [c1 − f(1)− e] = 0,

where p is a solution to c1 = f(1) + e. Define next

Ŵ (0) = max
c0

U (c0, 0) s.t. p
[
c0 − f(1)− e + f ′(1)

]
= 0

To guarantee that n = 1 is not an equilibrium we can impose Ŵ (1) < Ŵ (0)

for any p such that c1 = f(1) + e. This simply requires that pf ′(1) is not

too big.
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3 Monetary Theory

3.1 The LW Model

We begin with a review of LW, to provide the basic environment, notation,

etc. There is a [0, 1] continuum of infinitely-lived agents. Time is discrete,

and each period is divided into two subperiods. In the first subperiod there

is a frictionless centralized market CM. In the second subperiod there is a

decentralized market DM with two frictions: a double-coincidence problem,

detailed below; and anonymity, which precludes private credit arrangements.

These frictions make money essential.15

There is a single consumption good c in the CM. Agents have 0 endow-

ment of this good, but can produce it with technology c = h. Assume for

now that agents can only make spot trades in the CM – i.e. they cannot

move resources across periods except by carrying money between markets

– but we argue below that this is really without loss of generality. In the

DM there is also one good q. Each agent faces the following possibilities in

the DM: with probability σ ≤ 1/2 he wants to consume and derives utility

u(q); with the same probability he has the ability to produce at disutility

cost ψ(q); and with probability 1− 2σ he can neither consume nor produce.

Agents who want to consume and those who can produce meet bilaterally

and anonymously in the DM, where they trade using money.16 Let q∗ be

15See Kocherlakota (1998) and Wallace (2001) for recent discussions of essentiality,
especially the role of anonymity (the ideas go back to Ostroy 1973; Ostroy and Starr 1990
survey related work). We also emphasize that it is not important for the CM and DM to
meet sequentially; one can also assume they meet simultaneously, as long as agents cannot
be in both places at the same time, as in Williamson (2005).

16No agent can both produce and consume in this presentation of the model, but this
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the quantity that solves u′(q) = ψ′(q). Assume agents discount between the

CM and DM at rate β1, and between the DM and the next CM at rate β2,

and let β = β1β2. There is a stock of money that changes according to

M+1 = (1 + γ)M , where the subscript +1 indicates next period, and new

money is injected (or withdrawn if γ < 0) via lump sum transfers (or taxes)

in the CM. This completes the description of the basic environment.

An agent’s wealth in the CM is xi = mi +γM , but since γM is constant

across agents we use mi as the individual state variable. Thus W (m) and

V (m) are the value functions in the CM and DM; they are not indexed by

i since agents are identical except for their current money balances. Then

W (m) = max
c,h,m̂

{U(c, h) + β1V (m̂)} (29)

s.t. pc+ m̂− ph−m− γM ≤ 0. (30)

The solution in general depends on m. Hence, a distribution of m across

agents entering the CM induces a distribution of m̂ across agents exiting the

CM and entering the DM.

If U(c, h) is linear in either c or h, however, LW show that m̂ is indepen-

dent of m, so the distribution across agents entering the DM is degenerate

at m̂ = M(1 + γ), and they also show that W is linear with ∂W/∂m = 1/p.

There are two caveats: the distribution of m across agents in the CM cannot

be too disperse, since we need interior solutions; and one has to check that

V is strictly concave. Assumptions on primitives to guarantee both can be

is easy to relax. In LW, all agents can do both, but there are many specialized goods and
agents match randomly; this means that whether one consumes or produces depends on
whom one meets, and some direct barter meetings are possible.
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found in LW.

In the DM, in each match between a consumer and producer, they bar-

gain over the quantity of goods q and amount of money d to swap, according

to the generalized Nash solution with bargaining power for the consumer θ.

