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Abstract

We study the effects of inflation in models with various trading
frictions. The framework is related to recent search-based monetary
theory, in that trade takes place periodically in centralized and de-
centralized markets, but we consider three alternative mechanisms for
price formation: bargaining, price taking, and posting. Both the value
of money per transaction and market composition are endogenous, al-
lowing us to characterize intensive and extensive margin effects. In
the calibrated model, under posting the cost of inflation is similar to
previous estimates, around 1% of consumption. Under bargaining, it
is considerably bigger, between 3% and 5%. Under price taking, the
cost of inflation depends on parameters, but tends to be between the
bargaining and posting models. In some cases, moderate inflation may
increase output or welfare.
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1 Introduction

We study the effects of inflation in models with various trading frictions. Our

economic environment is based on recent search-theoretic models of mone-

tary exchange following Lagos and Wright (2002), in that trade takes place

periodically in both centralized and decentralized markets. However, fol-

lowing Rocheteau and Wright (2003), we extend previous analyses of that

framework in two ways. First, by endogenizing the composition of agents

in the market we analyze the extensive margin (the frequency of trade) as

well as the intensive margin (the quantity exchanged per trade). Second, we

study several alternative trading or pricing mechanisms, including bargaining

as in previous studies, but also competitive price taking and price posting.

The main contribution here is as follows. In Lagos and Wright (2002) the

welfare costs of inflation were found to be considerably higher than previous

estimates. But in Rocheteau and Wright (2003) we show qualitatively that

this conclusion can depend critically on the assumed mechanism. Here ask,

how much? That is, we study quantitatively the effects of inflation under the

different mechanisms.

To do this, we present a version of the framework that is simple enough

to take to the data, yet general enough to capture some of the key ideas

discussed in the relevant literature. One such idea is that the frequency of

trade should be endogenous. We use something like the standard matching

function from equilibrium search theory to capture the time-consuming na-

ture of trade and how it depends on the endogenous composition of agents in

the market.1 Modeling the extensive margin explicitly is important because

inflation may well affect it differently from the way it affects output along
1In this sense our framework is similar to much of the search-based labour literature,

which relies heavily on composition effects (so-called “market tightness”) and an aggregate
matching function. See Pissarides (2000) for a textbook treatment. Some related work in
monetary theory is discussed below.
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the intensive margin. As we will see, endogenizing the frequency of trade

not only affects the magnitude of the cost of inflation, it can even change

its sign — depending on parameters, and on the assumed trading mechanism,

inflation may actually increase output or welfare, at least over some range.

The three trading/pricing mechanisms we consider have been used before

in various contexts. Bilateral bargaining is the assumption most often used

in the microfoundations of money in the search tradition since Shi (1995)

and Trejos and Wright (1995), and we refer to equilibrium in the model with

bargaining as search equilibrium. Price taking is the standard Walrasian

assumption used in monetary theory in, say, overlapping generations models

by Wallace (1980) e.g. and turnpike models by Townsend (1980) e.g., and

we refer to it as competitive equilibrium. By the final mechanism, we mean

more than simply price posting, which has been used in monetary models

by several authors; we mean the combination of posting and directed search.

This combination had not been studied in monetary theory before Rocheteau

and Wright (2003), although it had been used in search models of the labour

market since Shimer (1996) and Moen (1997), and following that literature

we refer to this model as competitive search equilibrium.2

We calibrate the model to match standard real and monetary observa-

tions, and ask how the welfare cost of inflation differs across mechanisms.

Our findings are as follows. In competitive search equilibrium, with price

posting, our estimated welfare cost is similar to previous estimates such as

Lucas (2000) or Cooley and Hansen (1989, 1991): going from 10% to 0%

inflation is worth between 0.67% and 1.1% of consumption, depending the

calibration. In search equilibrium, with bargaining, the estimated cost can
2The essential feature of competitive search equilibrium is that agents get to direct

their search to locations posting attractive prices, which induces competition among price
setters. Price setting with undirected (purely random) search is a very different equilibrium
concept. See Curtis and Wright (2003) for a discussion and citations.
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be between 3% and 5% — considerably bigger than what is found in most of

the literature, although consistent with Lagos and Wright (2003). Further,

we find something here that cannot happen in Lagos and Wright (2003) or

the extensions in Rocheteau and Wright (2003): in those models, with bar-

gaining the Friedman Rule is always the optimal policy, while this is not

necessarily the case here. In competitive equilibrium, the cost of inflation

is sensitive to parameter values, but for a benchmark case it tends to be in

between the estimates from the posting and bargaining models. Also, with

price taking, the optimal inflation rate may again exceed the Friedman Rule.

The result that some inflation with either bargaining or competitive pricing

may improve welfare is sensitive to the calibration, but nevertheless inter-

esting. For example, for some parameters a (perfectly-anticipated, long-run)

inflation can have a positive effect on output.3

The intuition for our results is as follows. To trade in the decentral-

ized market buyers must invest by acquiring cash. If the terms of trade

are bargained ex post, buyers do not get the full return on their investment

— a standard holdup problem.4 This holdup problem reduces the value of

money, and this makes trade inefficient along the intensive margin in search

equilibrium. By contrast, in competitive equilibrium or competitive search

equilibrium, there is no holdup problem, and inflation is less costly on the

intensive margin. Along the extensive margin search equilibrium is also inef-

ficient. In principle inflation can amplify or mitigate this problem, but for our

calibration it usually amplifies it. In competitive equilibrium the Friedman

Rule achieves the efficient outcome along the intensive but not the extensive
3There is some evidence that this may be true at least for moderate inflation rates; see

Bullard and Keating (1995).
4It is well known in some applications of search theory the holdup problem vanishes if

bargaining power is just right — i.e. if the Hosios (1990) condition holds. However, in our
model this condition requires buyers to have all the bargaining power, and this means that
there will be no sellers in equilibrium so the market shuts down. Thus, it is not possible
in general to achieve efficiency on both the intensive and extensive margins here.
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margin. For some parameters inflation makes things better on the extensive

and worse on the intensive margin, but the latter effect is second order near

the Friedman Rule, the net effect is positive. In competitive search equilib-

rium, the Friedman Rule is efficient on both margins, so inflation is always

bad but the effect is second order near the Friedman Rule.

