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Abstract

We investigate the design of prudential bank regulation and its effects on the real and
financial decisions of banks in a dynamic framework. In our model, a representative bank can
dynamically alter its asset portfolio by engaging in asset substitution or risk-shifting. The
regulator controls the bank’s risk-shifting incentives through the threat of intervention in the
bank’s operations. The optimal regulatory policy, which we characterize in closed form, entails
an optimal combination of an initial capital requirement, intervention to control the risk of
the bank’s portfolio, capital injection, and liquidation of the bank. Under the optimal risk
intervention policy, the regulator intervenes when the bank’s capital ratio lies inside a “band”
consisting of two triggers. We calibrate the model and show that the optimal initial capital
requirement is 20%, substantially higher than that suggested by the Basel II accords. Relative
to a benchmark unregulated bank, regulation increases bank leverage by 15%, while lowering
its credit spread. Capital injection or risk intervention alone has modest impact on the bank’s
social value. The optimal combination of regulatory policies, however, significantly improves
social value by 4.4% and bank value by 12%. Our results suggest that prudential regulation
can achieve substantial economic benefits provided it is appropriately designed. We study how
optimal regulation depends on the economic and regulatory environment and find that prudential
regulation should not be independent of monetary and fiscal policies.
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I. Introduction

The 2007–2009 financial crisis has engendered a vigorous debate on the prudential regulation of
financial institutions. Despite substantial progress in regulation such as the 2010 Dodd-Frank Act,
a broad consensus has yet to emerge on a number of issues that are central to the debate. How does
regulation impact the various stakeholders of banks? What forms should regulatory intervention
take? At what points (if at all) should regulators intervene in banks’ operations to control the risk
of their asset portfolios, force liquidation or recapitalization of distressed banks, or bail them out
with public funds? What are the relative impacts of different components of regulation—capital
regulation, intervention and control of banks’ risk-taking, and capital injection—on banks’ values
and social welfare? How sensitive is optimal prudential regulation to the economic environment?
Given the inter-temporal nature of banks’ operations and regulatory intervention policies, address-
ing many of the above questions calls for a dynamic model that is both analytically tractable
and calibratable to data. Such a model can provide qualitative insights and also potentially offer
quantitative guidance on the design and impact of prudential regulation.

We take preliminary steps towards addressing some of the above issues by developing a dynamic
model to analyze the design of prudential bank regulation and its effects on the real and financial
decisions of banks. Our objectives are both positive and normative in that we seek to obtain
insights into how existing regulatory policies affect the investment and financing decisions of banks
as well as the optimal design of prudential regulation. The optimal regulatory policy, which we
characterize analytically, is multi-pronged in nature in that it entails imposition of initial capital
requirements, intervention to control the risk of the bank’s portfolio, injection of capital after the
bank becomes insolvent, and liquidation of the bank when it is no longer optimal to keep it active.
Our calibration of the model shows that, relative to a benchmark unregulated bank, regulation
increases bank leverage substantially, while lowering its credit spread. The optimal initial capital
requirement is substantially higher than that suggested by the Basel II accords and consistent
with the higher ratios advocated by recent studies (e.g. Admati, DeMarzo, Hellwig, and Pfleiderer
(2011)). While capital injection and investment intervention independently have modest effects on
social value, their optimal combination significantly improves social value by 4.4% and bank value
by 12%. Overall, our results suggest that prudential regulation has substantial economic benefits
provided that it is appropriately designed and the entire gamut of regulatory intervention tools are
employed.

In our continuous-time model, we consider a financial institution (henceforth referred to as
the “bank”) that operates in a regulated environment. At date zero the bank chooses its capital
structure that consists of equity and debt. For simplicity, we assume that the bank’s debt struc-
ture requires it to make a fixed payment (per unit time) to debt holders. As in prior literature
(e.g. Giammarino, Lewis and Sappington (1993)), there are additional deadweight costs of equity
issuance relative to debt issuance. All market participants are risk-neutral and discount payoffs at
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the risk-free rate.1

The bank can dynamically alter the distribution of its earnings by changing its investment
portfolio. For simplicity, the bank can choose one of two “projects” at any date, where the term
“project” is a metaphor for the composition of the bank’s portfolio of investments. The bank’s total
earnings (before interest payments) evolve as a lognormal process under either of the projects. To
focus on the distortions created by asset substitution , we assume that the first project has a higher
drift and lower volatility than the second one. The bank’s project choices are only observable by
the regulator if it chooses to intervene in the bank’s operations. We allow for a broad gamut of
regulatory intervention tools. The regulator could impose an initial capital requirement for the
bank, intervene in the bank’s project choices, bail out an insolvent bank by injecting capital, and
liquidate the bank. Regulation has potential benefits because, while the bank’s management cares
about shareholder value, the regulator cares about the bank’s “social value” that internalizes the
claims of shareholders, debtholders and tax-payers (due to possible infusion of public funds by the
regulator). Further, the regulator internalizes the effects of systemic risk — the externality that a
bank imposes on the economy through its financial distress.

In the hypothetical environment in which the bank is unregulated, the bank chooses its capital
structure at date zero and dynamically chooses its projects to maximize shareholder value. If the
bank’s earnings are insufficient to meet debt payments, it can raise additional funds by issuing
additional equity and/or borrowing from the central bank. In either case, it incurs additional costs
due to its financial distress. The bank’s capital structure balances the tradeoff between the cost
advantage of debt against financial distress costs that include the excess costs of equity issuance in
financial distress, additional interest costs on its borrowing from the central bank, the (endogenous)
costs associated with asset substitution, and the deadweight costs of liquidation.

We solve the bank’s stochastic control problem and obtain a closed-form analytical characteri-
zation of the unregulated bank’s optimal behavior. The optimal strategy of the unregulated bank
is characterized by three earnings thresholds: the switching threshold at which the bank switches
between the two projects, the liquidity threshold at which debt payments consume all of the bank’s
earnings, and the insolvency threshold at which the bank’s equity value endogenously falls to zero
so that it can no longer meet debt payments. The bank optimally chooses the low-risk project
whenever its earnings are higher than the switching threshold, and the high-risk project below
the threshold. Because shareholders effectively hold a convex claim, it is optimal for the bank to
increase risk when its earnings are sufficiently low to lower the probability of insolvency. Never-
theless, given the dynamic nature of the bank’s problem, the existence of a single threshold at
which the bank optimally switches projects is not a priori obvious; we rigorously establish this in
our analysis. The bank services debt payments entirely with internal funds when its earnings are

1Alternatively, we can assume as in Duffie (2001, Chapter 10) that the bank’s cash flows are marketed so that we
can carry out our analysis in the risk-neutral measure under which all agents are risk-neutral and discount payoffs at
the risk-free rate.
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above the liquidity threshold, and issues new equity to cover debt obligations when earnings are
below the liquidity threshold, but above the insolvency threshold. The bank is unable to continue
servicing debt when its earnings fall to the insolvency threshold so that the bank is liquidated.

Next, we analyze the fully regulated environment in which the bank is completely controlled by
the regulator whose objective is to maximize the bank’s “social” value that incorporates the claims
of shareholders, debt holders, and tax payers. To incorporate the systemic effects of the bank on
the economy, we also allow the equity issuance, financial distress and liquidation costs in the regu-
lator’s objective function to differ from those of the unregulated bank. We analytically show that
the optimal policy of the regulator is described by the three thresholds as in the unregulated bank’s
problem (although their values differ from those for the unregulated bank) as well as an additional
liquidation threshold. When the bank’s earnings fall below the insolvency threshold, the regulator
takes over the bank and injects capital until either earnings fall further to the liquidation threshold
or they increase so that the bank becomes solvent again. In particular, our results demonstrate
that, in a dynamic environment, it could also be optimal for the regulator to permit asset sub-
stitution by increasing risk when the bank’s earnings are sufficiently low. The intuition is that,
because the regulator optimally injects capital when the bank’s earnings fall below the insolvency
threshold, the regulator effectively becomes the residual claimant and, therefore, has a “locally”
convex objective function akin to that of shareholders of an unregulated bank. Consequently, it
could be optimal for the regulator to increase risk to reduce the probability of liquidation and
the associated liquidation costs. Nevertheless, because the regulator cares about the bank’s social
value, it has lower incentives to engage in asset substitution than the bank’s shareholders so that
the regulator’s optimal switching threshold is always lower than that of the unregulated bank.

By comparing the unregulated bank’s problem with that of the regulator, we derive the optimal
regulatory policy that implements the first best policy described above. The optimal regulatory
policy comprises of three components: capital regulation, risk intervention and capital injection.
The regulator imposes an initial capital requirement by setting a cap on the initial leverage ratio of
the bank. The risk intervention policy has a “band” structure: the regulator intervenes and forces
the bank to choose the low risk project when the bank’s earnings lie in between the unregulated
bank’s optimal switching threshold and the regulator’s optimal switching threshold because it is
precisely in this interval where the unregulated bank’s and regulator’s optimal project choices differ.
Since the latter threshold is lower than the former, the regulator always intervenes nontrivially.2

To quantitatively analyze the impact of prudential regulation, we calibrate the model to data on
U.S. banks over the period 1991 – 2008. In the aftermath of the financial crisis, it has become clear
that banks were poorly regulated (if at all) during this period, but many banks were nevertheless

2The regulatory intervention in the model is analogous to that in the FDIC Improvement Act in 1991, which
classifies banks as well capitalized (≥10%), adequately capitalized (≥ 8%), undercapitalized (<8%), significantly
undercapitalized (<6%), and critically undercapitalized (<2%). The first two categories are not restricted in their
activities, while the latter categories face increasingly severe restrictions on actions such as dividend payments, asset
growth, and acquisitions, and ultimately expropriation of shareholders.
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subsequently “bailed out” through injection of public funds. Consequently, the model that we
calibrate to data is an “intermediate” one where the bank is free to choose its capital structure and
projects, but nevertheless implicitly enjoys the protection provided by public capital injection after
the bank is no longer able to raise capital to meet debt requirements. We calibrate the model to
match banks’ average earnings to asset ratio, risk, leverage, and yield spread.

Regulation has a substantial impact on bank leverage. Under the calibrated baseline parame-
ters, the fully regulated bank has an optimal leverage of 80%, while the unregulated bank’s leverage
is 65%. The credit spread (42 bp) of the regulated bank is, however, lower than that of the unregu-
lated bank (69 bp). The regulator’s intervention in the bank’s project choices significantly reduces
the bank’s asset risk. Further, the regulator’s commitment of capital injection trims the effective
cost of debt. Together these factors enable the regulated bank to issue much more debt with a
lower spread than the unregulated bank. Interestingly, our results suggest that the optimal initial
capital requirement, which is equal to the initial equity ratio in the fully regulated environment,
is 20%, substantially higher than that suggested by the Basel II accords and consistent with the
requirements being proposed by the Basel III committee. This finding also supports the proposal
of Admati et al (2011) that the capital requirement be set much higher than the current regulatory
levels (they recommend capital ratios between 20% and 30% in their conclusions). The optimal in-
tervention ratio, which is the level below which the regulator intervenes in the bank’s management,
is 6.8%. The predicted intervention ratio is broadly consistent with the FDIC definitions of “un-
dercapitalization” and “significant undercapitalization” ratios (8% and 6%) that trigger monitoring
and restrictions on banks’ activities.3

From an ex ante perspective, optimal regulation increases a bank’s value by 12% relative to
the unregulated bank, while it increases the bank’s “social” value (that also incorporates the costs
arising from systemic risk and deadweight social costs of capital injection) by 4.4%. Regulation has
an even bigger quantitative impact ex post. The ex post bank value at the insolvency threshold
increases by 87% due to capital injection by the regulator. The bank’s ex post social value, which
incorporates the social costs of capital injection, increases by 36% due to the injection of capital
by the regulator. We also analyze the relative quantitative impacts of different regulatory tools.
Risk intervention on its own improves a bank’s social value by only 0.4%, while capital injection
on its own reduces it by 0.7%. Together the evidence suggests that there are significant interactive
effects of different regulatory tools.

The analytical characterizations of the bank’s and regulator’s policies greatly facilitate the ex-
ploration of various “comparative static” relationships that generate implications for the sensitivity
of optimal regulation to changes in the economic environment. The optimal capital requirement
decreases with the systemic cost of bank equity, because the regulator internalizes the cost of low
leverage and desires higher bank borrowing. This provides a rationale for procyclical capital re-

3Details of the relevant rules and regulation can be found on the FDIC website at
http://www.fdic.gov/regulations/laws/rules/2000-1300.html
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quirements (e.g. Dewatripont, Rochet, and Tirole (2010)) as the systemic cost is likely to be higher
during economic recessions. The capital requirement also depends negatively on the bank’s private
equity issuance cost. As higher taxes increase the private cost of equity,4 our results imply that
lower capital requirements should be imposed in a high-tax-rate regime.

We also find that the capital requirement increases with the the bank, but is virtually inde-
pendent of the private distress cost. This emphasizes the point that regulatory policy should be
mainly concerned with the systemic risk of the banking sector (e.g. Acharya, Cooley, Richardson,
and Walter (2010)). The expected cost of capital injection depends negatively on the marginal cost
of injection. This result reflects the moral hazard problem in bank bailouts (e.g., the dilemma
facing the Federal Reserve when it weighed decisions on whether to save financial institutions such
as Bear Stearns and Lehman Brothers). When the marginal cost of injection is smaller, the market
believes that the regulator will inject more capital and, thereby, provide better insurance for cred-
itors. As a consequence, banks are able to borrow more aggressively leading to substantial bailout
costs.

Our finding that the optimal capital requirement decreases with the tax rate suggests that
bank capital regulation should not be independent of fiscal policy as suggested by Admati et al.
(2011). We also show that the initial capital requirement varies negatively and significantly with
the risk-free rate suggesting that bank regulation should not be independent of monetary policy.
This finding also suggests that uniform capital requirements across countries with differing risk-free
rates could be sub-optimal.5 In contrast, the optimal intervention ratio is quite insensitive to the
risk-free rate suggesting that the trigger at which regulators intervene in banks’ operations could
be independent of monetary policies.

II. Literature Review

We contribute to the literature by developing a dynamic model to quantitatively investigate
the design and impact of prudential regulation. We build on insights provided by a number of
prior studies in the literature. One stream of the literature stresses the role of bank capital in
inducing banks’ monitoring efforts (Diamond (1984), Giammmarino, Lewis, and Sappington (1993),
Holmström and Tirole (1997), Allen, Carletti, and Marquez (2011), Mehran and Thakor (2011),
Acharya, Mehran, and Thakor (2011)). Another strand of the literature considers the banks’
liquidity provision role in accepting demand deposits (Diamond and Dybvig (1983), Gorton and
Winton (1995), Diamond and Rajan (2000)).

A substantial literature studies the risk-shifting incentives of banks stemming from the early
studies of Merton (1977), Kareken and Wallace (1978), and Sharpe (1978).6 While Koehn and

4Taxes do not substantially affect the external or systemic cost of equity because they are transfers between
different agents.