The deal is constrained by d ≤ m̂. LW show that in equilibrium d = m̂ and

q = q(m̂), where q(·) is given by the solution to β2m̂/p+1 = g(q) with

g(q) ≡ θψ(q)u′(q) + (1− θ)u(q)ψ′(q)
θu′(q) + (1− θ)ψ′(q)

. (31)

We go into more detail on bargaining in the next subsection, where the

derivation of (31) will be clear; for now we simply note that it is the price in

the next CM, p+1, that is relevant for q in this DM.17 Given these results,

the DM value function satisfies

V (m̂) = σ {u [q(m̂)] + β2W+1 (0)} (32)

+σ {−ψ [q(M+1)] + β2W+1(m̂+M+1)}

+(1− 2σ)β2W+1(m̂)

The model is solved as follows. Given quasi-linearity, say U = u(c)− h,

substitute h from the CM budget equation into W , and take the first-order

condition with respect to m̂:

β1V
′(m̂) = 1/p. (33)

17Note that (31) is the solution for m only below a threshold m∗, while for m ≥ m∗ we
have (d, q) = (m∗, q∗); LW prove that m < m∗ in any equilibrium, so we can ignore this
detail. Also, note that Nash bargaining in the DM is not a key part of the theory: versions
exist with different bargaining solutions (Rocheteau and Waller 2005), with price taking
or price posting (Rocheteau and Wright 2005), and, when one allows for some multilateral
meetings, with auctions (Kircher and Galenianos 2006).
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The envelope condition from (32) is V ′(m̂) = σu′(q)q′(m̂) + (1− σ)β2/p+1.

Or, since q′(m̂) = β2/p+1g
′(q) from the bargaining solution,

V ′(m̂) =
β2

p+1

[
1− σ + σ

u′(q)
g′(q)

]
. (34)

Combining (33) and (34), we have

1
p

=
β

p+1

[
1− σ + σ

u′(q)
g′(q)

]
. (35)

Finally, the bargaining solution implies 1/p+1 = g(q)/β2M(1 + γ) and (lag-

ging this) 1/p = g(q−1)/β2M , so (35) becomes

g(q−1) = g(q)
β

1 + γ

[
1− σ + σ

u′(q)
g′(q)

]
. (36)

Given a sequence for γ, any strictly positive and bounded solution to

this difference equation in q constitutes a monetary equilibrium (LW define

equilibrium more formally, but it is clear that once one has the path for

q one can recover all of the other endogenous variables). If γ is constant,

it makes sense to consider a steady state, where q is constant. Then the

inflation rate is γ, the real interest rate is ρ defined by β = 1/(1 + ρ), the

nominal interest rate is i = (1 + ρ)(1 + γ)− 1, and (36) reduces to

1 +
i

σ
=
u′(q)
g′(q)

. (37)

This is the basic model.18

We close this section by arguing that, in any equilibrium, the assumption

of only spot trades in the CM is not restrictive. First note that no trades
18We do not dwell on substantive results here, except to mention the following. Under

standard assumptions, a monetary equilibrium exists iff i ≥ 0. For i > 0, q < q∗, so
equilibrium is inefficient. Welfare is maximized at the Friedman Rule, i = 0, but if θ < 1
then we have q < q∗ even at i = 0.
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can be made for delivery in any meeting of a future DM, since in this market

meetings are anonymous (hence, anyone who was supposed to deliver in this

market would simply renege). For similar reasons no trades can be made in

the CM contingent on events in any future DM (no one sees what happens

to other agents in the DM). So we are left with trades made in the current

CM for delivery in some future CM. But in equilibrium no one partakes of

these trades, for the following reason.

Suppose we open a market for Arrow securities that deliver 1 unit of

purchasing power (money) in the next CM. Let W (m, b) now be the value

function for an agent entering the CM with money m and security holdings

b, and let b̂ be a vector of assets purchased that period. We assume that

these Arrow securities are not tangible assets that can be traded bilaterally

in the DM – they are simply promises of purchasing power to be delivered

in the next CM – which is a strong but logically consistent assumption.19

Then, extending the earlier results, one can show that (m̂, b̂) is independent

of (m, b). Hence, all agents choose the same portfolio, and the market clears

at b̂ = 0. Since b̂ = 0 in equilibrium, we can shut down these asset markets

with no loss in generality.

3.2 A New Model

We now consider a model similar to LW, except for two main differences:

instead of quasi-linearity, we allow a general utility function; and we assume

19One justification for this is the following: even if these securities were tangible objects
that could in principle be traded in the DM, if we assume they can be counterfeited
costlessly while fiat currency cannot be, there can be a role for the latter as a medium of
exchange.
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indivisible labor. We also introduce some other extensions, such as a general

vector of consumption goods c, an arbitrary endowment e that may differ

over time, profit-maximizing firms, and so on, but we continue to assume

homogeneous preferences for now: U i = U(c, h) for all i. The key assumption

is indivisible labor, and given this, we consider sunspot equilibria. As in the

previous section, we assume only spot trades, but argue below that this is

again without loss in generality.