It is interesting to compare these results with Shi (1997). In his model a

household is composed of a large number of members, and chooses the frac-

tions to be buyers and sellers each period.5 Buyers and sellers from different

households meet and bargain. In equilibrium the number of sellers may be

too high, in which case a deviation from the Friedman Rule improves welfare

by reducing the seller-buyer ratio. It is not true here that when the number

of sellers is too high a deviation from the Friedman Rule necessarily improves

welfare. However, we show by example that inflation may improve welfare

when the number of sellers is inefficiently low. A difference in the models

is that Shi imposes a bargaining procedure that avoids the holdup problem,

which means the intensive margin is efficient close to the Friedman Rule.6 In

fact, our results are closer to those of Shi when we impose competitive price

taking. Nevertheless, it is the case that for some parameters inflation may

actually increase output and/or welfare.

The rest of the paper is organized as follows. Section 1 describes the basic

environment. Section 2 presents the different trading/pricing mechanisms.

Section 3 analyzes the welfare cost of inflation through a series of calibration

experiments. Section 4 concludes.
5The large household assumption allows family members to share money at the end of

each trading round, which means that in equilibrium all buyers hold the same amount of
money at the start of the next period. One does not need this assumption in the Lagos-
Wright framework because individuals have periodic access to centralized markets where
they can adjust their cash balances, so we get all buyers to hold the same amount of money
in equilibrium without invoking large families.

6For a comparison of the bargaining solutions in these models, and the implications for
the optimality of the Friedman Rule, see Berentsen and Rocheteau (2003).
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2 The Environment

Time is discrete and continues forever. Each period is divided into two sub-

periods, called day and night. During the day there will be a centralized and

frictionless market, while at night trade occurs in more or less decentralized

markets, subject to frictions as described in detail below.7 In the centralized

day market all agents can produce consumption goods from labor using a

linear technology. At night each agent can do one of two things: either he

can produce intermediate goods, or he can use these intermediate goods to

produce a consumption good at home after the night market has closed. This

generates a simple double coincidence problem in the decentralized market:

some agents can make intermediate goods at night but they do not have the

home technology to use them, while others do have the home technology but

cannot produce intermediate goods or anything else to trade for them in the

night market.8

Assuming a [0, 1] continuum of agents, let n be the measure who have

the technology for intermediate good production but not home production,

and 1 − n the measure who have the technology for home production but
not intermediate good production. Because of the way they will interact in

the decentralized market, we call the former sellers and the latter buyers.

By letting an agent choose whether to be a seller or a buyer we endogenize

the composition of the decentralized market — i.e. the buyer-seller ratio —
7The day-night story introduced in Lagos and Wright (2002) is convenient but not at

all necessary in this class of models. In Williamson and Wright (2003) e.g. there are both
centralized and decentralized market running simultaneously each period, with agents
subject to random location shocks; that setup is basically the same for most purposes.

8The only reason for invoking home production, as opposed to generating a double
coincidence problem by having one type with a direct preference for the goods produced
by another type, say, is that we want to allow agents to choose their type, and some people
seem to find the choice of preference less palatable than the choice of technology. Calling
it home production matters for little else, except maybe the way we do national income
accounting when we calibrate the model.
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and therefore the number of trades.9 We assume that goods are nonstorable.

We also assume that buyers in the decentralized market are anonymous;

hence, they cannot get credit in the night market because they could default

without fear of punishment, and this makes money essential (Kocherlakota

1998; Wallace 2001). Let the quantity of money at t be Mt > 0 and assume

Mt+1 = γMt, where γ is constant and new money is injected by lump-sum

transfers to all agents.

The utility function of an agent within a full day-night period is

U = U(x)− C(y) + β[u(q)− c(l)], (1)

where x is consumption and y is production (equals labor supply) of the day

good, while q is consumption of the home produced good and l is intermediate

good production (equals labor supply) at night. Agents discount between day

and night, but not between night and the next day; this is without loss in

generality since as in Rocheteau and Wright (2003) all that matters is total

discounting between one day-night period and the next. In any case, since

buyers consume home produced goods but do not produce intermediate goods

while the opposite is true for sellers, and since by a change of notation we

can always make home output equal to the input, q = l, we may as well write

buyers’ and sellers’ utility functions as

Ub = U(x)− C(y) + βu(q) (2)

Us = U(x)− C(y)− βc(q). (3)

An assumption that is crucial in terms of tractability, although not crucial

in principle if one adopts more sophisticated computational methods, is that
9Again, this is similar to the model in Shi (1997) where households choose the fraction

of members to be buyers and sellers. Other methods of introducing extensive margin effects
include Li (1995, 1997), Berentsen, Rocheteau and Shi (2001), and Lagos and Rocheteau
(2003), who assume endogenous search intensities, and Rocheteau and Wright (2003),
who allow entry on one side of the market. The method used here is slightly easier for
calibration purposes.
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utility is linear in day labor: C(y) = y. This assumption is what makes the

Lagos-Wright framework easy to study analytically, because it implies that all

agents of a given type (e.g. all buyers) will choose to carry the same amount of

money out of the centralized market, independent of their histories. That is,

conditional on type, there will be a degenerate distribution of money holdings

in the decentralized market. Note also that this assumption makes our model

similar to some previous well-known inflation studies, like Cooley and Hansen

(1989), as well as many other macro models following Rogerson (1998) that

also assume utility is linear in labor. In terms of the other functions, we

assume U 0(x) > 0, U 00(x) < 0, u0(q) > 0, u00(q) < 0, u(0) = c(0) = c0(0) = 0,

c0(q) > 0, c00(q) > 0, and c(q̄) = u(q̄) for some q̄ > 0. Let q∗ denote

the solution to u0(q∗) = c0(q∗) and x∗ the solution to U 0(x∗) = C 0(x∗) = 1;

q∗ ∈ (0, q̄) exists by the previous assumptions, and we assume such an x∗ > 0
also exists.

The final important element of the model is that we assume there trading

frictions in the decentralized market: at night, a buyer gets an opportunity

to trade with probability αb = α(n) and a seller gets an opportunity with

probability αs = (1− n)α(n)/n. One can interpret the buyer trading prob-
ability α (n) as being derived from an underlying constant returns to scale

matching technology, although other interpretations are possible, and notice

that nαs = (1−n)αb so that one can think of trade as bilateral if so desired.
We assume α0(n) > 0, α(n) > α0(n)n(1− n), α(n) ≤ min{1, n

1−n}, α(0) = 0,
and α(1) = 1. Let

η(n) =
α0(n)n(1− n)

α(n)
(4)

be the contribution of sellers to the trading process. For example, if α(n) = n,

as in models like Kiyotaki and Wright (1991,1993), then η(n) = 1− n.10
10More generally, if α (n) is derived from an underlying matching technology η is the

elasticity of this matching function with respect to the measure of sellers. To see this,
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This completes the description of the physical environment, and we now

begin to describe what happens. Let V b(m) and W b(m) be the value func-

tions of a buyer with m dollars in the night and day market, respectively.