5Acharya (2003) makes a similar point in a very different framework and for different reasons
6See Santos (2001, 2006) for reviews of this literature.
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Santomero (1980) and Kim and Santomero (1988) show that a risk-averse banker may actually
select a riskier portfolio when facing capital adequacy requirements, Rochet (1992) points out that
the limited liability of the bank implies that capital regulation is still helpful in reducing risk-taking
behavior. Dewatripont and Tirole (1994) propose the “representation hypothesis” that regulators
monitor and supervise banks on behalf of small depositors who lack the incentives or resources to
do so. Marshall and Prescott (2001, 2006) consider state-contingent regulation when the bank has
moral hazard in project selection. Also related are studies of shareholder-debtholder conflicts and
asset substitution for non-financial firms (Jensen and Meckling (1976), Leland (1998)).

We contribute to the above streams of the literature in a number of respects. First, we develop
a continuous-time model in which the regulator has a wide gamut of intervention tools consistent
with those observed in reality. Second, the bank can dynamically engage in asset substitution, and
its capital structure reflects the tradeoff between the excess costs of issuing equity against financial
distress costs that include the agency costs arising from asset substitution and liquidation costs.
Third, we analytically characterize the optimal regulatory policy, and calibrate our model to data
to obtain quantitative insights into the design and value of prudential regulation as well as the
relative effects of different components of regulation on the bank’s value and its social value.

A few recent studies quantitatively analyze the impact of bank capital regulation, using dynamic
models with calibrated parameters. Zhu (2008) and Van den Heuvel (2009) develop dynamic models
to evaluate the macroeconomic impact of captial regulation. De Nicolò, Gamba, and Lucchetta
(2011) considers the impacts of capital regulation, liquidity requirements, and taxation on banks’
behavior and social welfare. They abstract away from the effects of asset substitution. Analogous
to the above studies, we too develop a dynamic “calibratable” model that can be used to carry out
a quantitative analysis of the design and impact of prudential regulation. Because our model allows
analytical solutions, we are able to obtain additional insights on the optimal prudential regulation
policies and the behavior of banks in response to these policies.

III. The Model

We develop a continuous-time model of a financial institution that we refer to as a “bank” for
concreteness although our model is more generally applicable to other regulated financial institu-
tions such as insurance and securities firms. The time horizon is [0,∞). Because our focus is on
shareholder-debtholder agency conflicts, we assume that the bank’s management behaves in the
interests of its shareholders. Hereafter, we refer to the bank’s management as the “bank.”

A. The Bank’s Earnings and Project Choices

The bank can dynamically alter the distribution of its earnings by choosing its portfolio of
projects that we hereafter refer to as its “project.” As in Chapter 8 of Duffie (2001), the bank’s
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cash flows are marketed. Because all agents are value-maximizers, it follows from the fundamental
theorems of asset pricing that we can, without loss of generality, work under the risk-neutral measure
under which all agents are risk-neutral and discount payoffs at a common risk-free rate r (see also
Leland (1994)).

At any date t, the bank can choose one of two possible projects, 1 or 2. In the (infinitesimal)
time period [t, t+ dt], the bank’s total earnings (before debt payments) C evolve as follows under
the two projects:

dCt = µ1Ctdt+ σ1CtdBt, if project 1 is chosen, (1)

dCt = µ2Ctdt+ σ2CtdBt, if project 2 is chosen. (2)

In the above, µ1 and µ2 are the risk-neutral drifts or expected growth rates of earnings under
projects 1 and 2, respectively; σ1 and σ2 are the volatilities, and Bt is a standard Brownian motion
that we assume to be the same for the two projects (without loss of generality) to simplify the
notation. Let r be the risk-free rate. We assume that

r > µ1, µ2 (3)

to ensure that all asset prices are well defined. As our focus is on shareholder-debtholder agency
conflicts arising from asset substitution or risk-shifting, we assume that

µ1 > µ2 and σ1 < σ2. (4)

Hence, project 1 has a higher drift and lower volatility than project 2. It is easy to see from (1), (2)
and (4) that the NPV of the total future earnings from project 1 at any date is greater than that
of project 2. Project 2, therefore, has higher risk and lower NPV than project 1. Our analysis can
be easily generalized to accommodate the scenario where µ1 > µ2 and σ1 > σ2, but the tradeoffs
are less interesting and relevant to the real-world regulation of institutions where the mitigation of
value-destroying asset substitution plays an important role.

The bank’s earnings as well as the project parameters µ1, µ2, σ1, σ2 are observable by all market
participants. The bank’s actual project choices are, however, only observable by the regulator if
it intervenes in the bank’s operations. We show later that the regulatory intervention policy can
be designed so that the bank’s dynamic project choices are optimal from the standpoint of the
regulator. In other words, the “first best” can be achieved through a suitable intervention strategy
so that there is no deadweight loss due to the fact that the regulator can only observe the bank’s
project choices when it intervenes in the bank’s management. For future reference, we denote the
information filtration generated by the earnings process C by Ft.
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B. Capital Structure

The bank chooses its capital structure at date 0 that comprises of equity and debt. For sim-
plicity, we assume that the bank’s debt structure requires it to make a constant payment of θ per
unit time to debtholders. For example, if the bank’s debt comprises of deposits, θ is the withdrawal
rate of depositors per unit time.7 The bank’s capital structure is determined by the parameter θ.

As in several prior studies (e.g. Giammarino et al. (1993)), there are additional deadweight
costs of equity issuance is costly relative to debt issuance. These costs include direct costs such
as the tax disadvantage of equity relative to debt as well as shadow costs arising from various
sources such as the comparative advantage that banks possess in raising capital through deposits
rather than equity, investors’ demand for liquid demand deposits, etc. Some of these costs are more
naturally interpreted as “flow” costs, while others are easier to interpret as “lump sum” costs that
are incurred whenever equity is issued. It would greatly complicate the notation and exposition
to separately model “lump sum” and “flow” costs, and it is also hard to independently calibrate
the corresponding parameters in our quantitative analysis. Consequently, we choose to model the
excess costs of equity as “flow” costs throughout. It should be borne in mind, however, that we
can alternately model these as “lump sum” costs or a combination of “flow” and “lump sum” costs.
The alternate modeling choices do not affect the main insights of the study.

More precisely, in any period [t, t + dt], as long as the bank is solvent, the cash flow to debt
holders is θdt and the cash flow to equity holders is

Net cash flow to equity holders = (Ct − θ)dt− λ1(Ct − θ)dt if Ct ≥ θ (5)

= (Ct − θ)dt− λ2(θ − Ct)dt if Ct < θ, (6)

where
λ1, λ2 > 0 (7)

In (5), λ1 ais the excess cost of equity modeled as a flow cost. In (6), λ2 is the proportional
cost associated with the bank’s financial distress when its earnings are insufficient to meet debt
payments. We allow for the bank to raise funds in financial distress by issuing equity and/or
borrowing from the central bank. To keep the model parsimonious, we assume that either channel
is equally costly for the bank so that we can assume henceforth that the bank issues additional
equity in financial distress. Inequality (7) incorporates the realistic possibility that the bank incurs
additional financial distress costs.

The bank services debt payments entirely as long as it is solvent. If the bank’s earnings are
insufficient to meet debt payments, it can issue additional equity. We also allow for the regulator
to inject capital to service debt payments. In our framework, it is actually optimal for the bank to

7More generally, a bank’s debt structure includes demand deposits as well as longer-term debt obligations. The
explicit incorporation of the different components of a bank’s debt structure is well beyond the scope of this study.
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service debt entirely by issuing equity (if necessary) as long as the value of equity is positive. After
the equity value falls to zero, the regulator services debt payments by injecting capital until it is
no longer optimal to continue to do so.

The bank chooses to service debt by issuing equity until an Ft−stopping time τB when it
becomes insolvent (recall that Ft is the information filtration generated by the bank’s earnings
process.) For t > τB, the regulator takes control of the bank (in effect, it becomes the owner of
the bank), injects capital, and continues to do so until a stopping time τL ≥ τB. Hence, the bank
services debt for t < τB, and the regulator services debt by injecting capital for t ∈ (τB, τL). Note
that, in the region (τB, τL), the bank’s equity value is negative, that is, the regulator effectively
holds a negative equity stake in the firm. The bank’s assets are liquidated at t = τL when the
regulator decides to stop injecting capital, and debtholders receive the resulting liquidation payoff.

There are deadweight liquidation costs that we model by assuming that debtholders receive
a proportion 1 − α; α ∈ (0, 1) of the unlevered bank value at the liquidation threshold. More
precisely, it follows immediately from (1) that the value of the (hypothetically) unlevered bank at
the liquidation threshold is

V unlevered
τL

= (1− λ1)CτL

r − µ1
. (8)

The payoff to debtholders is
DτL = (1− α)(1− λ1)CτL

r − µ1
(9)

In reality, bank debt comprises of demand deposits that are protected by deposit insurance as
well as longer-term debt obligations that are not insured. Our framework actually incorporates the
possibility of deposit insurance because we allow the regulator to inject capital after the bank goes
bankrupt. In our setting, the regulator is essentially the “social planner” who also embodies the role
of the deposit insurer. As our subsequent analysis shows, from a normative standpoint, it is optimal
for the regulator to inject capital and service the bank’s debt until its earnings hit the liquidation
threshold τL. Consequently, the main normative implications of our study are not affected by the
explicit incorporation of deposit insurance. Further, insofar as a bank incurs financial distress costs
(for example, through the loss of business, reputation, etc) regardless of whether a portion of its
debt is insured, and there are limits to the amount of debt that can be insured (which is true in
reality), our positive implications are not significantly affected either.

C. Regulation

The regulator observes the bank’s earnings and can choose to intervene in the bank’s man-
agement. The regulator’s intervention policy could involve controlling the bank’s risk as well as
injecting capital to keep the bank solvent. As discussed in the previous section, the regulator injects
capital in the region (τB, τL).
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We denote the bank’s strategy by an Ft−adapted process

Π = (P, τB). (10)

In the above, Pt ∈ {1, 2} is the bank’s project choice at date t, and τB is the Ft−stopping time at
which the bank stops issuing equity to service debt and declares insolvency .

We denote the regulator’s intervention policy by an Ft−adapted process

Πreg ≡ (P reg, τL). (11)

In the above, P regt ∈ {1, 2} is the regulator’s project choice at date t and τL is the Ft−stopping
time at which the regulator stops injecting capital and liquidates the bank. If the regulator forces
the bank to choose a particular project at date t, then Pt = P regt . Note that the above formulation
is quite general and encompasses the possibilities that the regulator chooses not to intervene in the
bank’s operations at a particular date t and control its project/risk choice.

The proportional deadweight social cost of capital injection by the regulator is λsocial2 , which
could differ from the cost of capital injection by the bank in financial distress. In other words, if
the regulator injects capital kt, the social cost is λsocial2 kt. The wedge between λsocial2 and λ2 reflects
the effects of systemic risk. The regulator internalizes the effects of the externality that the bank
imposes on the economy because of its financial distress.

D. Equity, Debt, Bank and Social Values

Let Π and Πreg denote strategies for the bank and the regulator, respectively, as defined in the
previous section. Suppose that the bank’s debt level is θ. At any date t, the value of the bank’s
debt is

Dt(θ,Π,Πreg) = Et

τLˆ

t

e−r(u−t)θdu+ Et[e−r(τL−t)DτL ], (12)

where Et denotes the conditional expectation at date t. The debt payoff DτL upon liquidation is
given by (9).

By (6), the bank’s equity value at date t is

St(θ,Π,Πreg) = Et

τBˆ

t

e−r(u−t)
[

1Cu(Π;Πreg)≥θ(1− λ1)(Cu(Π,Πreg)− θ)+
1Cu(Π;Πreg)<θ(1 + λ2)(Cu(Π,Πreg)− θ)

]
du. (13)

The upper limit of the integral above is the stopping time τB ≤ τL at which the bank becomes
insolvent. In the integrand, we explicitly indicate the fact that the earnings process Cu depends on
the bank’s and the regulator’s strategies.
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The bank’s total value at date t is the sum of its equity and debt values, and is given by

Ft(θ,Π,Πreg) = Dt(θ,Π,Πreg) + St(θ,Π,Πreg)

= Et

τBˆ

t

e−r(u−t)
{[

1Cu(Π,Πreg)≥θ ((1− λ1)Cu(Π,Πreg) + λ1θ) +
1Cu(Π,Πreg)<θ ((1 + λ2)Cu(Π,Πreg)− λ2θ)

]}
ds

Et

τLˆ
τB

θds+ Et[e−r(τL−t)DτL ]. (14)

Finally, we define the bank’s social value at date t, which also includes the net cash flows to
the regulator when it takes control of the bank during the interval [τB, τL] and injects capital.

F socialt (θ,Π,Πreg) = Et

τLˆ

t

e−r(u−t)


 1Cu(Π,Πreg)≥θ

(
(1− λsocial1 )Cu(Π,Πreg) + λsocial1 θ

)
+

1Cu(Π,Πreg)<θ
(
(1 + λsocial2 )Cu(Π,Πreg)− λsocial2 θ

)  dsIt
+Et[e−r(τL−t)Dsocial

τL
], (15)

where
Dsocial
τL

= (1− αsocial)(1− λsocial1 )CτL

r − µ1
. (16)

The bank’s social value (15) differs from its total value (14) in a number of important dimen-
sions. First, the excess cost of equity in “good” states from the regulator’s standpoint, λsocial1 ,
could differ in general from λ1, reflecting the fact that a portion of the excess cost of equity, such
as the tax disadvantage of equity, are simply wealth transfers that do not affect the bank’s social
value (see Duffie (2001, Chapter 8) and Admati et al. (2011)). On the other hand, other costs of
equity issuance such as those affecting a bank’s role as an intermediary in issuing deposits are dead-
weight costs that are not simply transfers. The regulator, therefore, acknowledges the important
role that banks play as financial intermediaries and, in particular, providers of liquidity through
instruments such as demand deposits. Second, the financial distress cost λsocial2 from the regulator
differs, in general, from λ2 because the regulator incorporates the effects of systemic risk — the ex-
ternality that the bank imposes on the economy through its financial distress. For similar reasons,
the proportional liquidation cost αsocial as seen by the regulator also differs from the proportional
liquidation cost, α, incurred by the bank.

