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1 Introduction

Recent �nancial regulatory reforms include changes to the allocation of regulatory functions aimed

at lessening systemic risk. For example, referring to the �nancial reform bill recently passed by

the U.S. Congress, Senator Dodd stated: �with this bill, we have protected taxpayers from being

forced to bail out companies that threaten to bring down the economy. . . regulators will no longer

be able to ignore emerging threats to the economy.�

This bill and other relevant legislation around the globe have been advanced under the as-

sumption that the incentives of regulators, charged with di¤erent oversight functions, are perfectly

aligned with each other. As pointed out by Repullo (2000), if the agencies charged with the di¤er-

ent regulatory functions were social welfare maximizers, their joint action would also lead to the

optimal implementation of regulatory oversight. However, this is not the case when agencies�ob-

jective functions di¤er across regulatory agencies. In this case, the optimal regulatory response is a

second best that depends on the comparison of alternative allocation of regulatory functions. This

comparison is potentially more di¢ cult when regulators are asked to explicitly take into account

the systemic importance of the institutions they oversee (as in recent �nancial regulatory reforms).

In our view, an analytical framework that is useful for evaluating the alternative allocation

of regulatory functions should explicitly model �nancial institutions facing two potential types of

shock: a shock to their liquidity (represented by unexpected withdrawals by depositors) and a

shock to their solvency (represented by a decrease in the value of their assets). And key regulatory

functions to be analyzed should include lender of last resort, early intervention powers and the

provision of short-term bank-liabilities insurance. Furthermore, because the regulatory reforms are

intent on dealing with intermediaries� systemic connectedness risks, the model should explicitly

account for systemic externalities. The model should also explicitly include political economy

considerations as in, for example, Repullo (2000) and Kahn and Santos (2005), to explicitly account

for regulators�strategic actions regarding data sharing and forbearance incentives.

Regulatory forbearance arises primarily because the failure of a �nancial intermediary is �polit-

ically costly�for a regulator. Regulators often have the incentive to keep an institution a�oat, even

when insolvent, because regulators strongly dislike closing institutions under their watch, especially

because in some cases, given enough time, an institution may be back on its feet. Similarly, how or
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whether regulators share information will re�ect the strategic considerations of the di¤erent agen-

cies�objectives. For example, agencies possessing information regarding �rms�degree of systemic

importance may have an incentive to misrepresent this information to other agencies.

The main �ndings of the paper are that: i) under an expanded mandate to explicitly oversee

systemic interconnectedness, regulators would be more forbearing towards systemically important

institutions, because the systemically important institutions will have a more damaging e¤ect on

other institutions under the regulators�purview and stricter with non-systematic institutions; and

ii) in the presence of e¢ cient resolution mechanisms and high political costs for shutting down a �-

nancial institution, a uni�ed regulatory arrangement could reduce systemic risk vis-a-vis a multiple

regulatory arrangement because: a) forbearance would be reduced and b) when only a subset of reg-

ulators have access to private information regarding an institution�s degree of systemic importance,

these regulators may have no incentive to share it with other regulators.

Our paper contributes to the literature on the political economy of �nancial intermediation and

regulation. Most of the literature on bank regulation has disconsidered strategic interaction among

regulators by either analyzing regulatory functions separately or assuming that regulators�interests

are perfectly aligned. The former includes studies on lender of last resort and the role of policy

precommitment (e.g., Goodfriend and Lacker (1999) and Freixas (1999)), deposit insurance and the

issue of moral hazard (e.g., Kareken and Wallace (1978) and Merton (1977)), and supervision with

di¤erent closure rules (e.g., Davis and McManus (1991)). The latter is represented by studies on

deposit insurance pricing and closure policies (e.g., Pennacchi (1987), Acharya and Dreyfus (1989),

Allen and Saunders (1993), and Fries et al. (1997)), lender of last resort and deposit insurance

policies (e.g., Kanatas (1986), Sleet and Smith (2000)), supervision and bank monitoring (e.g.,

Campbell et al (1992)), and deposit insurance and bank closure (e.g., Mailath and Mester (1994)).

None of these papers look at the problem of what happens when you have multiple regulators, each

with their own political or social agenda available to them. The �rst paper that we are aware of

that actually does this is that of Repullo (2000), which looks at the interaction between di¤erent

institutions who might be taking on the role of lender of last resort. The paper examines which

one is the right one to take this role, the incentives for each, and how to compare them.

Kahn and Santos (2005) and Kahn and Santos (2006) look at this question of competition among
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regulators or the games being played by regulators when they are in the presence of the dilemma

of insolvency versus illiquidity �the standard dilemma of a regulator in �nancial intermediation.

They look at the case of a regulator and a lender of last resort and the relative merits of joint versus

separate regulatory powers, focusing on the problems of excessive forbearance and information. We

extend this analysis to consider the consequences of systemic risk and to deal with the possibility

of multiple regulated banks strategically interacting with each other. In Kahn and Santos (2005),

there is just one bank. Importantly, in their paper it does not matter if there is more than one

bank because they do not interact with one another. In this paper we are talking explicitly about

the possibilities of failures in one bank a¤ecting the likelihood of failures in another bank.