In terms of state-contingent commodities, the CM consumer problem is

W i = max
ci(s),hi(s),m̂i(s)

∫
S

{
U

[
ci(s), hi(s)

]
+ β1V

i[m̂i(s)]
}
ds

s.t.
∫

S

[
p(s)ci(s) + m̂i(s)− w(s)hi(s)− p(s)ei −mi − γM −∆i

]
ds ≤ 0.

This is formally equivalent to the consumer problem in Definition 1, even

though money is not a standard commodity here. The only detail to worry

about is that one has to show V i is well behaved – in particular, strictly

concave – which can be done following the methods in LW. Therefore, we

can focus on equilibria with [p(s), w(s)] = (p, w). Moreover, we know that

[ci(s), m̂i(s)] = (ci
1, m̂

i
1) for all s such that hi(s) = 1 and [ci(s), m̂i(s)] =

(ci
0, m̂

i
0) for all s such that hi(s) = 0, by Lemma 1 and Lemma 2. Also,

given m̂i and hi enter separably, we additionally know that m̂i
1 = m̂i

0 = m̂i,

by Lemma 3.

Given these results, the problem reduces to

W i(xi) = max
ci
1,ci

0,`i,m̂i

{
`iU

(
ci
1, 1

)
+ (1− `i)U

(
ci
0, 0

)
+ β1V

i(m̂i)
}

s.t. `ipci
1 + (1− `i)pci

0 + m̂i − w`i − xi ≤ 0,
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where xi = pei+mi+γM+∆i. Assuming an interior solution, the first-order

conditions are:

ci1j : Uj

(
ci
1, 1

)
− λipj = 0 ∀j (38)

ci0j : Uj

(
ci
0, 0

)
− λipj = 0 ∀j (39)

`i : U
(
ci
1, 1

)
− U

(
ci
0, 0

)
+ λi

(
w + pci

0 − pci
1

)
= 0 (40)

m̂i : β1V
′(m̂i)− λi = 0 (41)

λi : w`i + xi − `ipci
1 − (1− `i)pci

0 − m̂i = 0 (42)

Observe that (38)-(40) constitute 2J + 1 equations in 2J + 1 unknowns.

Under the assumptions of Proposition 1, and in particular w−pci
1+pci

0 6= 0,

these equations can be solved for (ci
1, c

i
0, λ

i) independently of m̂i and `i, as

a function of (p, w) but not xi. Because the only way consumers differ here

is with respect to xi, (ci
1, c

i
0, λ

i) = (c1, c0, λ) is the same for all i. Given λ,

(41) can be solved for m̂i independently of `i, as a function of (p, w) but

not xi. Notice that in (41) we did not index V ′ by i, implying m̂i = m̂ for

all i; this follows from:

Lemma 4 Under the assumptions of Proposition 1, W i(xi) and V i(m̂i)

depend on i, but ∂W i(xi)/∂xi = λ and ∂V i(m̂i)/∂m̂i = V ′(m̂i) do not

depend on i.

Proof. Consider W i(x). We have

∂W i

∂x
= [U (c0, 0)− U (c1, 1) + λ (w + pc0 − pc1)]

∂`i

∂x
+ λ.
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The first term vanishes by (40), so ∂W i/∂xi = λ, which is independent of i

and xi. We show the other result below, after we have described V i in more

detail; see (47).

We formalize the analysis of the first-order conditions up to this point

as follows.

Lemma 5 Under the assumptions of Proposition 1, we have (ci
1, c

i
0, m̂

i, λi) =

(c1, c0, m̂, λ) ∀i, independent of xi.

Proof. Follows from the discussion in the text.

Given (c1, c0, m̂, λ), (42) implies

`i =
pc0 + m̂i − xi

w + pc0 − pc1

=
pc0 +M −mi − pei −∆i

w + pc0 − pc1

, (43)

so `i is linearly decreasing in xi and hence mi. But aggregate labor supply

¯̀= ¯̀(p, w) =
pc0 − pē− ∆̄
w + pc0 − pc1

(44)

depends only on average real wealth, pē + ∆̄. This means that aggregate

demand for the J consumption goods,

D(p, w) = ¯̀(p, w)c1(p, w) +
[
1− ¯̀(p, w)

]
c0(p, w),

does not depend on the wealth distribution.