We first analyze the benchmark scenario where the bank is completely unregulated, that is,
the regulator’s intervention policy is the “null” policy of no intervention at all. Hence, the bank’s
equity, debt and total values are only functions of the debt level θ and the bank’s project choices
Π. Further, because the regulator injects no capital at all, the liquidation time τL coincides with
the insolvency time τB. Given a debt level θ , the bank chooses its optimal strategy—its dynamic
project choices and the insolvency time—to maximizes its equity value, that is, the bank’s optimal
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strategy solves

Π∗(θ) = arg max
Π

S0(θ,Π). (17)

In the above, we explicitly indicate the fact that the bank’s optimal strategy depends on the
bank’s debt level. Note that the regulator’s intervention strategy does not appear at all as an
argument because it is the “ null” policy of no intervention. The bank’s capital structure, which is
determined by the debt level θ maximizes its total value at date zero, that is, the bank’s optimal
capital structure solves

θ∗ = arg max
θ
F0(θ,Π∗(θ)) (18)

Next, we consider the “full regulation” or “first best” scenario in which the regulator com-
pletely controls the bank and chooses its capital structure as well as its projects to maximize the
bank’s social value. Given a debt level θ, the regulator’s optimal strategy—its project choices and
liquidation time—solves

Π∗reg(θ) = arg max
Π

F social0 (θ,Πreg). (19)

The regulator chooses the bank’s capital structure to maximize the bank’s social value, that is,

θ∗reg = arg max
θ
F social0 (θ,Π∗reg(θ)) (20)

To analyze the effects of different regulatory intervention tools—capital regulation, intervention
in the bank’s project choices, and capital injection—we also explore a number of “intermediate”
scenarios in which one or more of these tools are “turned off.” To avoid complicating the exposition
here, we discuss these scenarios when we analyze them later.

IV. The Unregulated Bank

In the hypothetical scenario where the bank is completely unregulated, the regulatory interven-
tion policy is the “null” policy where the regulator does not intervene at all in the bank’s operations
as discussed in Section D. The stopping time τB, where the bank’s equity value falls to zero (it
becomes insolvent), and the stopping time τL, where the bank’s assets are liquidated, coincide. The
bank’s dynamic project choices, the insolvency time, and capital structure solve (17) and (18).

We first derive the bank’s optimal dynamic project and insolvency time choices given a capital
structure described by the debt level θ. We then derive the bank’s capital structure choice. We
first analytically characterize the bank’s equity and debt values as well as the insolvency threshold
for a given switching policy described by a trigger CS .

Proposition 1 [Equity and Debt Values for Given Switching Policy] Suppose the debt level is θ
and the bank adopts a policy where it chooses project 1 if Ct ≥ CS and project 2 for Ct < CS .

(i) Suppose that CS ≥ θ. The bank’s equity value at any date t is a function of the current earnings
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level Ct and is given by

St = S(Ct) =


(1−λ1)Ct

r−µ1
− (1−λ1)θ

r +A1(CS , θ)C
γ−1
t , if Ct ≥ CS ,

(1−λ1)Ct

r−µ2
− (1−λ1)θ

r +A2(CS , θ)C
γ−2
t +A3(CS , θ)C

γ+
2
t if CS > Ct ≥ θ

(1+λ2)Ct

r−µ2
− (1+λ2)θ

r +A4(CS , θ)C
γ−2
t +A5(CS , θ)C

γ+
2
t , if θ > Ct ≥ CB(CS , θ),

(21)
Furthermore, the equity value satisfies the following value matching and smooth pasting conditions
at the insolvency threshold CB(CS , θ)

S(CB(CS , θ)) = S′(CB(CS , θ))) = 0. (22)

(ii) Suppose that CS < θ. The bank’s equity value at any date t is given by

St = S(Ct) =


(1−λ1)Ct

r−µ1
− (1−λ1)θ

r +A1(CS , θ)C
γ−1
t , if Ct ≥ θ,

(1+λ2)Ct

r−µ1
− (1+λ2)θ

r +A2(CS , θ)C
γ−1
t +A3(CS , θ)C

γ+
1
t if θ > Ct ≥ CS

(1+λ2)Ct

r−µ2
− (1+λ2)θ

r +A4(CS , θ)C
γ−2
t +A5(CS , θ)C

γ+
2
t , if CS > Ct ≥ CB(CS , θ),

(23)
Further, the equity value satisfies the value matching and smooth pasting conditions (22).
(iii) The bank’s debt value at any date t in both cases above is

Dt = D(Ct) =


θ
r +B1(CS , θ)C

γ−1
t , if Ct ≥ CS ,

θ
r +B2(CS , θ)C

γ−2
t +B3(CS , θ)C

γ+
2
t , if CS > Ct ≥ CB(CS , θ).

D(CB(CS , θ)) = (1−α)(1−λ1)CB(CS ,θ)
r−µ1

(24)

The coefficients Ai(CS , θ); i = 1, ..., 5; Bj(CS , θ); j = 1, ..., 3, and the insolvency level CB(CS , θ) are
determined by the conditions that the equity and debt values are differentiable for all Ct > CB(CS , θ).
In the above, γ+

i , γ
−
i ; i = 1, 2 are the positive and negative roots, respectively, of the equation

σ2
i

2 γ
2 + (µi −

σ2
i

2 )γ − r = 0; i = 1, 2. (25)

In the expressions above, we explicitly indicate the fact that the coefficients Ai(.), Bi(.), and
the insolvency level CB(.) depend on the switching trigger CS and the debt level θ. Note that the
coefficients Ai(.) differ in the two scenarios CS ≥ θ and CS < θ.We avoid complicating the notation
by explicitly indicating the differing functional forms in the two cases. The asset values and the
insolvency level can be analytically characterized in closed form.

The following proposition shows that the optimal dynamic project choice policy of the bank
has the structure assumed in Proposition 1, that is, there is a single time-independent trigger at
which the bank switches between the two projects.
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Theorem 2 [Optimal Switching Policy] Given an initial choice of debt level θ, there exists a unique
cash flow threshold C∗S(θ) such that the bank optimally chooses project 1 when Ct ≥ C∗S(θ) and
project 2 when C∗S(θ) > Ct > C∗B(θ). C∗B(θ) is the insolvency trigger that is determined in Propo-
sition 1 when the switching trigger is C∗S(θ).

By the discussion in Section A, in the absence of any frictions, the bank would always choose
project 1 because it has a higher NPV than project 2. In the presence of shareholder-debtholder
agency conflicts, however, the bank’s shareholders have the incentive to engage in asset substitution,
thereby diverting cash flows from debtholders. Asset substitution potentially occurs when the
bank’s earnings are below a threshold so that the bank is sufficiently leveraged. Note that,
depending on the drifts and volatilities of the two projects, it may be optimal for the bank to
always choose project 1, that is, not engage in risk-shifting at all. This scenario corresponds to the
case where the switching threshold C∗S(θ) coincides with the insolvency threshold C∗B(θ).

As we show in the proof of Theorem 2, the switching point C∗S(θ) is determined by the “super-
contact” condition

∂2S

∂C2

∣∣∣∣∣
C=C∗S(θ)+

= ∂2S

∂C2

∣∣∣∣∣
C=C∗S(θ)−

. (26)

The above condition implies that the equity value must be twice differentiable throughout. The
optimal switching trigger can be analytically characterized in closed form as we show in the proof.

Given the debt structure θ, the initial leverage ratio of the bank is Lev0 = D(C0; θ)/F (C0; θ),
where we also indicate the dependence of the debt value and bank value on the debt level θ. The
debt value and bank value are determined by Proposition 1 with the switching trigger set to the
optimal switching trigger C∗S(θ). We define the bank’s leverage ratio at the switching point C∗S(θ)
as the switching leverage. The switching leverage is given by

Switching Leverage = D(C∗S(θ); θ)/F (C∗S(θ); θ). (27)

As described by Theorem 2, the bank has an incentive to engage in asset substitution by
selecting the riskier, lower NPV project 2 once its leverage reaches the switching leverage. Therefore,
the switching leverage is of importance to regulators who would like to limit the agency costs of
asset substitution. The following proposition provides a simple and useful characterization of the
switching point and leverage for a given debt level θ.

Proposition 3 1) The default boundary C∗B(θ) and switching trigger C∗S(θ) are linear functions of
θ, that is,

C∗S(θ) = cSθ; C∗B(θ) = cBθ, . (28)

2) The switching leverage is a constant that does not depend on the initial choice of θ.

Intuitively, the banker chooses the switching point in proportion to the initial debt level. When
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the debt level is high, agency costs are larger, and the banker would choose to switch to the risky
project at a higher threshold. The switching leverage, however, is not sensitive to the initial choice
of debt level, rather, it is sensitive to the relative characteristics (drifts and volatilities) of the two
projects. The result of Proposition 3 is useful because it provides a justification for some aspects
of the Basel accords where intervention by regulators is triggered when a bank’s leverage reaches a
pre-specified threshold regardless of its initial leverage level.

The unregulated bank’s optimal capital structure choice is determined by solving (18). The
switching and insolvency triggers at the optimal capital structure, θunreg (the superscript indicates
that this is the scenario with no regulation) are, therefore, given by

Cunreg
S = C∗S(θunreg) = cSθ

unreg; Cunreg
B = C∗B(θunreg) = cBθ

unreg, . (29)

where the constants cS and cB are defined in Proposition 3. Since the optimal capital structure
cannot be analytically characterized in closed form, we compute it numerically in our subsequent
analysis of the calibrated model.

V. The Fully Regulated Bank

In the scenario in which the regulator completely controls the bank’s operations, the regulatory
intervention policy is the policy of “total intervention” that is the polar opposite of the “null”
intervention policy considered in the previous section. As we discussed in Section D, the bank’s
capital structure and project choices maximize the regulator’s objective, which is the bank’s social
value. By comparing the results of this section with those of the previous one, we derive the optimal
intervention policy of the regulator.

From the regulator’s standpoint, the bank’s capital structure, project choices, the insolvency
time, and the liquidation time should maximize the bank’s social value, that is, they should solve

(θreg,Πreg) = arg max
(θ,Π)

F social0 (θ,Π). (30)

In the above, the superscript, “reg” indicates the fact that this is the scenario where the regulator
completely controls the bank’s operations.

As in the previous section, we first derive the regulator’s dynamic project choices for a given
capital structure, and then derive the optimal capital structure. It turns out that the regulator’s
optimal project choice policy has a similar structure to that of the bank in the previous section.
There exists a threshold level of the bank’s earnings such that it is optimal for the regulator to choose
project 1 above the threshold and project 2 below the threshold. The regulator’s optimal “switching
threshold” differs, in general, from the bank’s switching threshold derived in the previous section.
The following proposition analytically characterizes the bank’s social value for a given switching
policy described by a trigger CS . We omit its proof because it follows using exactly the same
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arguments used to prove Proposition 1.

Proposition 4 [Equity, Debt and social Values for Given Switching Policy] Suppose the debt level
is θ and the regulator adopts a policy where it chooses project 1 if Ct ≥ CS and project 2 for
Ct < CS .

(i) Suppose that CS ≥ θ. The bank’s social value at any date t is a function of the current earnings
level Ct and is given by

F socialt = F social(Ct) =



(1−λsocial
1 )Ct

r−µ1
+ λsocial

1 θ
r +X1(CS , θ)C

γ−1
t , if Ct ≥ CS ,

(1−λsocial
1 )Ct

r−µ2
+ λsocial

1 θ
r +X2(CS , θ)C

γ−2
t +X3(CS , θ)C

γ+
2
t if CS > Ct ≥ θ

(1+λsocial
2 )Ct

r−µ2
− λsocial

2 θ
r +X4(CS , θ)C

γ−2
t +X5(CS , θ)C

γ+
2
t , if θ > Ct ≥ CL(CS , θ),

value matching︷ ︸︸ ︷
F social(CL(CS , θ)) = (1− αsocial)(1− λsocial1 )CL(CS , θ)

r − µ1
smooth pasting︷ ︸︸ ︷

F social
′(CL(CS , θ)) = (1− αsocial)(1− λsocial1 )

r − µ1
(31)

(ii) Suppose that CS < θ. The bank’s social value at any date t is given by

F socialt = F social(Ct) =



(1−λsocial
1 )Ct

r−µ1
+ λsocial

1 θ
r +X1(CS , θ)C

γ−1
t , if Ct ≥ θ,

(1+λsocial
2 )Ct

r−µ2
− λsocial

2 θ
r +X2(CS , θ)C

γ−1
t +X3(CS , θ)C

γ+
1
t if θ > Ct ≥ CS

(1+λsocial
2 )Ct

r−µ2
− λsocial

2 θ
r +X4(CS , θ)C

γ−2
t +X5(CS , θ)C

γ+
2
t , if CS > Ct ≥ CL(CS , θ),

value matching︷ ︸︸ ︷
F social(CL(CS , θ)) = (1− αsocial)(1− λsocial1 )CL(CS , θ)

r − µ1
smooth pasting︷ ︸︸ ︷

F social
′(CL(CS , θ)) = (1− αsocial)(1− λsocial1 )

r − µ1
(32)

The coefficients Xi(CS , θ); i = 1, ..., 5 in the above are determined by the conditions that the so-
cial value is differentiable throughout. The liquidation level CL(CS , θ) is determined by the “value
matching” and “smooth pasting” conditions for the social value at the liquidation level.
(iii) The banks’s equity values at any date t in the two cases above are given by (21) and (23) where
the switching trigger is CS . The endogenous insolvency threshold at which the equity value falls to
zero is CB(CS , θ).
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(iv) The bank’s debt value at any date t is

Dt = D(Ct) =


θ
r +B1(CS , θ)C

γ−1
t , if Ct ≥ CS ,

θ
r +B2(CS , θ)C

γ−2
t +B3(CS , θ)C

γ+
2
t , if CS > Ct ≥ CL(CS , θ).

D(CL(CS , θ)) = (1−αsocial)(1−λsocial
1 )CL(CS ,θ)

r−µ1

(33)

As in the case of Proposition 1, the expressions for the social value and the equity value differ
depending on whether the switching trigger is above or below the debt level θ. Comparing the
two propositions, we note that the insolvency trigger is now replaced by the liqudation trigger
CL(CS , θ).

The following proposition shows that the optimal dynamic project choice policy of the regulator
has a structure similar to that of the bank, that is, there is a single time-independent trigger at
which the regulator switches between the two projects.

Theorem 5 [Regulator’s Optimal Switching Policy] Given an initial choice of debt level θ, there
exists a unique cash flow threshold C∗regS (θ) ≤ θ such that the regulator optimally chooses project
1 when Ct ≥ C∗regS (θ) and project 2 when C∗regS (θ) > Ct > C∗regL (θ). C∗regL (θ) is the liquidation
trigger that is determined in Proposition 1 when the switching trigger is C∗regS (θ).

The above theorem shows that, contrary to received wisdom in anecdotal discussions of pru-
dential regulation, it could actually be optimal for the regulator too to engage in asset substitution
if the bank’s earnings are below a threshold. The theorem, however, shows that the regulator’s
optimal switching trigger is never greater than the debt level, θ. If the regulator finds it optimal
to engage in asset substitution, therefore, it always does so when the bank is in financial distress,
which is not the case for the unregulated bank as shown by Theorem 2 and its proof. It is worth
mentioning that the regulator’s optimal switching trigger could actually lie below the insolvency
threshold at which the bank’s equity value falls to zero, that is, it could lie in the “capital injection”
region.