Similarly, let V s(m) and W s(m) be the value functions for sellers. We omit

the time subscript t and shorten t+1 to +1, etc. in what follows. As we said

earlier, agents get to choose to be buyers or sellers of intermediate goods at

the beginning of each period (by stationarity, they effectively could choose

this once and for all). Therefore the payoff to an agent with m at the start

of the day is

W (m) = max
£
W b(m),W s(m)

¤
. (5)

Bellman’s equation for a buyer in the decentralized night market is

V b(m) = αb(n) {u [q(m)] +W+1 [m− d (m)]}+ [1− αb(n)]W+1(m), (6)

where, in general, the quantity of intermediate good he buys q and the dol-

lars he spends d may depend on his money holdings. Given V b(m), in the

centralized market the problem for a buyer is

W b(m) = max
m̂,x,y

©
U(x)− y + βV b(m̂)

ª
(7)

s.t. x+ φm̂ = y + φ(m+ T ), (8)

where φ is the price of money in terms of goods, T the lump-sum transfer,

and m̂ the money taken into the night market. Substituting y from (8) into

(7) we obtain11

W b(m) = max
m̂,x

©
U(x)− x− φ (m̂− T −m) + βV b(m̂)

ª
. (9)

write the matching function asM(b, s) = bα
³

s
b+s

´
where b is the measure of buyers and

s the measure of sellers. Then η =Ms(b, s)s/M(b, s).
11We do not impose nonnegativity on y, but after finding an equilibrium one can easily

adopt conditions to guarantee y ≥ 0 (see Lagos and Wright 2002).
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From (9) several things are clear: the maximizing choice of x is x∗ where

U 0(x∗) = 1; the maximizing choice of m̂ is independent of m; W b is linear in

m with W b
m = φ; and if the solution is interior then m̂ satisfies

φ = βV bm(m̂). (10)

Condition (10) sets the marginal cost of taking money out of the centralized

market equal to the marginal benefit, in terms of what it will do for you in the

decentralized market. As long as V b is strictly concave, m̂ is unique. For the

alternative specifications of the model discussed below, strict concavity holds

under fairly weak conditions, and hence all buyers will choose the same m̂.12

This is due to the quasi-linearity assumption C(y) = y, which, heuristically

speaking, eliminates wealth effects on money demand and hence implies that

all agents of a given type choose the same m̂ regardless of the m with which

they come into the centralized market.

Because sellers do not want to purchase anything in the decentralized

night market they all choose m̂ = 0; see Rocheteau and Wright (2003) for

details. Hence, we ignore the argument of V s in what follows. Also, given

sellers carry no money at night, each buyer carries M b = M/(1 − n), and
Bellman’s equation for a seller in the decentralized market becomes

V s = αs(n)
©−c £q ¡M b

¢¤
+W+1

£
d
¡
M b
¢¤ª

+ [1− αs(n)]W+1(0), (11)

where d = d(M b) and q = q(M b) are the equilibrium terms of trade. The

seller’s problem in the centralized market is similar to a buyer’s, and after

substituting the budget equation can be written

W s(m) = max
x
{U(x)− x+ φ(m+ T ) + βV s} . (12)

12As we will see below, under price taking the strict concavity of V b is a direct con-
sequence of u00 < 0. See Lagos and Wright (2002) for details under bargaining, and
Rocheteau and Wright (2003) under price posting.
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As in the buyer’s problem, we again have x = x∗, and W s is again linear in

m with W s
m = φ.

Next, to discuss the choice of each agent about whether to be a buyer

or a seller of intermediate goods, notice that linearity implies W b(m) =

φm + W b(0) and W s(m) = φm + W s(0). Therefore, from (5), W (m) =

φm + max
£
W b(0),W s(0)

¤
. Consequently the decision to be a buyer or a

seller is independent of one’s money holdings, and n is determined simply by

W b(0) = W s(0). Substituting (6) into (9) and (12) into (11), this condition

can be reduced to

−φ+1M b

µ
φ

βφ+1
− 1
¶
+ αb(n)

£
u(q)− φ+1d

¤
= αs(n)

£
φ+1d− c(q)

¤
. (13)

This has a simple interpretation: the left side is the expected payoff of being

a buyer and the right side is the expected payoff of being a seller in the

decentralized night market. Notice that the first term on the left is the cost

for buyers of carrying M b dollars into this market.13

To close this section, define welfare as the utility of a representative agent

within a period composed of a night and the following day,

W = (1− n)α(n) [u(q)− c(q)] + U(x)− x. (14)

On the intensive margin, the first-best allocation requires x = x∗ and q = q∗,

where U 0(x∗) = C 0(x∗) = 1 and u0(q∗) = c0(q∗). On the extensive margin, it

requires that we maximize the number of trades, (1− n)α(n), which means

(1− n)α0(n) = α(n). (15)

If α(n) = n, e.g., (15) implies n = 1/2.14 In any case, using the definition of
13This is easiest to see if we use the fact that in steady state φ+1 = φ/γ and the inflation

rate is π = γ − 1. Then defining the nominal interest rate by 1 + i = (1 + r)(1 + π), the
first term is simply −φ+1Mbi, or the real cost of forgone nominal interest.
14This is reminiscent of a result in search-based monetary models like Kiyotaki and

Wright (1993), generalized in Rocheteau (2000) and Berentsen (2002), that says efficiency
dictates equal numbers of buyers and sellers.
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η(n) in (4), (15) can be expressed generally as

n = η(n). (16)

Hence, efficiency implies the fraction of sellers must equal their contribution

in the matching process.

3 Equilibrium

As discussed in above, here we consider the following three mechanisms:

bargaining, price taking, and price posting. The first we refer to as search

equilibrium, the second competitive equilibrium, and the third competitive

search equilibrium. We present each in turn.