We can now define market clearing by:

Z(p, w) ≡ D(p, w)− Σkfk[nk(p, w)]− ē = 0

N(p, w) ≡
∑

k

nk(p, w)− `(p, w) = 0 (45)

M̂(p, w) ≡ m̂(p, w)−M(1 + γ) = 0
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There are J + 2 equations and we only determine J + 1 prices (p, w), as

we have already normalized the price of money to 1. Note that Walras Law

holds: integrating the budget equations over agents, if the goods and labor

markets clear then the money market clears automatically. Existence of a

solution to (45), which is an equilibrium in the CM, taking V i as given, is

established exactly as in Proposition 5. Notice CM equilibrium is determined

independently of the value of q, which does not appear in (45); this is referred

to as a neoclassical dichotomy in Aruoba and Wright (2003).20

To determine properties of V i we now proceed to the DM, beginning with

bargaining. Again we use the generalized Nash solution. Consider a meeting

between agents i and i′ where the former is the consumer and the latter the

producer. For the consumer, his payoff is u(q) + β2W
i
+1(x

i
+1 − d) and his

threat point β2W
i
+1(x

i
+1), where xi

+1 = p+1ei
+1 + m̂i +γ+1M+1 +∆i

+1 is his

wealth in the next CM if he does not trade. For the producer, his payoff

is −ψ(q) + β2W
i′
+1(x

i′
+1 + d) and his threat point β2W

i′
+1(x

i′
+1). Given that

W i
+1 and W i′

+1 both have slope λ+1 by Lemma 4, where λ+1 is the same for

all consumers, the bargaining solution reduces to

max
q,d

[u(q)− β2dλ+1]
θ [β2dλ+1 − ψ(q)]1−θ , (46)

subject to the constraint d ≤ m̂i.

As in LW, one can show that in any equilibrium the constraint holds

with equality: d = m̂i. Substituting this into (46), the first-order condition

20One implication of this dichotomy is that monetary policy (the path for M) does not
affect the values of (c1, c0, ¯̀) determined in the CM.
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with respect to q is

θ
[
−ψ(q) + β2m̂

iλ+1

]
u′(q) = (1− θ)

[
u(q)− β2dm̂

iλ+1

]
ψ′(q).

This can be rearranged into β2m̂
iλ+1 = g(q), where g(·) is exactly the same

as (31) above. Since m̂i = M+1 for all i, in equilibrium, q = q(M+1) is the

same in every trade, and the DM value function satisfies

V i(m̂i) = σ
{
u

[
q(m̂i)

]
+ β2W+1(xi

+1 − m̂i)
}

+σ
{
−ψ(q) + β2W+1(xi

+1 +M+1)
}

+(1− 2σ)β2W+1(xi
+1).

Notice V i is indexed by i, because xi
+1 = p+1ei

+1 + m̂i + γ+1M+1 + ∆i
+1

can differ across individuals. However, as claimed in Lemma 4, the derivative

∂V i

∂m̂i
= σu′(q)q′(m̂i) + (1− σ)β2λ+1 =

[
1− σ + σ

u′(q)
g′(q)

]
β2λ+1 (47)

does not depend on i, where we get q′(m̂i) = β2λ+1u
′(q)/g′(q) from the

bargaining solution. Inserting (47) into (41), we have

λ = β

[
1− σ + σ

u′(q)
g′(q)

]
λ+1. (48)

Using β2m̂
iλ+1 = g(q), and market clearing m̂i = M(1 + γ), (48) becomes

g(q−1) = g(q)
β

1 + γ

[
1− σ + σ

u′(q)
g′(q)

]
. (49)

Observe that (49) is identical to (36). Hence, in terms of the DM, the

new model has exactly the same predictions as LW. Of course the CM differs

across the two models, because different commodities are being traded. Still,
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it is the case that the assumption of only spot trades in the CM is without

loss in generality. This is perhaps less clear here because, e.g., we have

arbitrary endowments across agents, so one might think they would want to

borrow or lend; but as long as they are at an interior solution, they would

just as soon increase or decrease `i, and again we can shut down the asset

markets with no loss in generality.