The intuition for why the regulator could also find it optimal to engage in asset substitution is as
follows. First, when it injects capital, the regulator effectively holds a (negative) equity stake in the
bank. The regulator’s objective function in this region is, therefore, akin to that of shareholders
of the unregulated bank in the previous section. Consequently, when the bank’s earnings fall
sufficiently far, it could be optimal for the regulator to increase risk to lower the probability of
liquidation of the bank and, thereby, the associated liquidation costs. Second, by increasing risk,
the regulator also delays liquidation and, thereby, lowers the expected costs of capital injection
after insolvency.

Because the regulator cares about the bank’s social value rather than just its equity value, it is
intuitive that it has lower incentives to engage in asset substitution than the bank’s shareholders.
The following proposition formalizes this intuition.
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Proposition 6 [Comparison of Bank’s and Regulator’s Optimal Switching Policies] The optimal
switching trigger for the regulator is less than or equal to the optimal switching trigger for the
unregulated bank, that is,

C∗regS (θ) ≤ C∗S(θ). (34)

Analogous to Proposition 3, the following proposition shows that the switching, insolvency, and
liquidation thresholds are linear in the debt level θ, and the switching leverage is constant. We
omit the proof because it follows along the lines of the proof of Proposition 3.

Proposition 7 1) The insolvency threshold C∗regB (θ), the switching threshold C∗regS (θ), and the
liquidation threshold C∗regL (θ) are all proportional to the debt level θ,

C∗regB (θ) = cregB θ, C∗regS (θ) = cregS θ, C∗regL (θ) = cregL θ. (35)

where cregB , cregS , cregL are constants independent of θ.
2) The switching leverage is a constant that does not depend on the initial choice of θ.

The regulator chooses the bank’s capital structure to maximize the social value, that is, the
optimal debt level θreg solves

θreg = arg max
θ
F social0 (θ), (36)

where the bank’s social value, F social0 (θ), is given by Proposition 4 with the switching trigger set
to C̃∗S(θ). The switching, insolvency and liquidation triggers at the optimal capital structure are,
therefore, given by

Creg
S = C∗regS (θreg) = cregS θreg; Creg

B = C∗regB (θreg) = cregB θ∗, Creg
L = C∗regL (θreg) = cregL θreg. (37)

VI. Optimal Regulatory Policy

We now use the results of the previous two sections to describe the optimal intervention policy
of the regulator.

First, by (36), it is optimal for the regulator to force the bank to choose a debt level θreg. For
future reference, we define the initial capital requirement to be 1−D(θreg)/F (θreg), i.e., one minus
the initial leverage ratio or the equity capital ratio.

Second, by Theorem 2, given the debt level θreg, the bank chooses a project choice policy
where the switching trigger is C∗S(θreg). However, by Proposition 5, from the standpoint of the
regulator, it is optimal to switch projects at Creg

S . By Proposition 6, Creg
S < C∗S(θreg). In other

words, the regulator has lower incentives to shift risk than the bank’s shareholders. To align the
bank’s project choices with that of the regulator, the regulator intervenes when the bank’s earnings
cross the threshold C∗S(θreg) and forces the bank to choose the lower risk project 1. We define the
intervention ratio to be 1− LevC∗S(θreg), or the capital ratio of the bank at the switching leverage.
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Third, by Proposition 5, it is optimal for the regulator to choose the higher risk project 2 when
earnings fall below the threshold Creg

S . Consequently, it is optimal for the regulator to stop inter-
vening in the bank’s operations and allow it to shift risk in this region. Hence, the regulator follows
a “band policy,” that is, it intervenes in the bank’s project choice in the region (Creg

S , C∗S(θreg)).
Fourth, by (37), the insolvency level at which the equity value falls to zero is Creg

B and the
liquidation level is Creg

L . The regulator, therefore, allows the bank to issue equity to service debt
payments as long as the earnings exceed Creg

B . When earnings fall below Creg
B , but exceed Creg

L , it
is optimal for the regulator to inject capital to keep the bank afloat.

Fifth, if earnings hit the level Creg
L , it is optimal for the regulator to liquidate the bank’s assets

and pay off debtholders with the liquidation proceeds.
Figure 1 plots sample paths for a fully regulated bank to illustrate the above optimal regulatory

policy. The bank begins with an earnings level above the debt level θreg and chooses the low-risk
project 1. When earnings hit the liquidity threshold θreg, the bank begins to issue external equity
in order keep servicing debt. When earnings further declines to the bank’s switching threshold
C∗S(θreg), despite the bank’s incentive to switch to the high-risk project 2, the regulator steps in
and forces the bank to continue with the low-risk project 1.8 When the bank’s earnings reaches
the insolvency threshold Creg

B , the bank’s equity value falls to zero and the regulator bails out the
bank by starting to inject capital into the bank. The regulator switches the bank’s project to the
high-risk project 2 when earnings reaches the regulator’s switching threshold Creg

S , and liquidates
the bank if earnings further deteriorates to the liquidation threshold Creg

L . The figure shows that
the regulator’s intervenes in the bank’s project choices when earnings lie between the intervention
band [Creg

S , C∗S(θreg)]. In another sample path plotted in the figure, the bank’s earnings improve
and the bank stops issuing equity when earnings rise to the liquidity threshold θreg.

VII. Quantitative Analysis

To obtain a reasonable set of baseline parameter values for our quantitative analysis of the
effects of regulation, we calibrate the model to data on U.S. banks over the period 1991–2008. It
has become evident, over most of this time period, U.S. banks were only weakly regulated, if at all.
Yet, many distressed banks were bailed out with public funds after the crisis. Consequently, the
model that we calibrate to the data is an “intermediate” one where the bank chooses its capital
structure and projects, but enjoys the “safety net” provided by capital injection after the bank’s
equity value falls to zero.

Without loss of generality, we normalize the bank’s initial earnings, C0—the state variable in
8For illustration purposes, the figure plots a particular case where θreg > C∗S(θreg), while in general it is possible

that θreg ≤ C∗S(θreg).
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the model—to 1. The set of key parameters of the model that need to be calibrated is

Γ ≡
{
r, α, αsocial, λ1, λ

social
1 , λ2, λ

social
2 , µ1, µ2, σ1, σ2

}
We set the risk-free rate r to 0.035 to match the average short-term U.S. treasury rate over the period
1991 – 2008.9 For our baseline set of parameter values, we set α = αsocial. The liquidation cost
α = 0.20 is in the ranges estimated by Andrade and Kaplan (1998) and Davydenko, Strebulaev, and
Zhao (2011). Tax shields on debt interest payments represent one of the sources of equity issuance
costs faced by individual banks. However, from a social standpoint, tax shields are merely wealth
transfers, which would suggest that λsocial1 should be less than λ1. However, the bank’s personal costs
of equity issuance may not completely reflect the “general equilibrium” effects of the redistribution
of wealth, and the relative composition of securities issued by the bank among heterogeneous
investors some of whom prefer information-insensitive debt-like securities, while others prefer risky
equity-like securities. These effect could cause λsocial1 to even exceed λ1. Since it is difficult (if
not impossible) to calibrate λsocial1 , we set it equal to λ1 in our baseline analysis, and subsequently
explore the effects of varying its value. We set λsocial2 = λ2. In reality, the social costs of financial
distress are likely to be much higher than the bank’s personal cost because of the effects of systemic
risk that the bank does not internalize. Our baseline analysis, therefore, provides a conservative
estimate or lower bound on the effects of regulation. Later, we explore the effects of a wedge
between social and personal costs of financial distress by allowing λsocial2 to vary from its baseline
value.

To calibrate the project return and risk characteristics, we use Compustat data for U.S. banks
over the sample time period . In the model, the bank chooses the low risk project except possibly
in financial distress. Accordingly, we set the risk, σ1, of the low-risk project to 0.126 to match the
asset risk of the average bank in the sample.10 We set the risk of the high-risk project σ2 to 0.148,
which corresponds to the 75th percentile of the asset risk of banks in the sample. In the absence
of default risk, the bank’s value is

V0 = (1− λ1)C0
r − µ1

+ λ1θ

r
, (38)

where θ is the interest payment. The ratio of the average bank’s earnings to assets and interest
payments to assets are 3.8% and 2.8%, respectively. Setting C0/V0 to 3.8% and θ/V0 to 2.8% in
(38), respectively, we obtain

9We consider this time period because the Basel I Accord was published in 1988 and enforced by G-10 countries
in 1992. The risk-free rates are downloaded from Kenneth French’s website.

10We calculate the asset risk by the formula σA =
√

(θDσD)2 + (θEσE)2, where θD and σD are the fraction and
risk of bank debt, and θE and σE are the fraction and risk of equity. We assume that the risk of deposit debt is zero.
The debt risk σD is estimated to be 0.08, the same as the long-term treasury bond, and the equity risk is estimated
by monthly stock returns of U.S banks over the period 1991–2010.
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µ1 = r

(
1− (1− λ1)0.038

r − 0.028λ1

)
(39)

To avoid introducing additional arbitrary parameters in our analysis, we assume that the two
projects have the same market price of risk. It follows from the fundamental theorems of asset
pricing (see Duffie (2001)) that the risk-neutral drifts and volatilities of the projects are related as
follows:

µ1 = r − πσ1 (40)

µ2 = r − πσ2, (41)

where π is the market price of risk of the two projects. From (41), we have

r − µ1
σ1

= r − µ2
σ2

(42)

We then calibrate the drifts of the projects µ1, µ2, and the equity cost parameters λ1 and λ2

subject to the constraints (39) and (42). We calibrate these parameters by matching the average
leverage and credit spread of banks. The average leverage ratio of banks in the sample is 87%.
Krishnan, Ritchken, and Thomson (2006) find that the the credit spread of 10-year bonds issued
by average highly rated (A- or better) banks is 106 bp. We choose µ1, µ2, λ1, andλ2 so that the
equations (39) and (42) are satisfied, and the optimal initial leverage ratio as well as the credit
spread match the empirical values (87% and 106 bp) as closely as possible. We thereby obtain
µ1 = 0.0%, µ2 = −0.6%, λ1 = 0.305, and λ2 = 0.539. The following table shows the calibrated
parameters.

Parameter Calibrated Value
Risk-free rate r 0.035
Drift of low-risk project µ1 0.000
Volatility of low-risk project σ1 0.126
Drift of high-risk project µ2 -0.006
Volatility of high-risk project σ2 0.148
Liquidation Cost α,αsocial 0.20
Excess Cost of Equity λ1,λsocial

1 0.305
Excess Cost of Equity in Distress λ2,λsocial

2 0.539

A. Impact of Regulation

In our first set of numerical experiments, we compare the fully regulated bank with the fully
unregulated bank. The parameters of the model take their baseline values described in the previous
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sub-section. We compute the optimal leverage ratios and risk-shifting policies of the unregulated
and fully regulated bank, respectively, as described in Sections IV and V, respectively. Table I
displays the results.

First, we note that the optimal leverage of the regulated bank (80%) is much higher than that
of the unregulated bank (65%), which is due to two factors. First, the regulator’s intervention
in the bank’s project choices substantially reduces the risk of the bank. Second, the promise
of capital injection by the regulator reduces the effective cost of debt. These factors enable the
regulated bank to borrow much more than an unregulated bank. By the discussion in Section VI,
the optimal leverage of the regulated bank implies an initial capital requirement of 20% imposed by
the regulator, which is much higher than those recommended by the Basel accords, and consistent
with the much higher capital ratios proposed by recent studies such as Admati et al (2011).

Second, the higher initial debt level of the regulated bank implies that the bank would want
to switch to the risky project earlier, that is, at a higher threshold (0.753) than in the unregulated
case (0.581). This intuition follows from Proposition 3. However, the regulator prevents asset
substitution from happening at such an early point by intervening in the bank’s management at
the switching threshold of the bank, or at the intervention ratio of 6.8%. Interestingly, consistent
with Theorem 5, the regulator also finds it optimal to engage in risk-shifting when the bank’s
earnings are sufficiently low (0.335). In the baseline model, the risk-switching threshold of the
regulator is less than the insolvency/bailout threshold (0.579). In other words, the regulator shifts
risk when its equity stake in the bank is negative.

Third, despite having a higher leverage, the regulated bank borrows at a lower spread (42 bp)
than the unregulated bank (69 bp). Regulation lowers credit risk despite increasing leverage by
mitigating the asset substitution problem and by injecting capital after the bank’s equity value
falls to zero. Both spreads are, however, very low, reflecting the fact that banks’ assets have much
lower volatility than those of a typical non-financial company.

Fourth, the ex ante benefit of optimal regulation is economically significant and equals 4.4%
of the bank value. Because there are additional deadweight social costs of capital injection, the
bank’s value (equity value plus debt value) is greater than the social (or social) value of the bank.
Optimal regulation boosts the bank’s value by 12.4%, implying huge benefits for the equity and
debt holders of the bank. The benefits to the bank’s claimholders are, however, partially offset by
a significant external social cost of capital injection, equaling 8% of bank value.

Fifth, regulation has an even greater impact on the bank’s value ex post at the insolvency
boundary. The ex post debt value at insolvency increases from the case with no capital injection
to the case where the regulator injects capital by 86.9%.11 Even after excluding the external social
cost of injection, the net benefit of the bank bailout is 36.3% of the value of the unbailed bank.

The significant ex ante and ex post benefits of intervention by the regulator in the bank’s
project choices as well as capital injection when the bank is insolvent suggest that both are, indeed,

11Note that at the insolvency boundary or later, the bank value is equal to the debt value of the bank.
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valuable regulatory tools provided they are optimally used.

B. Impact of Individual Regulatory Policies

We further explore the effects of different regulatory tools by analyzing environments in which
the regulator has less than the full set of regulatory tools considered in the previous section. By
considering individual regulatory policies, we isolate the effects of different components of bank
regulation. Table II compares the solutions in several environments where the regulator only
employ certain subsets of regulatory tools.

Capital Injection

We first study the scenario in which the regulator can promise to make capital injections
but has no control over the bank’s project choices or its leverage. Column 1 of Table II reports
the solution to the regulator’s problem in this enviornment. In this setting, the regulator injects
capital after equity value drops to zero, providing implicit insurance to debt holders. This allows the
bank to choose a much higher initial leverage (87%) than in the unregulated environment (65%).
Capital injection alone actually reduces the bank’s social value by -0.7%. The ex ante costs of
capital injection arises from the fact that the bank is able to engage in asset substitution without
intervention by the regulator. Unconstrained asset substitution by the bank not only decreases
social value, but also leads the regulator to inject less capital because the bank is more risky and
less worthy of salvation.

Intervention in Project Choices

We now examine the environment in which the regulator can restrict the bank’s project choices
through, but is not able to inject capital into the bank. This scenario seems particularly relevant
given the vigorous academic and political debate on the rationales for capital injection.