3.1 Search Equilibrium (Bargaining)

We assume here that in the decentralized market, as in most search models,

agents are matched bilaterally and the terms of trade (q, d) are determined

by the generalized Nash bargaining solution

max
(q,d)

£
u(q)− φ+1d

¤θ £−c(q) + φ+1d
¤1−θ

s.t. d ≤M b, (17)

where θ is the bargaining power of a buyer.15 In any monetary equilibrium

the constraint d ≤ M b binds in this model; intuitively, it should be clear

that you would not bring to the decentralized market money that you do

not want to spend, but see Lagos and Wright (2002) for details. Hence the

seller receives d = M b and produces the quantity that solves the first order

condition for q, which we write as φ+1M
b = g(q) where

g(q) =
θu0(q)c(q) + (1− θ)c0(q)u(q)

θu0(q) + (1− θ)c0(q)
. (18)

15To derive this, observe that the surplus (payoff minus threat point) of a buyer is
u(q) +W+1(m− d)−W+1(m) = u(q)− φ+1d, using the linearity of W . The surplus of a
seller is similar.
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From this we have q0(m) = φ+1/g
0(q).

Now consider the centralized market price φ. From (6), we have V bm(m) =

αb(n)u
0(q)q0(m) + [1− αb(n)]φ+1, and therefore

16

V bm(m) =

·
αb(n)

u0(q)
g0(q)

+ 1− αb(n)

¸
φ+1. (19)

Inserting this into the first order condition φ = βV bm(M) and using the fact

that φ = γφ+1 in steady state, after minor simplification we get

i

αb(n)
+ 1 =

u0(q)
g0(q)

(20)

where i = γ−β
β
is the nominal interest rate defined by 1 + i = (1 + r)(1 + π)

with r = β−1 − 1 and π = γ − 1 (as is standard, if we open a market for
bonds here they will not trade in equilibrium, but we can still price them).

For future reference denote by q̃ the solution to (20) when i = 0, and note

that q̃ < q∗ unless θ = 1.

Also, the condition (13) determining the composition of buyers and sellers

can be simplified using φ+1M
b = g(q) to

−ig(q) + αb(n) [u(q)− g(q)] = αs(n) [g(q)− c(q)] . (21)

We can now define an equilibrium for this model; in what follows, when we

say an equilibrium we mean a steady state monetary equilibrium.

Definition 1 A search equilibrium is a pair (q, n) that satisfies (20) and

(21).

The existence and uniqueness or multiplicity of equilibrium can be ana-

lyzed using methods similar to those used for a different but closely related

model in Rocheteau and Wright (2003). Our goal here is instead to describe
16Notice from this that for V b to be strictly concave we need u0(q)/g0(q) strictly de-

creasing in q. Lagos and Wright (2002) show that this will be satisfied if either: c(q) is
linear and u0(q) is log-concave; or θ is close to 1.
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things quantitatively, which we do in the next section. As a benchmark,

however, consider equilibrium at the Friedman Rule i = 0.17 From (20) and

(21), this implies

qF = q̃ (22)

nF =
(1− θ)c0(q̃)

(1− θ)c0(q̃) + θu0(q̃)
. (23)

Since (20) implies q < q̃ for all i > 0, the Friedman Rule maximizes q. If

θ < 1 we have q̃ < q∗; if θ = 1 we have nF = 0. This reflects a tension

between the intensive and extensive margins: q = q∗ requires giving all the

bargaining power to buyers, but then no one chooses to become a seller and

the night market shuts down.

Given q = q̃, comparing (16) and (23) we see that nF coincides with the

efficient n∗ iff

η(nF ) =
(1− θ)c0(q̃)

(1− θ)c0(q̃) + θu0(q̃)
. (24)

This is the familiar Hosios (1990) condition: the measures of buyers and

sellers are efficient iff the seller’s share of the surplus from matching equals

their contribution to the trading process. Given that η is independent of θ,

u, and c, this condition will not hold in general, and it is possible for n to be

either too high or too low in equilibrium. Therefore, in theory, having the

composition of buyers and sellers endogenous may either exacerbate or mit-

igate the welfare cost of inflation, and it is even possible that some inflation

could improve welfare.

3.2 Competitive Equilibrium (Price Taking)

Consider next imposing a standard Walrasian mechanism at night: agents in

the intermediate goods market now trade in large groups taking the price as
17The condition i = 0 is equivalent to γ = β; in this model there is no difference

between nominal interest targeting, money supply targeting, or inflation targeting. Also,
as is standard, it is impossible to set i < 0 (γ < β) here because monetary equilibrium
exists only if γ ≥ β.
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given, and the price adjusts to clear the market. In order to have trading

frictions in this setting we assume that agents need to spend a stochastic

amount of time before being able to trade. This idea is clearly related to the

Lucas and Prescott (1974) search model, where agents incur a cost to move

from one competitive market to another. More precisely, each period here

a buyer gets into the competitive market with probability αb(n) whereas a

seller gets in with probability αs(n). Therefore, in each period only a measure

(1− n)α(n) of buyers and sellers trade each night.18 We still call the night
market decentralized, even though it has competitive pricing. Also, note that

as long as agents are anonymous in this market, money will still be essential.

A buyer who gets into the market at night maximizes u(qb) − φ+1pq
b

subject to qb ≤ Mb

p
where p is the nominal price of the intermediate good. A

seller who gets in maximizes −c(qs) + φ+1pq
s. The price clears the market,

which with equal numbers on each side requires qs = qb = q. Therefore,

c0(q) = pφ+1 (25)

q =
M b

p
, (26)

where we have used the fact that qb ≤ Mb

p
is binding in equilibrium; see

Rocheteau and Wright (2003) for details. In this model,19

V bm(M
b) = αb(n)u

0
µ
M b

p

¶
1

p
+ [1− αb(n)]φ+1. (27)

Inserting this into φ = βV bm(M
b), using (25) and rearranging, we get

i

αb(n)
+ 1 =

u0(q)
c0 (q)

. (28)

18We assume equal measures of buyers and sellers get into the night market, but this of
course does not mean n = 1/2; n is the total measure of sellers, not all of whom get in. In
any case, the assumption that the measures of buyers and sellers who get in are equal is
used to make the different trading mechanisms more comparable because if so desired, one
can still think of trade as bilateral even if pricing is Walrasian. As shown in Rocheteau
and Wright (2003) this can easily be relaxed to allow a different measure of buyers and
sellers to get in, although then of course trade cannot in general be bilateral.
19Notice that the strict concavity of V b requires only u00 < 0 here.
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Also, (25) and (26) imply φ+1M
b = c0(q)q, and so (13) reduces to

−iqc0(q) + αb(n) [u(q)− qc0(q)] = αs(n) [qc
0(q)− c(q)] . (29)

Definition 2 A competitive equilibrium is a pair (q, n) that satisfies (28)

and (29).