Before closing this discussion, we reconsider the maintained assumption

`i ∈ (0, 1) for all i, using the ideas in Proposition 4. In equilibrium all agents

enter each CM with one of three values of m: m = 0 if they consumed in

the previous DM; m = 2M if they produced in the previous DM; or m = M

if they did neither. So from (43), `i takes on one of three values:

`i =


pc0+M−pei−∆i

w+pc0−pc1
if m = 0

pc0−pei−∆i

w+pc0−pc1
if m = M

pc0−M−pei−∆i

w+pc0−pc1
if m = 2M

(50)

As in the proof of Proposition 4 there are two cases: w + pc0 − pc1 > 0,

or, equivalently from (40), U
(
ci
0, 0

)
> U

(
ci
1, 1

)
; and w+pc0−pc1 < 0, or,

equivalently, U
(
ci
0, 0

)
< U

(
ci
1, 1

)
. For brevity we present only the former

case.21

Then, for a given i, (50) implies:

`i > 0 ∀i iff pei + ∆i < pc0 −M ∀i (51)

`i < 1 ∀i iff pei + ∆i > M − w + pc1 ∀i (52)

Or, to put this in real terms, use the bargaining solution to eliminate M =
21The other case is similar. Again we ignore the special intermediate case U

`
ci
0, 0

´
=

U
`
ci
1, 1

´
.
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g(q−1)/β2λ and write:

`i > 0 ∀i iff g(q−1) < β2λ(pc0 − pei −∆i) ≡ Γi
1 ∀i (53)

`i < 1 ∀i iff g(q−1) < β2λ(pei + ∆i − pc1 + w) ≡ Γi
2 ∀i (54)

This yields bounds on g(q−1), Γi
1 and Γi

2, which are independent of monetary

considerations – i.e. they take on the same values in the nonmonetary

economy where M = 0. The bounds are strictly positive iff `i ∈ (0, 1) in the

nonmonetary economy. If g(q−1) < min
{
Γi

1,Γ
i
2

}
for all i, we are done. But

it is easy to see that g is increasing, and that q < q∗ in any equilibrium, as

in LW, which can be used to guarantee g(q−1) < min
{
Γi

1,Γ
i
2

}
.

Hence one can impose conditions that guarantee interiority.22 We sum-

marize the above results as follows:

Proposition 6 In the model of this section, `i ∈ (0, 1) ∀i as long as g(q∗) <

min
{
Γi

1,Γ
i
2

}
∀i, where Γi

1 and Γi
2 are defined in (53) and (54). Given this,

the equilibrium q sequence satisfies (49), which is exactly the same as the

equilibrium condition in the basic LW model.

Finally, we have an easy existence result. Due to the dichotomy, a mon-

etary equilibrium consists of two independent components: we need a CM

equilibrium, Z(p, w) = 0 and N(p, w) = 0, at every date; and we need a

path for q > 0 satisfying (49) at every date. The existence of the former

22Intuitively, we need to have the DM not too important, in the sense that q is not too
big, because otherwise the value of money is too high and this either forces some people
to ` = 1 (those with no money trying to aquire m̂), or forces some people to ` = 0 (those
with lots of money trying to spend down to m̂).
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is established, as we said above, exactly as in Proposition 5; and the ex-

istence and properties of the latter follow from previous analyses in Lagos

and Wright (2003, 2005).

Proposition 7 Given our assumptions, ∃(p, w) paths such that Z(p, w) =

0 and N(p, w) = 0 at every date, plus a path for q > 0 satisfying (49).

4 Conclusion

We have presented a framework within which one can analyze general equi-

librium with nonconvexities. In nonconvex economies, randomization can be

desirable. We showed how to support random allocations as equilibria using

sunspots. These equilibria have certain interesting properties, including the

property that agents act as if they have quasi-linear utility. This means that,

given they choose interior solutions, there are zero wealth effects, which leads

to many strong results. In monetary economics, this provides an alternative

to the framework in Lagos and Wright (2005), based on indivisible labor

rather than quasi-linearity.

We made an effort to provide a somewhat general presentation of the

results, in order to show that monetary theory is actually more robust than

one might have thought based on previous discussions. This also helps rec-

oncile somewhat two fairly disparate literatures: general equilibrium theory

and monetary economics. Our presentation however is not as general as

one might like. In particular, the dichotomy result is convenient for several

reasons, including the fact that it allows us to easily establish the existence
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of a monetary equilibrium, but it is also quite special. For instance, it does

not hold when preferences are not separable between (c, h) and q (see e.g.