Column 3 of Table II reports the optimal policies in such an environment, and compares them
with those in the unregulated environment. Because the regulator does not incur external capital
injection costs in this setup, the bank value is equal to the social value. Therefore, the optimal
initial leverage for the bank is the same as that for the regulator. This optimal leverage is 66.4%,
slightly higher than that in the unregulated case (65%), because of the reduced asset substitution
problem. Ex ante, capital regulation in this setup improves firm/social value by only 0.4%.

Comparing Column 2 and 3 in Table II , we see that capital injection should not be used
alone as a regulatory tool, and capital regulation that aims at reducing asset substitution is more
effective. The combination of these policies (Column 5 of Table II), however, yields a much greater
ex ante benefit (4.4%) than the benefit of capital regulation (0.4%) without injection. Therefore,
our results suggest that there is a large impact of the interaction between capital regulation and
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capital injection policies, when they are both optimally chosen.

Regulation without Initial Capital Requirement

We next consider the environment where the regulator optimally intervenes in the bank’s project
choices, injects capital, and liquidates the bank, but does not impose an initial capital requirement.
Studying such an environment allows us to understand the role of the initial capital requirement
when other mechanisms such as investment intervention and capital injection are in place.

Column 4 of TableII compares the policies in such an environment with those in the unregulated
environment. When the initial leverage is unrestricted, the optimal leverage chosen by the bank
is 100% and the bank value increases by 33% compared to the unregulated case. Meanwhile,
the social value of the bank decreases by 16.5% relative to the unregulated bank. The intuition
behind these results is that because investment intervention and capital injection by the regulator
protect debtholders, the bank capitalizes on these protection devices by increasing its debt as much
as possible, thereby substantially increasing the expected social costs of capital injection. These
results illustrate the necessity of imposing a minimum initial capital requirement, which is analogous
to the capital requirement specified in Basel accords, especially when other regulatory tools that
aim at reducing bank risk are in place.

C. Impact of Changes in Initial Capital Requirement

We now analyze the scenario where the regulator imposes an initial capital requirement that
may be suboptimal, but administers other regulatory policies optimally. Figure 2 presents the
impact of the initial capital requirement in such an environment. Recall that the optimal leverage
is equal to one minus the initial capital requirement. When initial capital requirement varies,
the intervention ratio stays constant (Proposition 7shows that the switching leverage and thus
the intervention ratio is independent of initial capital structure). The ex ante social benefit of
regulation decreases substantially when the initial capital requirement is relaxed. For example,
when the initial capital requirement is equal to 8%, i.e., the Basel II requirement, the ex ante social
benefit decreases by 2.4% of bank value. Our result thus suggests that adopting the optimal capital
requirement, which is much higher than those required by the Basel II accords, can improve social
welfare substantially.

D. Comparative Statics

We now examine how variations in the values of key underlying parameters affect the optimal
regulatory policies and the associated benefits. The closed-form solution of the model greatly
simplifies the computation of these “comparative static” relationships. Figure 3 shows the impact
of changes in the parameters on optimal regulation.
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The Systemic and Internal Costs

Panels A and B of Figure 3 display the effects of the social cost of equity issuance λsocial1 and the
bank’s internal cost λ1. The initial capital requirement decreases with and is very sensitive to the
social cost λsocial1 . When λsocial1 is high, the regulator has a strong preference for the bank to preform
its welfare-improving functions, such as providing demand deposits, and therefore, imposes a less
strict capital requirement on the bank. As a consequence, at times when the functions of banks are
crucial, for example, during an economic depression or credit crunch, the regulator should optimally
reduce the capital requirement of banks. Our model thus provides a rationale for procyclical capital
requirement proposed by many critiques of the Basel II requirement (see e.g. Drumond (2009) and
Dewatripont, Rochet, and Tirole (2010)).

The initial capital requirement also depends negatively on the bank’s personal cost of equity λ1

(to a lesser extent than λsocial1 ), for a very different reason. The (unreported) optimal regulatory
initial debt level is virtually independent of λ1, which implies that the optimal regulatory initial
leverage is higher (and capital requirement is lower) for higher λ1 since the bank’s equity value
depends negatively on λ1. The intervention ratio is relatively insensitive to changes in λsocial1 or λ1.
The intuition is that the incentives for risk-shifting, which determine the optimal switching trigger
and, therefore, the capital adequacy ratio, mainly depend on the project characteristics, and not
on the other parameters of the model. The ex ante social benefits of regulation increase sharply as
λsocial1 increases due to the higher initial leverage which allows the bank to perform its functions
better. In contrast, the social benefits are not sensitive to changes in λ1 as the regulator does not
incorporate the costs that are only internal to the bank.

Here we can relate our findings to tax policy and capital regulation. When the government
imposes a higher corporate tax rate on banks, it makes the bank’s internal cost of equity λ1

higher, but should not affect the social cost λsocial1 as the tax policy is simply a wealth transfer.12

Therefore, our comparative statics suggest that in a high-tax-rate regime, capital requirements
should be less stringent, because higher tax rate decreases banks’ equity value while does not affect
debt value substantially. Importantly, our results suggest that bank capital regulation should not
be independent of fiscal policy as suggested by Admati et al. (2011).

Panels C and D show the comparative statics for the systemic cost λsocial2 and the bank’s
personal distress cost λ2. In contrast to the result with λsocial1 , when λsocial2 increases, the optimal
initial capital requirement increases due to two factors. First, the higher systemic cost of distress
leads to lower optimal initial leverage. Second, a higher λsocial2 implies a higher social cost of
injection and thus the regulator imposes a lower initial leverage to control the expected costs of
capital injection. Interestingly, the expected cost of injection (the gap between the benefits to the
bank value and the social value) depends negatively on the marginal social cost of injection λsocial2 .

12This is a simplified analysis because tax policy may have social benefits or costs associated with redistribution
of wealth, which is beyond the scope of this paper.
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This reflects the classical moral hazard problem in bank bailouts, and echoes the dilemma facing
the Federal Reserve when it weighed decisions on saving financial institutions such as Bear Stearns,
Lehman Brothers, and AIG. When the marginal cost λsocial2 is smaller, the market anticipates the
regulator to inject more capital into the bank. Therefore, the bank debt is expected to be better
insured, which enables the banker to borrow more aggressively, leading to substantial bailout costs
for the regulator. Since the regulator is concerned only with the systemic cost of distress, the
optimal regulatory policies and social benefits are virtually independent of the bank’s internal
distress cost λ2.

Panels E and F show the effects of the social and personal costs of liquidation αsocial and
α. Surprisingly, the optimal initial capital requirement changes little with αsocial or α, contrary
to the usual intuition that leverage should decrease with default costs. The reason is that the
regulator is able to inject capital, delay liquidation, and provide significant insurance to the debt
holders, offsetting the negative impact on debt value and optimal leverage of high liquidation cost.
Consistent with the above intuition, for higher liquidation cost αsocial, the ex ante benefits of
regulation is larger.

The Risk-Free Rate

Panel G of Figure 3 shows the impact of varying the risk-free interest rate r. The optimal initial
capital requirement decreases with the risk-free rate. This implies that capital regulation should not
be independent of monetary policy, and keeping a constant capital requirement as recommended by
the Basel II accords could be sub-optimal. From the regulator’s point of view, a looser monetary
policy should be combined with a tighter capital requirement. Our findings also suggest that it
could be sub-optimal to impose the same capital requirements in different countries with different
monetary policies.13

In contrast with the effects of the risk-free rate on the initial capital requirement, the interven-
tion ratio is relatively insensitive to the risk-free rate, for the same reason discussed above. The
social benefit of regulation increases slightly with the risk-free rate, possibly due to the fact that
the benefits of reducing asset substitution and capital injection are higher when the initial leverage
of the bank is higher, i.e., when initial capital requirement is lower.

Project Drifts and Volatilities

Panel H of Figure 3 shows the effects of varying the drift, µ1, of the low-risk project. The
intervention ratio declines sharply when the drift µ1 increases. The intuition is that, when the
drift of the low-risk project increases, the bank’s incentives for risk-shifting decline. The optimal
initial capital requirement, however, increases with µ1, because a higher drift or earnings growth

13Acharya (2003) makes a similar point using a very different framework and for different reasons.
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rate implies a lower debt capacity of the bank. The social benefit of regulation decreases with µ1

due to the leverage effect.
Panel I shows the effects of varying the volatility of the low-risk project σ1. When σ1 increases,

the bank’s average risk increases. Consequently, the optimal leverage declines, and the initial
capital requirement increases. Perhaps surprisingly, the intervention ratio declines with σ1. As σ1

increases, the incentives for choosing the high-risk project decline because the wedge between the
volatilities of the two projects declines. Consequently, the optimal intervention ratio is lower. In
other words, even though the average risk of the bank is higher, the capital ratio at which the
regulator intervenes is actually lower.

Finally, Panels J and K present the comparative statics for the drift, µ2, and volatility, σ2, of
the high-risk project. The intervention ratio is very sensitive to these parameters. The intuition
is straightforward. An increase in the drift and/or the volatility of the high-risk project aggravate
the asset substitution problem that leads to higher optimal capital requirement. The initial capital
requirment, however, is largely stable with µ2 and σ2, which reflects the fact that the optimal
leverage is primarily driven by the characteristics of the low-risk project because this is the project
that the bank chooses in “normal” circumstances.

VIII. Conclusion

We develop a continuous-time model in which a bank can dynamically engage in asset substi-
tution or risk-shifting. The bank’s capital structure reflects the tradeoff between the excess costs
of issuing equity against the agency costs of asset substitution and liquidation costs of debt. The
regulator can impose initial capital requirement, intervene in the bank’s risk choices, inject capital,
and force liquidation of the bank. Under the optimal regulatory policy, the regulator intervenes in
the bank’s risk choices when the bank’s capital ratio hits a switching threshold (the intervention
ratio) to mitigate the social costs of asset substitution behavior of the bank’s shareholders. How-
ever, when the bank’s earnings are sufficiently low, the regulator may find it optimal to substitute
assets and make more risky investment as the bank does. The optimal investment intervention
policy has a “band” structure where the regulator intervenes in the bank’s operations if and only
if the bank’s capital ratio lies in an interval. By calibrating the model to data, we find that the
optimal initial capital requirement is much higher than those suggested by the Basel II accords.
Prudential regulation can achieve substantial social benefits when it is appropriately designed. The
optimal combination of investment intervention and capital injection polices significantly improve
social value over either policy alone.
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Appendix: Proofs

Proof of Proposition 1
By (13),

St = Et

τBˆ

t

e−r(u−t) [1Cu≥θ(1− λ1)(Cu − θ) + 1Cu<θ(1 + λ2)(Cu − θ)] du. (43)

From the above, the equity value must satisfy the following flow equation (expressed in in-
finitesimal form for convenience)

St = (1Ct≥θ(1− λ1)(Ct − θ) + 1Ct<θ(1 + λ2)(Ct − θ)) dt+ Et
[
e−rdtSt+dt

]
. (44)

Subtracting the L.H.S. from the R.H.S., dividing throughout by dt and eliminating terms of
o(dt), we get

Et[
St+dt − St

dt
− rSt + (1Ct≥θ(1− λ1)(Ct − θ) + 1Ct<θ(1 + λ2)(Ct − θ))] = 0.

Applying Ito’s lemma to the above, it follows from (1) and (2) that the equity value S(C) must
satisfy the following system of ODEs

1
2σ

2
1C

2 d
2S

dC2 + µ1C
dS

dC
− rS + (1C≥θ(1− λ1)(C − θ) + 1C<θ(1 + λ2)(C − θ)) = 0 for C > CS

1
2σ

2
2C

2 d
2S

dC2 + µ2C
dS

dC
− rS + (1C≥θ(1− λ1)(C − θ) + 1C<θ(1 + λ2)(C − θ)) = 0 for C < CS .

(45)

(i) Suppose that CS > θ. The solution of the above system of ODEs is as follows.

S(C) = A1C
γ−1 +A

′
1C

γ+
1 + (1− λ1)C

r − µ1
− (1− λ1)θ

r
for C > CS

= A2C
γ−2 +A3C

γ+
2 + (1− λ1)C

r − µ2
− (1− λ1)θ

r
for CS > C > θ

= A4C
γ−2 +A5C

γ+
2 + (1 + λ2)C

r − µ2
− (1 + λ2)θ

r
for C > CB, (46)

where γ+
i , γ

−
i are the positive and negative root, respectively of (25). (It is easy to show that

(25) has one positive and one negative root.) In the above, we have suppressed the dependence of
the coefficients A1, A

′
1, A2, A3, A4, A5 on CS and θ.

Because S(C) ∼ (1−λ1)C
r−µ1

as C −→ ∞, we must have A′1 = 0. Further, because the equity
value is zero at insolvency , and insolvency is optimally chosen by the bank to maximize its equity
value, it follows from well-known arguments (e.g. see Leland (1994)) that the equity value must
satisfy the value matching and smooth pasting conditions (22), which ensure that the equity value is
differentiable at the insolvency threshold CB. The coefficientsA1, ..., A5 and the insolvency threshold
CB are determined by the conditions that the equity value must be differentiable at the switching
threshold CS , the debt level θ and the insolvency threshold CB, that is, we have 6 unknowns and
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6 equations.
(ii) We can use similar arguments to those used in (i) to show that the equity value must be

given by (23). The only difference is that CS < θ.

(iii) Using arguments similar to those used for the equity value, the debt value satisfies the
following system of ODEs:

1
2σ

2
1C

2d
2D

dC2 + µ1C
dD

dC
− rD + θ = 0 for C > CS

1
2σ

2
2C

2d
2D

dC2 + µ2C
dD

dC
− rD + θ = 0 for C < CS . (47)

The general solution to the above system is

D(C) = B1C
γ−1 +B

′
1C

γ+
1 + θ

r
for C > CS

= B2C
γ−2 +B3C

γ+
2 + θ

r
for C < CS .

Since D(C) ∼ θ
r as C −→∞, B′1 = 0. By (9), we must have

D(CB) = (1− α)(1− λ1)CB
r − µ1

. (48)

The coefficients B1, B2, B3 are determined by(48) and the conditions that the debt value is
differentiable at CS , that is, we have 3 unknowns and 3 equations. Q.E.D.

Proof of Theorem 2
We begin by stating the relevant dynamic programming verification theorem for our analysis.

Proposition 8 [Dynamic Programming Verification Theorem] Let Sq(C) denote the equity value
when the current earnings level is C if the bank follows a switching policy where it chooses project 1
when its earnings exceed q and project 2 when the earnings are below q. Suppose that Sq(C) satisfies
the following Hamilton-Jacobi-Bellman (HJB) equation:

max
i∈{1,2}

LiSq + (1C≥θ(1− λ1)(C − θ) + 1C<θ(1 + λ2)(C − θ)) = 0;

Sq(CB) = S
′
q(CB) = 0, (49)

where
LiSq = 1

2σ
2
iC

2d
2Sq
dC2 + µiC

dSq
dC
− rSq; i ∈ {1, 2} (50)

Then Sq(C) is the optimal equity value function among all possible dynamic project choice policies
(including non-stationary policies) and q is the optimal switching trigger.