The equilibrium conditions here are generally different from those in

search equilibrium given above. Now the Friedman Rule implies

qF = q∗ (30)

nF =
q∗c0(q∗)− c(q∗)
u(q∗)− c(q∗) . (31)

From (30), q is always efficient at the Friedman Rule in competitive equi-

librium. This is because, when agents are price takers, there is no holdup

problem in money demand. From (31), nF = 0 if c(q) is linear because profit

is zero so no one would want to be a seller. Hence we need c to be nonlinear

for this model to be interesting.

Finally, (16) and (31) coincide and n = n∗ iff

η(nF ) =
q∗c0(q∗)− c(q∗)
u(q∗)− c(q∗) . (32)

This is again a Hosios condition, but different from the one in search equilib-

rium. It is again not likely to hold, as it relates the properties of η with those

of u and c. Since the Friedman Rule gives q = q∗, it is possible that inflation

in excess of the Friedman Rule could generate a welfare improvement if it

moves n in the right direction — which is possible since n could be too big

or too small. It is true that inflation also reduces q, which is bad along the

intensive margin, but the effect on welfare of a change in q is second order

near i = 0. Hence it is again possible that some inflation could improve

welfare.
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3.3 Competitive Search Equilibrium (Posting)

We now consider a price-posting mechanismwhere the terms of trade are pub-

licly announced and then agents can direct their search. There are still trad-

ing frictions because agents may or may not get to trade at that price. This

corresponds to the notion of competitive search equilibrium in Moen (1997)

and Shimer (1996). Several interpretations of the mechanism have been pro-

posed, and here we adopt the one used in Moen (1997) and Mortensen and

Wright (2002). This story is that there are competing market makers who

can open submarkets, where a given submarket is characterized by the terms

(q, d) at which agents commit to trade and by the fraction of sellers n. Ob-

viously this assumes a certain amount of commitment; this is the essence of

posting and competitive search. One could argue about whether this type

of commitment is reasonable, but we emphasize logically it does not make

money inessential: committing to the terms of decentralized trade within the

period is not the same as committing to repayment of credit.

The different submarkets are announced at the beginning of each period

and agents can choose to go to any open submarket at night. In each sub-

market, buyers and sellers are matched bilaterally and at random, and hence

get to trade with probabilities αb(n) and αs(n), respectively. The sequence of

events is as follows. At the beginning of every period, each agent chooses to

be a buyer or a seller. Then market makers announce terms of trade; we find

it convenient to write these terms as (q, z) here, where z = φ+1d. Market

makers compete to attract buyers and sellers to their submarkets because

they charge entry fees, although in equilibrium this fee is 0 since there is free

entry into market making.20

20We assume here that market makers must charge the same fee to buyers and sellers,
say because they cannot identify types when the enter; see Faig and Huangfu (2003) for
an analysis of the case when the fees can differ. In any case, market makers are not crucial
for the competitive search equilibrium concept; one can alternatively let buyers or sellers
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In designing submarkets market makers effectively maximize the expected

utility of buyers subject to the constraint that they can attract some sellers to

their submarket. Let S be the set of active submarkets described by (q, z, n),
let s denote an element of S, and let V ≡ maxs∈S {αs(n) [−c(q) + z]} be the
expected utility of sellers in equilibrium. Then for any active submarket, the

problem can be formulated as

max
(q,z,n)

{αb(n) [u(q)− z]− iz} (33)

s.t. αs(n) [−c(q) + z] = V. (34)

It is shown in Rocheteau and Wright (2003) that, except for at most a count-

able number of values for V, the solution to this problem is unique, and so

all submarkets are the same in equilibrium.21 Hence, we may as well assume

there is only one active submarket.

It is also shown in Rocheteau and Wright (2003) that the correspondence

n(V) emerging from this program is non-empty and upper hemi-continuous,

and any selection from n(V) is decreasing in V. Furthermore, the maximum
expected utility of the buyer defined by (33) is continuous and decreasing

in V. This means that there is a unique V such that the expected utility of
a buyer is equal to the expected utility of a seller and this determines the

equilibrium. Substituting z from (34) into (33) and taking the first order

conditions for q and n, we get

u0(q)
c0(q)

= 1 +
i

α(n)
(35)

η(n) [u(q)− c(q)] =
½
1 +

i

α(n)
[1− η(n)]

¾
nV

α(n) (1− n) , (36)

post prices in order to attract potential trading partners (see e.g. Acemoglu and Shimer
(1999)).
21When the solution is not unique, buyers and sellers obtain the same expected payoff

no matter the solution chosen by the market maker. In such cases, on can assume without
loss of generality that all market makers choose the same solution.
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where η(n) is as defined above. Notice that (35), which determines q for

any given n, is the same as the equilibrium condition (28) from competitive

equilibrium. To derive the equilibrium condition for n, substitute V from
(34) and i/α(n) from (35) into (36) to obtain

−c(q) + z = c0(q)η(n)
c0(q)η(n) + u0(q) [1− η(n)]

[u(q)− c(q)] . (37)

From this we see that the terms of trade in competitive search equilibrium

coincide with those in search equilibrium when the seller’s bargaining power

is given by 1− θ = η(n). Equivalently, the seller’s effective bargaining power

(i.e. the trading surplus) adjusts in order to reflect his contribution in the

matching process. Hence z satisfies a condition analogous to (18) where θ is

replaced by 1− η,

z = f(q, n) =
[1− η(n)]u0(q)c(q) + η(n)c0(q)u(q)

[1− η(n)]u0(q) + η(n)c0(q)
. (38)

Finally, (13) implies

−if(q, n) + αb(n) [u(q)− f(q, n)] = αs(n) [f(q, n)− c(q)] . (39)

Definition 3 A competitive search equilibrium is a pair (q, n) that satisfies

(35) and (39).

From (35), the intensive margin is efficient and q = q∗ in competitive

search equilibrium iff i = 0, as in competitive equilibrium, but generally not

search equilibrium. Posting again eliminates the holdup problem in money

demand. Furthermore, at i = 0 and q = q∗ (39) becomes

nu(q∗) + (1− n)c(q∗) = [1− η(n)] c(q∗) + η(n)u(q∗),

which reduces to n = η(n). Hence, posting generates endogenously the Hosios

condition, and therefore it is also efficient along the extensive margin when

i = 0. To summarize, the Friedman Rule in competitive search equilibrium
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generates the first best allocation, q = q∗ and n = n∗. A corollary is that

any deviation from the Friedman Rule must reduce welfare, although for a

small deviation the effect is second order.