Aruoba, Waller and Wright 2006). Analyzing this more general case may

be interesting, in theory, as well as in applications.
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Appendix 1: Second-order conditions

Here we check the second-order conditions for a strict local maximum to

the consumer’s problem, assuming ` ∈ (0, 1). The first-order conditions for

an interior solution are given by (19)-(22). The bordered Hessian evaluated

at any point where they are satisfied is

B =


0 −`p −(1− `)p w − pc1 + pc0

−`pT `H1 0 0
−(1− `)pT 0 (1− `)H0 0

w − pc1 + pc0 0 0 0

 .
For a maximum the last 2J−1 leading principal minors |B3| , |B4| , ... |B2J+2|

must alternate in sign, with |B2J+2| < 0. To begin,

|B2J+2| = − (w − pc1 + pc0)
2 `(1− `) |H1| |H0| < 0,

since |Hh| < 0 by the strict concavity of U . Second, consider

B1+j = `

[
0 −pj

−pT
j H1j

]
with j ∈ {2, ...J}. Here pj = (p1, ...pj) and Hhj is the submatrix of Hh

defined by deleting all but the first j columns and rows. By the strict

concavity of U , |B1+j | has the same sign as (−1)j .

Consider next

B1+J+j =

 0 −`p −(1− `)pj

−`pT `H1 0
−(1− `)pT

j 0 (1− `)H0j


with j ≤ J . Then

|B1+J+j | = (1− `)Ujj(c0, 0) |BJ+j | − (1− `)2p2
j`(1− `) |H1| |H0j−1| .
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By induction, |B1+J+j | has the same sign as (−1)J+j . To see this, note that

|BJ+2| has the same sign as (−1)J+1 and |H1| |H0j−1| has the same sign as

(−1)J+j−1. Therefore any point that satisfies the first-order conditions is a

strict local maximum. �

Appendix 2. Global maximum

Here we use the results in Appendix 1 to show that a solution to the first-

order conditions constitutes the global maximum. We begin by breaking the

problem into two steps. First define

V(`) = max
c1,c0

[`U(c1, 1) + (1− `)U(c0, 0)]

s.t. `pc1 + (1− `)pc0 − `w − x ≤ 0.

Since U is strictly concave, this problem has a unique solution [c0(`), c1(`)].

By the Theorem of the Maximum, V(`) is continuous and hence achieves a

maximum over ` ∈ [0, 1].

Suppose there are two local maxima. Then by continuity V(`) also has a

local minimum at some ˜̀∈ (0, 1). Then [c0(˜̀), c1(˜̀), ˜̀] is a saddle-point of

the problem in Appendix 1, which contradicts the result that any solution

to the first-order conditions is a local maximum. Hence there is a unique

maximizer of V(`), say ˆ̀, and [c0(ˆ̀), c1(ˆ̀), ˆ̀] is the unique solution to the

problem in Appendix 1. �

Appendix 3. Nonseparable Example

Suppose that U(c, m̂, h) = ca(1 + b − h)1−a + V (m̂), where 0 < a < 1

and 0 < b < (1− a)/a. Now we do not have c0 = c1, although we still have
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m̂0 = m̂1 = m̂. The consumer problem is

W = max
{
`ca1b

1−a + (1− `)ca0(1 + b)1−a + V ′(m̂)
}

s.t. `c1 + (1− `)c0 −B`− m− m̂

p
≤ 0.

Substitute for m̂ and take the first-order conditions:

c1 : aca−1
1 b1−a = pV ′(m̂)

c0 : aca−1
0 (1 + b)1−a = pV ′(m̂)

` : ca1b
1−a − ca0(1 + b)1−a = pV ′(m̂) [c1 − c0 −B]

These can be solved for c0 = abB/(1 − a), c1 = a(1 + b)B/(1 − a) and

V ′(m̂) = aa(1 − a)1−aBa−1/p. Thus c1, c0 and m̂ are independent of m.

Now n = a(1 + b) ∈ (0, 1). From the budget equation,

` = a(1 + b) + (M −m)a−a(1− a)aBaV ′(M),

after inserting m̂ = M and p. Hence, ` ∈ (0, 1) iff m ∈ (m,m), where

m = M − aaBa(1− a− ab)
(1− a)aV ′(M)

and m = M +
a1+a(1 + b)Ba

(1− a)aV ′(M)
.
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Figure 1: Allocation Rule
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