Since the above follows from the general verification theorem for dynamic programming, we
omit its proof for brevity and refer the reader to Fleming and Soner (1992).

We use the following lemma frequently in the proof.
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Lemma 9 We have

γ+
i > 1 for i ∈ {1, 2} (51)
γ−1 < γ−2 (52)

r − µiγ−i > 0 for i ∈ {1, 2} (53)
r − µiγ+

i > 0 for i ∈ {1, 2} (54)

Proof. By (3), and since γ+
i , γ

−
i are the roots of (25), we have 0 > µi − r = 1

2σ
2
i (1)2 + (µi −

1
2σ

2
i )(1)− r = 1

2σ
2
i (1− γ+

i )(1− γ−i ). Since γ−i < 0, we must have 1 < γ+
i .

Next, we note that, because µ2 < µ1 and σ1 < σ2,

µ2 −
1
2σ

2
2 < µ1 −

1
2σ

2
1

Because γ−1 < 0, it follows that

1
2σ

2
2(γ−1 )2 + (µ2 −

1
2σ

2
2)(γ−1 )− r > 1

2σ
2
1(γ−1 )2 + (µ1 −

1
2σ

2
1)(γ−1 )− r = 0,

Because γ+
2 , γ

−
2 are the roots of 1

2σ
2
2(x)2 + (µ2 − 1

2σ
2
2)(x)− r = 0, we have

1
2σ

2
2(γ−1 )2 + (µ2 −

1
2σ

2
2)(γ−1 )− r = 1

2σ
2
2(γ−1 − γ

−
2 )(γ−1 − γ

+
2 ) > 0.

Since γ−1 < 0 < γ+
2 , it follows from the last inequality above that we must have γ−1 < γ−2 .

To prove the third inequality, we proceed as follows.

0 = 1
2σ

2
i (γ−i )2 + (µi −

1
2σ

2
i )(γ−1 )− r = 1

2σ
2
i

(
(γ−i )2 − γ−i

)
+ µi(γ−1 )− r

Because γ−1 < 0, 1
2σ

2
i

(
(γ−i )2 − γ−i

)
> 0. Consequently, it follows from the above that (53) must

hold.
To prove the fourth inequality, observe that

0 = 1
2σ

2
i (γ+

i )2 + (µi −
1
2σ

2
i )(γ+

1 )− r = 1
2σ

2
i

(
(γ+
i )2 − γ+

i

)
+ µi(γ+

1 )− r

By (51), 1
2σ

2
i

(
(γ+
i )2 − γ+

i

)
> 0 so that inequality (54) follows from the above. Q.E.D.

We now proceed with the proof of the main theorem. Because there are different cases to
consider, we prove the theorem by stating and proving propositions that deal with each case. The
following proposition establishes a necessary and sufficient condition for the bank to optimally
choose project 1 always, that is, engage in no risk-shifting.

Proposition 10 [No Asset Substitution] Suppose that

L2S0 + (1 + λ2)(C − θ)|C=CB(0)+ ≤ 0, (55)

where S0 is the equity value function when the bank always chooses project 1 and CB(0) is the
corresponding endogenous insolvency level. Then it is optimal for the bank to always choose project
1, that is, no asset substitution is optimal.
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Proof. By Proposition 7, it suffices to show that

L2S0 + (1C≥θ(1− λ1)(C − θ) + 1C<θ(1 + λ2)(C − θ)) ≤ 0 for all C ≥ CB(0). (56)

By Proposition 1,

S0(C) = A1C
γ−1 + (1− λ1)C

r − µ1
− (1− λ1)θ

r
for C ≥ θ

= A2C
γ−1 +A3C

γ+
1 + (1 + λ2)C

r − µ1
− (1 + λ2)θ

r
for CB(0) < C < θ. (57)

First, we note that
A1 > 0 (58)

because the equity value function must be greater than (1−λ1)C
r−µ1

− (1−λ1)θ
r , which is the equity value

function in the hypothetical scenario where shareholders are not protected by limited liability.
Matching the value and derivative of the function S0 at C = θ, we have

A1θ
γ−1 + (1− λ1)θ

r − µ1
− (1− λ1)θ

r
= A2θ

γ−1 +A3θ
γ+

1 + (1 + λ2)θ
r − µ1

− (1 + λ2)θ
r

,

γ−1 A1θ
γ−1 + (1− λ1)θ

r − µ1
= γ−1 A2θ

γ−1 + γ+
1 A3θ

γ+
1 + (1 + λ2)θ

r − µ1
. (59)

From the above, we obtain

(γ+
1 − γ

−
1 )A3θ

γ+
1 = (λ1 + λ2)θ

[
γ−1 − 1
r − µ1

− γ−1
r

]
= (λ1 + λ2)θµ1γ

−
1 − r

r(r − µ1) .

By (53), and the fact that γ+
1 > γ−1 , the above implies that

A3 < 0. (60)

Again, from (59), we obtain

(γ+
1 − γ

−
1 )A1θ

γ−1 + (λ1 + λ2)θ
[
r − µ1γ

+
1

r(r − µ1)

]
= (γ+

1 − γ
−
1 )A2θ

γ−1 .

By (54) and (58), the above implies that

A2 > 0. (61)
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Next, we note that, for C < θ,

L2S0 + 1C<θ(1 + λ2)(C − θ) = A2

[1
2σ

2
2(γ−1 )2 + (µ2 −

1
2σ

2
2)γ−1 − r

]
Cγ
−
1

+A3

[1
2σ

2
2(γ+

1 )2 + (µ2 −
1
2σ

2
2)γ+

1 − r
]
Cγ

+
1 + (µ2 − µ1)C

r − µ1

= A2
1
2σ

2
2(γ−1 − γ

−
2 )(γ−1 − γ

+
2 )Cγ

−
1 +A3

1
2σ

2
2(γ+

1 − γ
−
2 )(γ+

1 − γ
+
2 )Cγ

+
1

+(1 + λ2)(µ2 − µ1)C
r − µ1

, (62)

where the last equality follows from the fact that γ+
2 and γ−2 are the roots of (25) for i = 2.

Since γ−1 < γ−2 < γ+
2 by (52), it follows from (61) that

A2
1
2σ

2
2(γ−1 − γ

−
2 )(γ−1 − γ

+
2 )Cγ

−
1 > 0. (63)

We need to consider two cases.
Case 1 : γ+

1 > γ+
2

By (60),
A3

1
2σ

2
2(γ+

1 − γ
−
2 )(γ+

1 − γ
+
2 )Cγ

+
1 ≤ 0. (64)

Since µ2 < µ1,
(1+λ2)(µ2−µ1)C

r−µ1
< 0 and decreases with C. It then follows from (62), (63), and

(64) that L2S0 + 1C<θ(1 +λ2)(C − θ) decreases with C. Since L2S0 + (1 +λ2)(C − θ)|C=CB(0)+ ≤ 0
by (55), we see that

L2S0 + (1 + λ2)(C − θ) ≤ 0 for all θ > C ≥ CB(0).

Case 2: γ+
1 ≤ γ

+
2

In this case,
A3

1
2σ

2
2(γ+

1 − γ
−
2 )(γ+

1 − γ
+
2 )Cγ

+
1 ≥ 0. (65)

By (62), (63), (65), and (51), the function L2S0 + 1C<θ(1 + λ2)(C − θ) tends to ∞ as C −→ 0
and as C −→∞ and has one unique global minimum that must be negative by (55). We will show
that the function is decreasing at C = θ that, by condition (55) would imply that it is negative in
the region θ > C ≥ CB(0).

Observe that, for C > θ

d

dC
[L1S0 + (1− λ1)(C − θ)] = 1

2σ
2
1C

2S
′′′
0 + σ2

1CS
′′
0 + µ1S

′
0 + µ1CS

′′
0 − rS

′
0 + (1− λ1) = 0.

For C < θ

d

dC
[L1S0 + (1 + λ2)(C − θ)] = 1

2σ
2
1C

2S
′′′
0 + σ2

1CS
′′
0 + µ1S

′
0 + µ1CS

′′
0 − rS

′
0 + (1 + λ2) = 0.
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Since S0 is twice differentiable at C = θ, we have

1
2σ

2
1C

2S
′′′
0 (θ+)− 1

2σ
2
1C

2S
′′′
0 (θ−) = λ1 + λ2 > 0.

As σ1 < σ2,
1
2σ

2
2C

2S
′′′
0 (θ+)− 1

2σ
2
2C

2S
′′′
0 (θ−) > λ1 + λ2. (66)

Now note that, by (66),

d

dC
[L2S0 + (1− λ1)(C − θ)]|C=θ+ −

d

dC
[L2S0 + (1 + λ2)(C − θ)]|C=θ−

= 1
2σ

2
2C

2S
′′′
0 (θ+)− 1

2σ
2
2C

2S
′′′
0 (θ−)− (λ1 + λ2) > 0. (67)

By (57), for C > θ,

L2S0 + (1− λ1)(C − θ) = A1
1
2σ

2
2(γ−1 − γ

−
2 )(γ−1 − γ

+
2 )Cγ

−
1 + (1− λ1)(µ2 − µ1)C

r − µ1
.

By (52), (58), and because µ2 < µ1, the R.H.S. above decreases with C and, in particular, is
decreasing at C = θ + . By (67), therefore, d

dC [L2S0 + (1 + λ2)(C − θ)]|C=θ− < 0. Consequently,

L2S0 + (1 + λ2)(C − θ) ≤ 0 for all θ > C ≥ CB(θ).

It remains to show that

L2S0 + (1− λ1)(C − θ) < 0 for all C > θ.

Because S0 is twice differentiable at C = θ, it follows from the above that

L2S0 + (1− λ1)(C − θ)|C=θ+ < 0

We have already shown that L2S0 + (1 − λ1)(C − θ) is decreasing for C > θ. It follows from the
above that it must be negative for C > θ.

By Proposition 8, therefore, choosing project 1 throughout is optimal for the bank. Q.E.D.
The following proposition establishes a necessary and sufficient condition for the optimal switch-

ing trigger to exceed the debt level.

Proposition 11 [Optimal Switching Trigger Greater than Debt Level] Suppose that

L1Sθ|C=θ− < 0, (68)

where Sθ is the equity value function corresponding to the policy where the manager chooses project
2 for C < θ and project 1 for C ≥ θ. There exists q∗ with θ < q∗ < ∞ such that the policy of
switching projects at q∗ is optimal for the bank and Sq∗ is the corresponding equity value function.

Proof. We split the proof into several steps.
Step 1. Let S∞ be the policy of always choosing project 2. It follows using arguments similar
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to those used to prove Proposition 1 that

S∞(C) = A∞C
γ−2 + (1− λ1)C

r − µ2
− θ

r
for C > θ. (69)

Further, because equity holders are protected by limited liability, S∞(C) > (1−λ1)C
r−µ2

− θ
r so that

A∞ > 0. Next,

L1S∞(C) + (1− λ1)(C − θ) = 1
2σ

2
1A∞(γ−2 − γ

−
1 )(γ−2 − γ

+
1 )Cγ

−
2 + (1− λ1)C(µ1 − µ2)

r − µ2

Because, µ1 > µ2 and γ−2 < 0,

L1S∞(C) + (1− λ1)(C − θ) −→∞ as C −→∞. (70)

Step 2. The function

Γ(q) = L1Sq + (1C≥θ(1− λ1)(C − θ) + 1C<θ(1 + λ2)(C − θ)) |C=q−

is a continuous function of q. By (70), Γ(q) −→∞ as q −→∞. By (68), there exists q∗ ∈ (θ,∞)
such that

L1Sq∗ + (1− λ1)(C − θ)|q∗− = 0. (71)

Since Sq∗ is the equity value function corresponding to the policy of choosing project 2 for
C < q∗ and project 1 for C > q∗,

L1Sq∗ + (1− λ1)(C − θ)|q∗+ = 0, (72)
L2Sq∗ + (1− λ1)(C − θ)|q∗− = 0. (73)

Subtracting (71) from (72), and using the fact that Sq∗ is differentiable at q∗ , we see that

d2Sq∗

dC2 |q=q∗+ = d2Sq∗

dC2 |q=q∗−. (74)

By (73), (73), and the fact that Sq∗ is differentiable at q∗, see that

L2Sq∗ + (1− λ1)(C − θ)|q∗+ = 0. (75)

Step 3. We show that q∗ is the optimal switching trigger. By Proposition 8, we need to show
that

L2Sq∗ + (1− λ1)(C − θ) ≤ 0 for C > q∗

L1Sq∗ + (1− λ1)(C − θ) ≤ 0 for q∗ ≥ C > θ

L1Sq∗ + (1 + λ2)(C − θ) ≤ 0 for θ ≥ C > CB(q∗). (76)

By (21), for C > q∗,

L2Sq∗ + (1− λ1)(C − θ) = 1
2σ

2
2A1C

γ−1 (γ−1 − γ
−
2 )(γ−1 − γ

+
2 ) + (1− λ1)(µ2 − µ1)C

r − µ1
.
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Since µ2 < µ1, the second term on the R.H.S. above is negative. By (52), we must have A1 > 0
for (72) to hold. In this case, however, the R.H.S. of the above is a strictly decreasing function of
C. The first condition in (76) then follows from (72).

Step 4. We now show that the second condition in (76) holds. Since Sq∗ is differentiable at q∗,

A1 (q∗)γ
−
1 + (1− λ1)q∗

r − µ1
− (1− λ1)θ

r
= A2 (q∗)γ

−
2 +A3 (q∗)γ

+
2 + (1− λ1)q∗

r − µ2
− (1− λ1)θ

r
,

γ−1 A1 (q∗)γ
−
1 + (1− λ1)θ

r − µ1
= γ−1 A2 (q∗)γ

−
2 + γ+

1 A3 (q∗)γ
+
2 + (1− λ1)q∗

r − µ2
. (77)

After some algebra, we obtain

(
γ+

2 − γ
−
2

)
A1 (q∗)γ

−
1 + (γ+

2 − 1)(1− λ1)C(µ1 − µ2)
(r − µ1)(r − µ2) =

(
γ+

2 − γ
−
2

)
A2 (q∗)γ

−
2 .

Since γ+
2 − 1 > 0 by (51) and µ1 > µ2, it follows from our earlier results that A1 > 0 that

A2 > 0. (78)

For θ < C < q∗,

L1Sq∗ + (1− λ1)(C − θ) =

<0︷ ︸︸ ︷
A2

1
2σ

2
1(γ−2 − γ

−
1 )(γ−2 − γ

+
1 )Cγ

−
2 +A3

1
2σ

2
2(γ+

2 − γ
−
1 )(γ+

2 − γ
+
1 )Cγ

+
1

+(1− λ1)C(µ1 − µ2)
r − µ2

The first term on the R.H.S. above is negative by (52) and (78). The third term is positive
because µ1 > µ2. There are two cases to consider.