4 Quantitative Analysis

We now move to the quantitative experiments. While the period length in

this model can be anything, and while it may seem that a shorter period

makes more sense in terms of the story, for now we set it to a year mainly

because we want to use the same methods as, and compare our results to,

Lucas (2000). The results are actually quite robust to period length, however,

as we will discuss briefly below. Thus, for now we set β−1 = 1.03, as in Lucas.

The utility function for goods traded in the centralized market is U(x)− y,
and we use U(x) = A lnx; except for notation, A lnx − y is exactly what
Cooley and Hansen (1989) use. With U(x) = A lnx, notice that x∗ = A.

The utility function over home produced goods is

u(q) =
(q + b)1−a − b1−a

1− a ,

where a > 0 and b ∈ (0, 1). This generalizes the typical CRRA utility

function to guarantee u(0) = 0 for any a, which is a maintained assumption

in the model; for calibration we actually set b ≈ 0 so that u(q) is close to
the standard CRRA specification. Regarding the disutility of production

for sellers of the intermediate input, we take c(q) = qδ/δ with δ ≥ 1. We
set α(n) = n, which as we said earlier is a common specification in search-

theoretic models of money.

We now choose the vector of parameters Ω = (a,A, δ, θ). Regarding the

bargaining power parameter θ, which is only relevant in search equilibrium,

we start with the symmetric case θ = 0.5 and then check to see how varying

θ affects the results. For the other parameters, we follow Lucas (2000) and
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choose Ω to match the money demand data. Thus, define L =M/PY = L(i)

where P is the nominal price level and Y real output. One can think of this as

money demand in the sense that desired real balancesM/P are proportional

to real spending Y , with a factor of proportionality L(i) that depends on the

nominal interest rate. We measure i by the short term commercial paper

rate, Y by GDP, P by the GDP deflator, and M by M1, as in Lucas; as he

points out, the choice of M1 is somewhat arbitrary, but we use it here to

make the analyses comparable. We consider the period 1900-2000, which is

just slightly longer than Lucas’ sample; for the sake of comparison, we will

also consider the shorter period 1959-2000.

In the model L is constructed as follows. In the decentralized market

we measure output by the production of intermediate goods (since home

produced goods are not traded). Nominal output in this market is therefore

(1−n)α (n)M b. Nominal output in the centralized market is x∗/φ+1. Hence,

PY = (1 − n)α (n)M b + x∗/φ+1. Using the fact that M = (1 − n)M b,

z = φ+1M
b and x∗ = A, we have

L =
(1− n) z

A+ (1− n)α (n) z . (40)

Since the endogenous variables z and n depend on nominal interest rate

through the equilibrium conditions of the model, (40) defines a relation L =

L(i), where L(i) depends on the underlaying parameter vector.

We first tried to choose (a,A, δ) to minimize the squared residuals between

L in the data and L in the model. However, numerically we were not able

to pin down the parameters precisely; roughly speaking the routine picks

A to adjust the level of L and (a, δ) to adjust the curvature, and there is

more than one combination of (a, δ) that can generate basically the same

curvature. We therefore let the data identify (A, a) and set δ to an arbitrary

value. We choose δ = 1.1 so that c(q) is close to be linear and therefore close

to the specification for C(y); we cannot take δ = 1 because this implies sellers
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earn zero profit, and hence there are no sellers, in competitive equilibrium

(this is not an issue in search equilibrium or competitive search equilibrium).

We will discuss below how the value of δ matters.

We measure the welfare cost of a π = γ − 1 percent inflation by asking
how much agents would be willing to give up in terms of total consumption

to reduce γ to 1. Expected utility for an agent given γ is measured by Wγ

as defined in (14). Suppose we reduce γ to 1 but also reduce consumption of

all goods by a factor ∆. Expected utility becomes

W1(∆) = (1− n1)α(n1)[u(q1∆)− c(q1)] + U(x∗∆)− x∗,

where qγ and nγ are the equilibrium values for n and q given γ. The welfare

cost of inflation is the value of ∆1 that solves W1(∆) = Wγ(1). We also

report how much consumption agents would be willing to give up to reduce

γ to β (the Friedman Rule). The measure ∆F is interesting because the

Friedman Rule is the optimal monetary policy under some of the mechanisms

we consider. In the following, we let ∆̄1 = 100(1 −∆1) and ∆̄F = 100(1 −
∆F ), and take as a benchmark γ = 1.1; i.e. ∆̄1 is the percentage of total

consumption agents would give up to have 0% instead of 10% inflation and

∆̄F is the percentage they would give up to have the Friedman Rule instead

of 10% inflation.

4.1 Competitive Search Equilibrium

We present our quantitative results in a different order from the way we pre-

sented the theory, beginning with competitive search equilibrium, because as

we saw in the previous section this mechanism delivers the first best alloca-

tion at the Friedman Rule, and hence offers a natural benchmark. When we

fit the model to the data we find (a,A) = (0.0976, 0.9562). As it can be seen

in the upper panels of the following figure, this simple procedure generates a
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very good fit, where the left panel is for the whole sample 1900-2000 and the

right panel is for the shorter sample 1959-2000. The lower diagrams show the

equilibrium values of q and n as functions of i implied by the fitted parameter

values in each case.
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Figure 1. Quality of fit and equilibrium values
of q and n in Competitive Search Equilibrium.