Case 1. Suppose that the second term on the R.H.S. above is positive.
It is then easy to see that the entire expression on the R.H.S. is increasing. It follows from (71)

that the second condition in (76) holds.
Case 2. Suppose the second term on the on the R.H.S. above is negative. In this case, it

follows from (51) that the expression tends to −∞ as C −→ 0, to −∞ as C −→ ∞, and has a
unique local (and global) maximum. If we show that L1Sq∗ + (1− λ1)(C − θ) is increasing to the
left of q∗, it will follow that it is negative for θ < C < q∗. We proceed as follows.

By the arguments in Step 3,

d

dC
[L2Sq∗ + (1− λ1)(C − θ)] |C=q∗+ < 0 (79)

Since L2Sq∗ + (1− λ1)(C − θ) = 0 for θ < C < q∗,

d

dC
[L2Sq∗ + (1− λ1)(C − θ)] |C=q∗− = 0. (80)

Subtracting (80) from (79), evaluating the derivatives, and using the fact that Sq∗ is twice
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differentiable at q∗ by (74), we conclude that

d3

dC3 (Sq∗) |C=q∗+ −
d3

dC3 (Sq∗) |C=q∗− < 0. (81)

Next, we note that, because L1Sq∗ + (1− λ1)(C − θ) = 0 for C > q∗,

d

dC
[L1Sq∗ + (1− λ1)(C − θ)] |C=q∗+ = 0. (82)

From the above, (81), and the twice differentiability of Sq∗ at q∗, we see that

d

dC
[L1Sq∗ + (1− λ1)(C − θ)] |C=q∗− > 0,

which is what we wanted to prove. It follows from (71) that L1Sq∗ + (1−λ1)(C− θ) is negative
and increasing for θ < C < q∗. This establishes the second condition in (76).

Step 5. We now show that the third condition in (76) holds.
Since Sq∗ is differentiable at θ,

A2θ
γ−2 +A3θ

γ+
2 + (1− λ1)θ

r − µ2
− (1− λ1)θ

r
= A4θ

γ−2 +A5θ
γ+

2 + (1 + λ2)θ
r − µ2

− (1 + λ2)θ
r

,

γ−2 A2θ
γ−2 + γ+

2 A3θ
γ+

2 + (1− λ1)θ
r − µ2

= γ−2 A4θ
γ−2 + γ+

2 A5θ
γ+

2 + (1 + λ2)θ
r − µ2

. (83)

After some algebra, we can show that

(
γ+

2 − γ
−
2

)
A2θ

γ−2 + (λ1 + λ2)θ
[
r − γ+

2 µ2
r(r − µ2)

]
=
(
γ+

2 − γ
−
2

)
A4θ

γ−2 .

The first term on the L.H.S. above is positive by (78). The second term is also positive by (54).
Consequently,

A4 > 0. (84)

For C < θ,

L1Sq∗ + (1 + λ2)(C − θ) =

<0︷ ︸︸ ︷
A4

1
2σ

2
1(γ−2 − γ

−
1 )(γ−2 − γ

+
1 )Cγ

−
2 +A5

1
2σ

2
2(γ+

2 − γ
−
1 )(γ+

2 − γ
+
1 )Cγ

+
1

+(1 + λ2)C(µ1 − µ2)
r − µ2

The first term on the R.H.S. above is negative by (52) and (84). The third term is positive
because µ1 > µ2. There are again two cases to consider.

Case 1. Suppose that the second term on the R.H.S. above is positive.
It is then easy to see that the entire expression on the R.H.S. is increasing. By the arguments

in Step 4,
L1Sq∗ + (1 + λ2)(C − θ)|C=θ+ < 0.

36



Since Sq∗ is twice differentiable at C = θ,

L1Sq∗ + (1 + λ2)(C − θ)|C=θ− < 0. (85)

Since L1Sq∗ + (1 + λ2)(C − θ) is increasing for C < θ, it is negative for C < θ.
Case 2. Suppose the second term on the on the R.H.S. above is negative. In this case, it follows

from (51) that the expression tends to −∞ as C −→ 0, to −∞ as C −→∞, and has a unique local
(and global) maximum. If we show that L1Sq∗ + (1 − λ1)(C − θ) is increasing to the left of θ, it
will follow that it is negative for C < θ. We proceed as follows.

First, note that, because

L2Sq∗ + (1− λ1)(C − θ) = 0 for C > θ,

L2Sq∗ + (1 + λ2)(C − θ) = 0 for C < θ,

d

dC
L2Sq∗ |C=θ+ −

d

dC
L2Sq∗ |C=θ− = λ1 + λ2 > 0.

Since Sq∗ is twice differentiable at θ,

d

dC
L2Sq∗ |C=θ+ −

d

dC
L2Sq∗ |C=θ− = 1

2σ
2
2

[
d3

dC3 (Sq∗) |C=θ+ −
d3

dC3 (Sq∗) |C=θ−

]
> 0

Since σ2 > σ1

1
2σ

2
2

[
d3

dC3 (Sq∗) |C=θ+ −
d3

dC3 (Sq∗) |C=θ−

]
>

1
2σ

2
1

[
d3

dC3 (Sq∗) |C=θ+ −
d3

dC3 (Sq∗) |C=θ−

]

= d

dC
L1Sq∗ |C=θ+ −

d

dC
L1Sq∗ |C=θ−

It follows from the above that

d

dC
L1Sq∗ |C=θ+ −

d

dC
L1Sq∗ |C=θ− − (λ1 + λ2) < 0

By the results of Step 4, d
dC [L1Sq∗ + (1− λ1)(C − θ)] |C=θ+ > 0. It follows from the above that

d

dC
[L1Sq∗ + (1 + λ2)(C − θ)] |C=θ− > 0,

which is exactly what we wanted to prove. It follows from (85) that L1Sq∗+(1+λ2)(C−θ) < 0
for C < θ.

In conclusion, we have shown that all three conditions of (76) hold and, moreover, the inequal-
ities are strict. Consequently, by Proposition 8, the policy of switching projects at q∗ is the unique
optimal policy for the bank. Q.E.D.

The following proposition completes the remaining step in the proof of the theorem by estab-
lishing conditions under which the optimal switching trigger is less than the debt level.
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Proposition 12 [Optimal Switching Trigger Less than Debt Level] Suppose that

L1Sθ|C=θ− ≥ 0, L2S0 + (1 + λ2)(C − θ)|C=CB(0)+ > 0. (86)

There exists q∗ ≤ θ such that the policy of switching projects at q∗ is optimal for the bank and Sq∗
is the corresponding equity value function.

Proof. We again split the proof up into several steps.
Step 1. Suppose first that L1Sθ|C=θ− > 0. By (86), It follows as a special case of Proposition

8 that, within the sub-class of policies characterized by a single switching trigger that is less than
θ, the policy of always choosing project 1 as well as the policy of switching at C = θ are both
sub-optimal. By the continuity of the bank’s objective function in the switching trigger, it follows
that there exists q∗ < θ such that the policy of switching projects at q∗ is optimal within the
restricted sub-class of policies characterized by a single switching trigger. We will show that the
policy of switching projects at q∗ is, in fact, globally optimal among all possible dynamic project
choice policies.

Step 2. We now show that

L1Sq∗ + (1 + λ2)(C − θ)|q∗− = L2Sq∗ + (1 + λ2)(C − θ)|q∗+ = 0. (87)

Suppose to the contrary that L1Sq∗ + (1 + λ2)(C − θ)|q∗− < 0. We can use Ito’s lemma to
show that there exists q∗∗ > q∗ such that the value of the policy of switching projects at q∗∗ is
greater than the corresponding value for switching projects at q∗. Suppose, on the other hand,
that L1Sq∗ + (1 + λ2)(C − θ)|q∗− > 0. In this case, we can use Ito’s lemma to show that there
exists q∗∗ < q∗ such that the value of the policy of switching projects at q∗∗ is greater than the
corresponding value for switching projects at q∗. In either case, the policy of switching projects at q∗
is suboptimal within the sub-class of policies characterized by a single switching trigger, which is a
contradiction. Hence, L1Sq∗+(1+λ2)(C−θ)|q∗− = 0. Since the bank chooses project 1 for C > q∗,
L1Sq∗ + (1 + λ2)(C − θ)|q∗+ = 0. It then immediately follows that L2Sq∗ + (1 + λ2)(C − θ)|q∗+ =
0. Moreover, the super contact condition (74) holds at q∗, that is, the value function is twice
differentiable at q∗.

Step 3. By Proposition 8, we need to show that

L2Sq∗ + (1− λ1)(C − θ) ≤ 0 for C > θ

L2Sq∗ + (1 + λ2)(C − θ) ≤ 0 for θ ≥ C > q∗

L1Sq∗ + (1 + λ2)(C − θ) ≤ 0 for q∗ ≥ C > CB(q∗). (88)

By (23),

L2Sq∗ + (1− λ1)(C − θ) = 1
2σ

2
2A1C

γ−1 (γ−1 − γ
−
2 )(γ−1 − γ

+
2 ) + (1− λ1)(µ2 − µ1)C

r − µ1
(89)

By the arguments in Step 1, Sq∗ is strictly greater than the equity value from the policy of
always choosing project 1. The latter, in turn, exceeds (1−λ1)C

r−µ1
because equity is protected by

limited liability. Consequently,
A1 > 0. (90)

It follows from (52) and the fact that µ1 > µ2 that both terms on the R.H.S. of (89) are
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decreasing. Hence, L2Sq∗ + (1− λ1)(C − θ) decreases for C > θ.
Next, observe that, for C > θ

d

dC
[L1Sq∗ + (1− λ1)(C − θ)] = 1

2σ
2
1C

2S
′′′
q∗ + σ2

1CS
′′
q∗ + µ1S

′
q∗ + µ1CS

′′
q∗ − rS

′
q∗ + (1− λ1) = 0.

For q∗ < C < θ

d

dC
[L1Sq∗ + (1 + λ2)(C − θ)] = 1

2σ
2
1C

2S
′′′
q∗ + σ2

1CS
′′
q∗ + µ1S

′
q∗ + µ1CS

′′
q∗ − rS

′
q∗ + (1 + λ2) = 0.

Since Sq∗ is twice differentiable at C = θ, we have

1
2σ

2
1C

2S
′′′
q∗(θ+)− 1

2σ
2
1C

2S
′′′
q∗(θ−) = λ1 + λ2 > 0.

As σ1 < σ2,
1
2σ

2
2C

2S
′′′
q∗(θ+)− 1

2σ
2
2C

2S
′′′
q∗(θ−) > λ1 + λ2. (91)

Now note that, by (66),

d

dC
[L2Sq∗ + (1− λ1)(C − θ)]|C=θ+ −

d

dC
[L2Sq∗ + (1 + λ2)(C − θ)]|C=θ−

= 1
2σ

2
2C

2S
′′′
q∗(θ+)− 1

2σ
2
2C

2S
′′′
q∗(θ−) > 0. (92)

We have already shown earlier that d
dC [L2Sq∗ + (1 − λ1)(C − θ)]|C=θ+ < 0. Consequently,

d
dC [L2Sq∗ + (1 + λ2)(C − θ)]|C=θ− < 0.

Therefore, we have shown that L2Sq∗ + 1C<θ(1 + λ2)(C − θ) + 1C≥θ(1 + λ2)(C − θ) is strictly
decreasing for all C > q∗. It then follows from (87) that it must be negative for all C > q∗. Hence,
we have established the first two conditions in (88). It remains to establish the third condition.

Step 4. By our previous arguments,

d

dC
[L2Sq∗ + (1 + λ2)(C − θ)]|C=q∗+ < 0. (93)

Since the bank chooses project 2 for C < q∗,

d

dC
[L2Sq∗ + (1 + λ2)(C − θ)]|C=q∗− = 0. (94)

Subtracting (94) from (93), we get

S
′′′
q∗(q∗+)− S′′′q∗(q∗−) > 0. (95)

Next, because the bank chooses project 1 for C > q∗,

d

dC
[L1Sq∗ + (1 + λ2)(C − θ)]|C=q∗+ = 0. (96)
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By (95) and (96),
d

dC
[L1Sq∗ + (1 + λ2)(C − θ)]|C=q∗− > 0.

We can use arguments similar to those we have used previously in the proof to show that the
above condition implies that L1Sq∗+(1+λ2)(C−θ) is strictly increasing for C < q∗. It then follows
from (87) that it is strictly negative for C < q∗ , which establishes the third condition in (88).

Step 5. Suppose first that L1Sθ|C=θ− = 0. We can use arguments very similar to those used
above to show that the policy of switching projects at θ is optimal. We omit the arguments for
brevity. Q.E.D.

The main theorem follows from Propositions 10, 11 and 12. Q.E.D.

Proof of Proposition 3
By Proposition 4, the equity, debt and bank values for a given switching policy satisfy the

following ODE:

1
2σ

2
iC

2d
2Y

dC2 + µiC
dY

dC
− rY + y(C, θ) = 0 when project i ∈ {1, 2} is chosen,

where y(C, θ) is the corresponding payout flow to equity, debt, or the bank. Note that y(C, θ)
is homogeneous of degree 1 in C and θ, that is,

y(ξC, ξθ) = ξy(C, θ).

Further, the boundary conditions that determine the solution to the corresponding equity, debt
and firm value functions are also homogeneous of degree 1 in C and θ. Consequently, the value
function must itself be homogeneous of degree 1 in C and θ. It immediately follows from the proof
of Theorem 2 that the optimal switching threshold and insolvency threshold must both scale linearly
with θ as stated in the proposition. The constancy of the switching leverage follows from the fact
that the optimal switching trigger is proportional to θ, and the debt value and bank value are
homogeneous of degree 1 in current cash flow level and the debt level. Q.E.D.

Proof of Theorem 5
As in the proof of Theorem 2, we establish the theorem by stating and proving intermedi-

ate propositions. The following proposition states the relevant dynamic programming verification
theorem.

Proposition 13 [Verification Theorem for Regulator’s Problem] Let F socialq (C) denote the social
value when the current earnings level is C if the regulator follows a switching policy where it switches
projects at the earnings level q. Suppose that F socialq (C) satisfies the following HJB equation:

max
i∈{1,2}

LiF
social
q (C) +

[
1C≥θ

{
(1− λsocial1 )C + λsocial1 θ

}
+ 1C<θ

{
(1 + λsocial2 )C − λsocial2 θ

}]
= 0;

F socialq (CL) = F social
′

q (CL) = 0, (97)

Then F socialq (C) is the optimal social value function among all possible dynamic project choice
policies (including non-stationary policies) and q is the optimal switching trigger.