At the Friedman Rule, in competitive search equilibrium we have q = 1

and n = 0.5, corresponding to the first-best allocation. We find that a

10% inflation here is worth just over 1% of consumption: ∆̄1 = 1.11 and

∆̄F = 1.22. This is a little bigger than most previous estimates — e.g. Cooley

and Hansen (1989) or Lucas (2000) — but it is in the same ballpark (Lucas

reports slightly less than 1%). The results are fairly robust to changes in

δ. For example, if we assume δ = 1.2, we obtain (a,A) = (0.0156, 0.8766),

∆̄1 = 1.09 and ∆̄F = 1.20. An upper bound is obtained at δ = 1, which yields

(a,A) = (0.1797, 1.0519), ∆̄1 = 1.13 and ∆̄F = 1.25. Note that the cost

shrinks when we consider more recent data: going back to the case δ = 1.1,

if we fit the model to the 1959-2000 data, we find (a,A) = (0.1946, 1.5987),

∆̄1 = 0.67 and ∆̄F = 0.74.
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As seen in the figure, the implied parameters from either sample indicate

that an increase in inflation reduces q and increases n. To see how this

works, we represent the equilibrium conditions (35) and (39) by the curves

Q and N in the following figure. As i increases, Q shifts to the left and N

shifts upward: the black curves correspond to i = 0.03 and the grey curves

to i = 0.13. In any case, to summarize we have seen that competitive search

equilibrium generates a welfare cost of inflation that is very much in line

with estimates found in the previous literature, including Lucas (2000). This

is interesting, we believe, because it shows that introducing frictions in the

trading process does not necessarily raise the cost of inflation if one is willing

to adopt a particular mechanism.
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N(i=0.13)
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Figure 2. Competitive search equilibrium

4.2 Search Equilibrium

We now move to search equilibrium. As a benchmark, consider symmetric

bargaining, θ = 1/2. Now when we fit the model (a,A) = (0.2450, 0.8942).

For these parameters a 10% inflation implies ∆̄1 = 3.10 and ∆̄F = 3.77.

These measures are bigger than those in most of the literature and what we

found under competitive search, but similar to what is reported in Lagos and

Wright (2002) (which is also a bargaining model, but does not have extensive
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margin effects). If we recalibrate to the 1959-2000 data, the results do not

change very much in this case: we find (a,A) = (0.4064, 1.4671), ∆̄1 = 3.02

and ∆̄F = 3.82. In Figure 3, we represent the fit and the equilibrium values

of q and n as a function of i. Again the left panel is for the whole sample

1900-2000, and the right panel is for the shorter sample 1959-2000.
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Figure 3. Quality of fit and equilibrium values
of q and n in Search Equilibrium.

To explain the difference across models, first note that under bargaining

there is a holdup problem in money demand. Second, when agents decide

to become sellers they do not internalize the effect of their decisions on the

composition of the market and the frequency of trade. These two frictions

raise the cost of inflation. Interestingly, n is now nonmonotonic in i. This

reflects the fact that inflation has two effects on agents’ incentive to become

a seller. First, it raises the opportunity cost of holding money, which hurts

buyers. Second, it reduces q which affects buyers’ and sellers’ shares of the

match surplus. The buyer’s share in equilibrium is θu0(q)
θu0(q)+(1−θ)c0(q) , which is
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decreasing in q. Therefore as i increases, q decreases and buyers extract a

larger fraction of the gains from trade. This first effect dominates for low

values of i while the second dominates for larger values. To illustrate these

two effects, we represent (20) and (21) by the curvesQ andN in the following

figure.
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Figure 4. Equilibrium under bargaining.

The cost of inflation depends on θ, and a change in bargaining power

can mitigate or exacerbate the effects described above. As θ gets bigger

the holdup problem should be less severe, but the effect on the extensive

margin is less obvious. To investigate this, we first vary θ while keeping

(a,A) constant. As reported in Table 1, in this case ∆̄F decreases with θ

whereas ∆̄1 is actually nonmonotonic and, in particular, is smaller at θ = 0.2

than θ = 0.5. This is because at θ = 0.2 inflation has a positive effect on

the number of trades. However, this positive effect on the extensive margin

is outweighed by the negative effect on the intensive margin, and so any

inflation is still bad for welfare at θ = 0.2. At θ = 0.8, on the other hand, the

positive effect on the extensive margin outweighs the effect on the intensive

margin, and a small deviation from the Friedman Rule is good for welfare, as

seen in Figure 5. The reason this happens is that when θ is big the holdup

problem is not too severe. We think that it is always interesting to see a

26



θ 0.2 0.4 0.5 0.6 0.8
∆̄1 2.78 3.21 3.10 2.95 2.83
∆̄F 4.14 4.11 3.77 3.40 2.95
q1.1 0.07 0.17 0.20 0.21 0.16
qF 0.63 0.74 0.78 0.83 0.92
n1.1 0.75 0.58 0.49 0.40 0.20
nF 0.77 0.57 0.48 0.38 0.19

Table 1: Equilibrium and welfare.

model where inflation may be beneficial, simply because the Friedman Rule

is so robust in monetary economics.22
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Figure 5. Welfare cost of inflation when θ = 0.8.

We repeat that in the above calculations we vary θ but keep the same

(a,A). We can also do the exercise where we refit (a,A) for each value of θ.

As shown in Table 2, the cost of inflation is now a non-monotonic function

of θ, and tends to be bigger when θ is further from 1/2. In all cases shown

in this table, the Friedman Rule is the optimal monetary policy. Also, we

can show how the extensive margin matters by computing ∆F when n is
22As discussed in the Introduction, some inflation may also be good in the model of Shi

(1997), for different but not unrelated reasons. This contrasts sharply with the model in
Rocheteau and Wright (2003), where the extensive margin is captured using free entry by
sellers, and we can prove that the Friedman rule is optimal in search equilibrium for any
bargaining power.
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θ 0.2 0.4 0.5 0.6 0.8
∆̄1 7.41 4.01 3.10 2.56 4.48
∆̄F 10.14 5.06 3.77 2.99 5.44
q1.1 0.08 0.17 0.20 0.22 0.16
qF 0.55 0.73 0.78 0.81 0.78
n1.1 0.71 0.58 0.49 0.39 0.10
nF 0.76 0.57 0.48 0.38 0.18

Table 2: Equilibrium and welfare.

θ 0.2 0.4 0.5 0.6 0.8
∆̄F 10.97 5.03 3.78 3.03 3.36

Table 3: Welfare cost of inflation when n is exogenous.

exogenous and equal to its value at the Friedman Rule, as shown in Table

3. Comparison of Tables 2 and 3 shows that having n endogenous mitigates

the cost of inflation when θ is small and exacerbates it when θ is high. The

reasoning is that for low values of θ, inflation has a positive effect on the

extensive margin while for high values of θ it has a negative effect.