The following proposition establishes the necessary and sufficient condition for the regulator to
optimally choose project 1 throughout, that is, engage in no risk-shifting.
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Proposition 14 [No Asset Substitution for Regulator] Suppose that

L2F
social
0 + (1 + λsocial2 )C − λsocial2 θ|C=CL(0)+ ≤ 0, (98)

where F social0 is the social value function when the regulator always chooses project 1 and CL(0)
is the corresponding endogenous liquidation level. Then it is optimal for the regulator to always
choose project 1, that is, no asset substitution is optimal.

Proof. By (32), the social value when the regulator always chooses project 1 is given by

F social0 (C) = X1C
γ−1 + (1− λsocial1 )C

r − µ1
+ λsocial1 θ

r
for C ≥ θ

= X2C
γ−1 +X3C

γ+
1 + (1 + λsocial2 )C

r − µ1
− λsocial2 θ

r
for C < θ. (99)

The social value function in the hypothetical scenario where the bank’s assets are never liqui-
dated and/or debt is completely risk-free is (1−λsocial

1 )C
r−µ1

+ λsocial
1 θ
r . Since F social0 (C) must clearly be

less, we must have
X1 < 0. (100)

Next, we note that, for C > θ,

L2F
social
0 + (1− λsocial1 )C + λsocial1 θ = 1

2σ
2
2X1(γ−1 − γ

−
2 )(γ−1 − γ

+
2 )Cγ

−
1 + (1− λsocial1 )C(µ2 − µ1)

r − µ1
.

Because γ−1 < γ−2 by (52), it follows from (100) that the first term on the R.H.S. above
is strictly negative. The second term is also strictly negative because µ2 < µ1. Consequently,
L2F

social
0 + (1− λsocial1 )C + λsocial1 θ < 0, which establishes the verification condition for C > θ.
Since the social value function is differentiable at θ,

X1θ
γ−1 + (1− λsocial1 )θ

r − µ1
+ λsocial1 θ

r
= X2θ

γ−1 +X3θ
γ+

1 + (1 + λsocial2 )θ
r − µ1

− λsocial2 θ

r

γ−1 X1θ
γ−1 + (1− λsocial1 )θ

r − µ1
= γ−1 X2θ

γ−1 + γ+
1 X3θ

γ+
1 + (1 + λsocial2 )θ

r − µ1

From the above, we obtain

(γ+
1 − γ

−
1 )X3θ

γ+
1 = (λsocial1 + λsocial2 )θ

[
γ−1 − 1
r − µ1

− γ−1
r

]
= (λsocial1 + λsocial2 )θµ1γ

−
1 − r

r(r − µ1) .

By (53), and the fact that γ+
1 > γ−1 , the above implies that

X3 < 0. (101)
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Next, note that, for C < θ,

L2F
social
0 + (1 + λsocial2 )C − λsocial2 θ = 1

2σ
2
2X2(γ−1 − γ

−
2 )(γ−1 − γ

+
2 )Cγ

−
1 + 1

2σ
2
2X3(γ+

1 − γ
−
2 )(γ+

1 − γ
+
2 )Cγ

+
1

+(1− λsocial1 )C(µ2 − µ1)
r − µ1

. (102)

Because F social0 is twice differentiable at C = θ, it follows from our earlier result that L2F
social
0 +

(1− λsocial1 )C + λsocial1 θ < 0 for C > 0 that

L2F
social
0 + (1 + λsocial2 )C − λsocial2 θ|C=θ− = L2F

social
0 + (1− λsocial1 )C + λsocial1 θ|C=θ+ < 0 (103)

We need to consider two cases.
Case 1 : γ+

1 ≥ γ
+
2 .

In this case, the second term on the right hand side of (102) is non-positive by (101). The third
term is negative because µ2 < µ1. If X2 ≤ 0, then the first term is non-positive by (52) so that the
entire expression on the R.H.S. of (102) is negative for C < θ. If X2 > 0, then the expression on the
R.H.S. of (102) is decreasing with C. In this case, condition (98) implies that it is again negative
for CL(0) < C < θ.

Case 2: γ+
1 < γ+

2
In this case, the second term on the right hand side of (102) is positive by (101). If X2 < 0,

then the first term is positive by (52). The function on the R.H.S. of (102) tends to ∞ as C −→ 0
and as C −→ ∞ and has a unique local (and global) minimum that is strictly negative by (98).
Condition (98) and (103) together imply that L2F

social
0 + (1 + λsocial2 )C − λsocial2 θ must, in fact, be

negative for CL(0) < C < θ.
In summary, we have shown that F social0 satisfies the HJB equation. Moreover, L2F

social
q (C) +[

1C≥θ
{

(1− λsocial1 )C + λsocial1 θ
}

+ 1C<θ
{

(1 + λsocial2 )C − λsocial2 θ
}]

< 0 for CL(0) < C < ∞,
which implies that choosing project 1 always is the unique optimal policy for the regulator. Q.E.D.

The following proposition shows that, if condition (98) does not hold, the regulator optimally
switches projects at a trigger that is below the debt level.

Proposition 15 [Optimal Switching Trigger] Suppose that

L2F
social
0 + (1 + λsocial2 )C − λsocial2 θ|C=CL(0)+ > 0. (104)

There exists q∗ < θ such that it is optimal for the regulator to choose project 2 for C < q∗, and
project 1 for C ≥ q∗.

Proof. We split the proof into several steps.
Step 1. Consider the policy where the switching trigger is equal to θ. By (31), the social value

function for C > θ has the form

F socialθ (C) = X1C
γ−1 + (1− λsocial1 )C

r − µ1
+ λsocial1 θ

r
.

By the same argument used in the proof of Proposition 14,

X1 < 0. (105)
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Consequently, for C > θ,

L2F
social
θ +(1−λsocial1 )C+λsocial1 θ = 1

2σ
2
2X1(γ−1 −γ

−
2 )(γ−1 −γ

+
2 )Cγ

−
1 + (1− λsocial1 )C(µ2 − µ1)

r − µ1
< 0,
(106)

so that
L2F

social
θ + (1− λsocial1 )C + λsocial1 θ|C=θ+ < 0. (107)

We know that, because project 2 is chosen for C < θ, and project 1 for C > θ,

L2F
social
θ + (1 + λsocial2 )C − λsocial2 θ|C=θ− = 0,

L1F
social
θ + (1− λ1)C + λ1θ|C=θ+ = 0.

From the above equations and (107), we obtain

L1F
social
θ + (1 + λsocial2 )C − λsocial2 θ|C=θ− > 0. (108)

By (104) and (108), the policy of always choosing project 1, and the policy of switching projects
at θ are both sub-optimal within the restricted class of “single switching trigger” policies where the
switching trigger is less than or equal to θ. By the continuity of the regulator’s objective function,
there exists q∗ < θ such that the policy of switching projects at q∗ is optimal within the restricted
class of “single switching trigger” policies. We will show that the policy is, in fact, globally optimal
as in the proof of Proposition 12.

Step 2. By arguments similar to those used in Step 2 of the proof of Proposition 12, we must
have

L2F
social
q∗ + (1 + λsocial2 )C − λsocial2 θ|C=q∗+ = 0, (109)

L1F
social
q∗ + (1 + λsocial2 )C − λsocial2 θ|C=q∗− = 0. (110)

Further, the above imply that F socialq∗ is twice differentiable at q∗.
Step 3. Using arguments similar to those used in the proof of Proposition 14, we can show

that, condition (109) implies that L2F
social
q∗ + (1 + λsocial2 )C − λsocial2 θ < 0 for q∗ < C < θ.

Step 4. It remains to show that L1F
social
q∗ + (1 + λsocial2 )C − λsocial2 θ < 0 for CL(q∗) < C < q∗.

By arguments similar to those used in Step 4 of the proof of Proposition 12, we can show that
L1F

social
q∗ +(1+λsocial2 )C−λsocial2 θ is increasing for C < q∗. Condition (110), therefore, implies that

it is negative for C < q∗.
Hence, the function F socialq∗ satisfies all the conditions of the verification theorem. Moreover,

the results that

L2F
social
q∗ (C) +

[
1C≥θ

{
(1− λsocial1 )C + λsocial1 θ

}
+ 1C<θ

{
(1 + λsocial2 )C − λsocial2 θ

}]
< 0 for C > q∗,

L1F
social
q∗ (C) +

[
1C≥θ

{
(1− λsocial1 )C + λsocial1 θ

}
+ 1C<θ

{
(1 + λsocial2 )C − λsocial2 θ

}]
< 0 for C < q∗,

together imply that switching projects at q∗ is the unique optimal policy for the regulator.
Q.E.D.

Proof of Proposition 6
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To simplify the notation, let q∗ and q̃∗ denote the optimal switching triggers in the bank’s and
regulator’s problems, respectively. We need to show that q̃∗ ≤ q∗.

Step 1. Consider a switching policy described by a trigger q, where q ≥ CB(q), where CB(q) is
the endogenous insolvency threshold corresponding to the switching policy. Define the function

Gq = F socialq − Sq (111)

By (13) and (15), G satisfies the following system of ODEs:

L1Gq + θ = 0 for C > q

L2Gq + θ = 0 for CB(q) < C < q

L2Gq + (1− λ1)C + λ1θ = 0 for CL(q) < C < CB(q), (112)

where CL(q) is the endogenous liquidation threshold corresponding to the switching policy
characterized by the trigger q. By arguments similar to those used in the proof of Proposition 1, G
has the following form for C > q :

Gq(C) = Y1C
γ−1 + θ

r
. (113)

Since θ
r is the value of Gq(C) in the hypothetical scenario where debt is completely risk-free

and liquidation never occurs, we must have

Y1 < 0. (114)

Next, we note that

L2(Gq) + θ = 1
2Y1σ

2
2(γ−1 − γ

−
2 )(γ−1 − γ

+
2 )Cγ

−
1 < 0 (115)

because Y1 < 0 and γ−1 < γ−2 by (52).
Step 2. Suppose that q∗ = CB(q∗), which implies that project 1 is always chosen. By (55),

L2Sq∗ + (1 + λ2)(C − θ)|C=CB(q∗)+ ≤ 0. (116)

An examination of the proof of Theorem 5 reveals that it suffices to show that

L2F
social
q∗ + (1 + λ2)C − λ2θ|C=CB(q∗)+ ≤ 0

to ensure that the regulator also optimally chooses project 1 for all C ≥ CB(q∗), that is, the
regulator’s optimal switching trigger (if it exists) is less than CB(q∗). By (111) and (115),

L2F
social
q∗ + (1 + λ2)C − λ2θ = L2Sq∗ + (1 + λ2)(C − θ) +

L2(Gq∗) + θ < 0,

where the last inequality above follows from (116) and (115).
Step 3. Suppose that q∗ > CB(q∗). Since the regulator’s optimal switching trigger is less than

θ by Theorem 5, it suffices to consider the case where q∗ < θ.
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By the proof of Theorem 2,

L2Sq∗ + (1 + λ2)(C − θ)|C=q∗+ = 0 (117)

By the proof of Theorem 5, it suffices to show that

L2F
social
q∗ + (1 + λ2)C − λ2θ|C=q∗+ ≤ 0.

The above, however, immediately follows from (115) and (117). Q.E.D.
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Table I: The Impact of Optimal Prudential Regulation

This table reports the solutions to the case of the unregulated bank and the case where the regulator
optimally implements the full set of regulatory tools.

Unregulated
Bank

Full
Regulation

Debt Level and Thresholds
Initial Coupon Level 0.635 0.822
Switching Boundary (Bank) 0.581 0.753
Switching Boundary (Regulator) 0.335
Insolvency Boundary 0.432 0.579
Liquidation Boundary 0.297

Leverage and Regulatory Ratios
Initial Leverage 64.9% 79.8%
Initial Capital Requirement 20.2%
Switching/Intervention Leverage 90.2% 93.2%
Intervention Ratio 6.8%
Switching Leverage (Regulator) 145.7%
Spread (bp) 68.6 42.2

Ex Ante Values
Bank Value 23.346 26.251
Social Value 23.346 24.365
Ex Ante Benefit (Bank Value, %) 12.4%
Ex Ante Benefit (Social Value, %) 4.4%

Ex Post Values at Insolvency
Ex Post Benefit (Bank Value, %) 86.9%
Ex Post Benefit (Social Value, %) 36.3%
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Table II: The Impact of Individual Components of Prudential Regulation

This table reports the key regulatory ratios and ex ante benefits in several cases where different sets of regulatory tools are available. Column
1 reports the case of the unregulated bank. Column 2 reports the case where the regulator injects capital when the bank is insolvent and
optimally liquidates the bank, but does not intervenes in project choices or impose initial capital requirement. Column 3 reports the case where
the regulator’s only action is intervention in the bank’s project choices. Column 4 reports the case where the regulator employs all regulatory
tools (investment intervention, capital injection, and liquidation) except the initial capital requirement. Column 5 reports the case where the
regulator optimally employ all regulatory tools.

Unregulated
Bank

Capital
Injection
Only

Investment
Intervention
Only

Full Regula-
tion with No
Initial Capi-
tal Require-
ment

Full Regula-
tion

Leverage and Regulatory Ratios
Initial Leverage 64.9% 87% 66.4% 100% 79.8%
Initial Capital Requirement 20.2%
Intervention Ratio 8.0% 9.8% 6.8% 6.8%

Ex Ante Values
Firm Value 23.346 25.226 23.442 31.133 26.251
Social Value 23.346 23.177 23.442 19.496 24.365
Ex Ante Benefit (Bank Value, %) 8.1% 0.4% 33.4% 12.4%
Ex Ante Benefit (Social Value, %) -0.7% 0.4% -16.5% 4.4%
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Liquidity Threshold θ*reg

Bank’s Switching Threshold C
S
* (θ*reg)

Insolvency Threshold C
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Regulator’s Switching Threshold C
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Liquidation Threshold C
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Regulator Liquidates Bank

Bank Begins to Issue Equity

Bank Stops Issuing Equity

Bank’s Equity Value Falls to Zero and
Regulator Takes Over and Begins to Inject Capital

"Intervention Band"

Regulator Forces Bank to Continue with Low−Risk Project 1

Regulator Switches to High−Risk Project 2

Bank Starts with Low−Risk Project 1 and Debt θ*

Figure 1: Optimal Prudential Regulation: An Illustration This figure plots sample earnings paths
and project choices of a fully regulated bank.
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Figure 2: Impact of Changes in Initial Capital Requirement This figure plots the changes in optimal
regulatory policy and the associated benefits when the initial capital requirement deviates from the optimal
level. The model parameters are the baseline parameters. The red dashed lines correspond to the case of
optimal regulation.
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Figure 3: Optimal Prudential Regulation: Comparative Statics This figure reports the optimal
regulatory ratios and the benefits to the bank and social welfare of optimal regulation under different values
of the model’s parameters. The red dashed lines correspond to the baseline case.
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Figure 3: Optimal Prudential Regulation: Comparative Statics (Continued)
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