Although symmetric bargaining may be a natural benchmark, another

way to pick θ is to choose it to generate a markup µ (price over mar-

ginal cost) consistent with the data. We target µ = 1.1, which is stan-

dard following Basu and Fernald (1997). In the model, real marginal cost

is c0(q) and nominal marginal cost is c0(q)/φ+1. The price in the decentral-

ized market is M b/q. Therefore, the markup in the decentralized market is

φ+1M
b/ [c0(q)q] = z(q)/ [c0(q)q]. The markup in the centralized market is

one. We aggregate markups using the shares of output produced in each

sector. A markup of µ = 1.1 implies θ = 0.3, (a,A) = (0.2615, 0.4964), and

this yields ∆̄1 = 5.36 and ∆̄F = 7.03. One has to interpret this somewhat

cautiously, however. If there are other reasons for a positive markup, such

as elements of monopolistic competition in the centralized market, say, one

may not want to attribute µ = 1.1 entirely to bargaining in the decentralized
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market.

To summarize, in the presence of bargaining the welfare cost of inflation

is bigger than what is usually found in studies adhering to the competitive

paradigm. Although the exact numbers depend on some details, for the

most reasonable calibrations ∆̄1 is in a range of approximately 3% to 5%.

The key feature of the model is the holdup problems that are common in

environments with bargaining. We found that extensive margin effects tends

to mitigate the cost of inflation when the bargaining power of buyers is low,

and to exacerbate the cost when it is high. Usually Friedman Rule is the

optimal policy, although we found examples where it is not.

4.3 Competitive Equilibrium

In this model, the data yield (a,A) = (0.0983, 1.1144).23 A 10% inflation

now implies ∆̄1 = 1.54 and ∆̄F = 1.65, which is smaller than the measure

we obtained under bargaining but still a bit bigger than typical measures

in the literature. In competitive equilibrium, the monetary holdup problem

vanishes (qF = 1), which reduces the cost of inflation as compared to search

equilibrium. However, the market-clearing price does not internalize the

effects on the extensive margin, since nF = 0.45 < 0.5 = n∗. This inefficiency

explains the relatively higher cost of inflation.

In this case, if we refit the model to the period 1959-2000, the best fit is

obtained for a ≈ 0. When we restrict a not to be smaller than 0.01 we get
(a,A) = (0.01, 0.2478) and ∆̄1 = 0.82. Again, the estimated cost of inflation

is lower in the more recent sample. For these parameter values, a deviation

from the Friedman Rule is optimal, and welfare is maximized for i ≈ 0.01.
To explain this result, note that for these parameters nF = 0.9. An increase

in i above the Friedman Rule reduces n and therefore raises the number of
23This model was somewhat harder to fit to the money demand data. It seems to work

better when we omit one observation, the year 1981, which is a bit of an outlier.
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trades and welfare. While this result is sensitive to the calibration, we think

it is at least interesting that a case where the optimal policy is i > 0 can be

derived for parameters that are not implausible.
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Figure 6. Quality of fit and equilibrium values
of q and n in Competitive Equilibrium

Generally, the results for competitive equilibrium are sensitive to the

choice of parameter values.24 If we keep (A, a) constant but increase δ we find

that a deviation from the Friedman Rule is welfare improving for all values of

δ larger than 1.13. For these parameters, nF > 0.5 and a deviation from the

Friedman Rule brings n closer to n∗. Because q = q∗ at the Friedman Rule,

a small change in q has only a second order effect and the positive welfare

effect on n dominates. Furthermore, if δ is large enough (larger than 1.3) a

deviation from the Friedman Rule also has a positive effect on output. This

is interesting as there is some empirical evidence of a positive output effect

of inflation for low inflation economies, such as Bullard and Keating (1995).
24For example, if δ = 1.2 we get (a,A) = (0.3915, 1.8643) and ∆̄F = 3.96, and set

δ = 1.5 we get (a,A) = (0.6496, 2.0866) and ∆̄F = 9.12. The point is simply that results
are very sensitive to parameter values with this mechanism.
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To summarize, in competitive equilibrium the welfare cost of inflation

is sensitive to parameter values, but under our benchmark calibration it is

bigger than usually found in the literature because of the endogenous com-

position of buyers and sellers. It is smaller than under bargaining, however,

because there is no holdup problem on money demand. In some cases, a

deviation from the Friedman Rule can improve welfare if it happens to raise

the number of trades, and can also increase output, at least for moderate

inflation rates.25

5 Conclusion

In this paper we have analyzed inflation in some models with trading frictions.

We did this under three alternative trading mechanisms: bargaining, price

taking, and price posting. The quantity of output one gets in exchange for

money as well as the frequency of trade are endogenous in the model, which

allowed us to distinguish the effects of inflation on the intensive and extensive

margins. We calibrated parameters to match some simple observations, and

calculated the welfare cost of inflation under various scenarios.

The main conclusions are as follows. First, the cost of inflation is big

under bargaining: assuming symmetry, eliminating a 10% inflation is worth

about 3% of consumption. This is due to the holdup problem in money

demand emphasized in Lagos and Wright (2002). That problem is absent

under price taking or posting. Under price taking the cost of inflation can

still be big, but for a different reason: the frequency of trade is generally
25We checked the robustness of our results to the period length by taking the period

to be a month. That is, we did not use monthly data, but transformed the data and
model into monthly equivalents. Given this, we also fit a more general function α(n) = µn
to capture the trading frictions, since when the period is shorter it makes more sense to
allow α(n) < 1 even at n = 1. In any case, the results did not change substantially. For
example, the competitive search equilibrium model now implies ∆̄F = 1.23, almost exactly
the same as the yearly model, while the search equilibrium model with θ = 0.5 now implies
∆̄F = 2.93, only slightly smaller than the yearly model.
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inefficient, and inflation can make this worse. Depending on parameter values

inflation can also raise the frequency of trade, in which case a deviation from

the Friedman Rule may be optimal. Under price posting the cost of inflation

is close to previous estimates, around 1%.

Several extensions seem worth exploring. First, we endogenized the fre-

quency of trades by allowing agents to choose to be either buyers or sellers.

This modeling choice was mainly to make calibration easier. More work re-

mains to be done to see how the results compare to models that capture

the extensive margin in other ways, including endogenous search intensity.

It would be interesting to introduce other distortions to see how they inter-

act with the effects in our model. Certainly there is a lot more to be done

in terms of fitting the model to the data; we used the simple approach in

Lucas (2000) mainly to facilitate comparison, but this can be considered a

preliminary step. Finally, we only studied economies where the distribution

of money holdings across buyers is degenerate in equilibrium. It is known

that the cost of inflation changes when one considers models that do not

have this property, such as Molico (1999). Exploring these extensions is left

to future work.
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