The remainder of the paper is organized as follows. Section 2 describes the model without

private information. In Section 3, we solve the model with private information and examine its

main results. Section 4 concludes the paper. All proofs are in the Appendix.

2 The Model without Private Information

In order to analyze the optimal regulatory implications of explicitly accounting for systemically

important institutions, our political economy model features two �banks� indexed by i 2 fA;Bg.

Their only source of �nancing for their long term projects is demand deposits. Each bank faces

the possibility of two types of shocks: liquidity shocks (represented by a sudden drop in deposits)

and solvency shocks (represented by low probability of success of the bank�s investment project).

Lastly, banks A and B are identical except in two respects: (i) bank A is the systemic institution

in the sense that its failure lowers the probability that bank B �s projects succeed, and (ii) the

timing of each bank�s actions di¤er slightly in order for bank A �s performance to a¤ect bank B.

Figure 1 summarizes the timing. There are four periods and no time discounting. At time

t = 0, banks invest in long-term projects Yi, that pay a return ~Ri at a later date. These projects

are �nanced by capital, Ki, and short-term deposits, Di. Banks are subject to liquidity shocks,

which are publicly observable at date t = 1: if the new level of deposits ~Di at t = 1 is such that

Di > ~Di; banks are forced to seek emergency liquidity from a lender-of-last-resort to bridge the

liquidity gap, de�ned as !i � Di � ~Di.1. At t = 1, the probability of success of bank A�s project,

1The rollover risk serves the same role as does liquidity demand for early withdrawals in previous models such as
Diamond and Dybvig (1983), but allows for a simpler stochastic structure.
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Figure 1: Timing of the game.

uA, is publicly revealed and the return of its investment project is realized at t = 2. Similarly,

bank B �s probability of success, uB, is publicly known at t = 2; and the return on this investment

is realized at t = 3. Furthermore, as of date 0, the signal ui containing information on ~Ri (i.e.

supervisory information) has the following properties:

Assumption 1 For each bank i = A;B, the level of deposits available at date 1; ~Di, are indepen-

dent random variables with distribution G(D); and G0(0) > 0:

Assumption 2 The �nancial condition signal of bank A�s portfolio of loans is given by the random

variable uA, with support [uA; uA] � [0; 1] and distribution FA(uA), and it is publicly observable at

date 1 but not veri�able. If bank A invests YA in loans at period 0, it will receive YA ~RA in period

t = 2 where

~RA =

�
R with probability uA
0 with probability 1� uA

Assumption 3 The �nancial condition signal of bank B�s portfolio of loans is given by the ran-

dom variable euB � 
� (� is an indicator variable which equals 1 if bank A failed at t = 2 and 0
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otherwise.), where euB has distribution FB (uB) with support [uB; uB] � [0; 1] and 
 2 [0; uB]. The
�nancial condition signal is publicly observable at date t = 2 but not veri�able. If bank B invests

YB in loans at period 0, it will receive YB ~RB in period t = 3, where

~RB =

�
R with probability uB � 
�
0 with probability 1� uB + 
�

Each bank can be liquidated before the realization of the investment outcome (that is, before

t = 2 for bank A and before t = 3 for bank B). If this occurs, the liquidation value of the bank�s

projects is LiYi, where Li 2 (0; 1) determines the relative loss that banks su¤er for canceling their

investments early. In addition, there is a bankruptcy cost of ci > 0, such that, as of time 0 the

expected return from bank lending (net of second period bankruptcy costs) exceeds the zero return

from holding liquid assets, for i = A;B;

E(eui)[R+ ci] > 1 + ci: (1)

2.1 Regulatory Architectures: Uni�ed vs Multiple Regulators

We are interested in considering di¤erent regulatory architectures. In particular, we want to com-

pare a uni�ed regulator (UR) against an alternative set-up where regulatory functions are divided

between two agencies: a lender of last resort (LoLR) charged with the provision of emergency

liquidity to banks, and a deposit insurer (DI) responsible for guaranteeing bank deposits and that

has early intervention powers (the DI can intervene even if there is no liquidity shortfall).2

All regulators have private objective functions; that is, regulators do not maximize social wel-

fare. Instead, regulators care about their income and face a trade-o¤ between the political cost of

closing a bank in distress and the expected �nancial cost of not closing� that is, forbearing� the

bank. In other words, on the one hand regulators are interested in avoiding the reputational cost

associated with a bank closure, while on the other hand, they want to minimize their �nancial costs

in case the bank actually fails. For the LoLR, these costs are the funds lent to a distressed bank

(at a penalty rate P ) that eventually defaults. For the DI, the costs are the deposit insurance

payouts (to depositors) that are made if a bank eventually fails. For the UR, the costs are the sum

of the LoLR and DI costs.
2Note that this is akin to the prompt corrective actions framework of the FDIC in the United States.
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The regulatory decisions of the DI and the LoLR regarding bank i are respectively given by

di; li 2 f0; 1g, where di = 1 if the DI decides not to close the bank and di = 0 if otherwise, and

li = 1 if the LoLR provides emergency funds and li = 0 if otherwise. In terms of the model�s timing

this can be expressed as follows: at t = 1, signal uA is obtained and the DI may choose to close

bank A or the LoLR may refuse to provide liquidity if !A > 0. In period t = 2, the signal uB is

observed and the regulators make similar decisions regarding bank B:

Let si � (di; li). The utility function of regulators are given by,

E
h
I
�
sA; ~RA

�
� �cA�

�
sA; ~RA

�
�A + E

h
I
�
sB; ~RB

�
� �cB�

�
sB; ~RB

�
�B j �

�
sA; ~RA

�
; euBi j euAi

(2)

where I (�) is the net income accruing to the regulator, �ci measures the regulator�s political cost

of bankruptcy, and � is an indicator variable which is 0 if and only if the regulator�s action is to

not close the bank while the other regulator chooses to close the bank.3

2.2 Equilibrium in a Multiple-Regulator Architecture

To �nd the equilibria we solve by backwards induction. The �rst step consists of solving the

regulators�problem for bank B once it is known whether bank A is closed. Proposition 1, states

�the closing rules�for bank B.

Proposition 1 Consider a multi-regulator architecture with separate LoLR and DI agencies. At

t=2, once it is known whether bank A has been closed (� = 0) or not (� = 1), bank B is closed if

the realized value of uB falls below the threshold umB (
) given by:

umB (�) � max
�
uDIB (�) ; uLoLRB (�)

	
,

where

uLoLRB (�) =
!B

(P + 1)!B + �cB
+ 
�;

uDIB (�) =
LBYB �max f0; !Bg

DB �max f0; !Bg+ �cB
+ 
�.

The intuition for the proposition is as follows. From the LoLR perspective, taking DI�s actions

as given, the size of the liquidity shock determines the degree of forbearance: larger injections of

3For the uni�ed regulator � = 1 whenever the regulator chooses to close a bank.
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Figure 2: Higher probability of closing non-systemic institutions in crisis under multiregulator
arrangements. The solid lines represent the liquidation cuto¤s of the LoLR and the DI for the
non-systemic bank B when bank A is not closed. The dashed lines represent the liquidation cuto¤s
of the LoLR and the DI for the non-systemic bank B when bank A is closed.

liquidity, !B, require greater likelihood of success (i.e., higher values of uLoLRB ). If the LoLR does

not provide the loan, the bank is forced to close and the LoLR would bear the bankruptcy cost

�c. If, on the other hand, the LoLR makes the loan but the bank fails, then in addition to the

bankruptcy cost, the LoLR forgoes the liquidity injection, !B, which the failed bank is unable

to repay. Therefore, the higher the need for liquidity injections, the greater is the probability of

success u required by the LoLR to extend the liquidity support.

From the DI�s perspective, taking the LoLR�s actions as given, the DI is more forbearing the

greater the liquidity assistance supplied by the LoLR. This is because (unpaid) debts to the LoLR

are outside the responsibility of the DI regulator if the bank fails and reduce the potential need for

deposit insurance outlays.4 This increases the temptation for an independent DI agency to engage

in forbearance as liquidity shortfalls increase.

4Notice that the liquidity injection transforms the bank�s debt to depositors (which are insured by the DI ) into
debt to the LoLR (which is not insured by the DI ).
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Figure 3: More forbearance toward systemic institutions under single regulator and multiregulator
arrangements. The solid lines represent the liquidation cuto¤s of the LoLR and the DI for the
systemic bank A, in the absence of systemic risk. The dashed lines represent the liquidation cuto¤s
of the LoLR and the DI for the systemic bank A when bank A�s degree of systemic risk is positive.

Taking as given the regulatory response towards bank B, the second step consists of solving the

regulators�problem for bank A. Proposition 2, states �the closing rules�for bank A.

Proposition 2 Consider a multi-regulator architecture with separated LoLR and DI agencies.

Bank A is closed for uA values below

umA (
) � max
�
uDIA (
) ; uLoLRA (
)

	
,

where

uLoLRA (
) =
!A

(P + 1)!A + �cA + 
 [(P + 1)max f0; !Bg+ �cB] Pr
�
uB � umB (� = 0)

� ;
uDIA (
) =

LAYA �max f0; !Ag
DA �max f0; !Ag+ �cA + 
 [DB �max f0; !Bg+ �cB] Pr

�
uB � umB (� = 0)

� .
The insights of propositions 2 and 3 are illustrated in Figures 2 and 3, where the solid lines repre-

sent the case in which � = 0 and the dashed lines represent the case in which � = 1. The horizontal
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axis depicts the liquidity shock !, whereas the vertical axis represents the bank�s �nancial condi-

tion, u. The higher the required LoLR�s liquidity injection, the less forbearing the LoLR is (i.e.,

higher u)� this explains why the LoLR line is upward sloping. On the other hand, higher liquidity

injections reduce the size of potential outlays from the deposit insurance, thus inducing the DI

agency to become more forbearing� this is represented in the downward sloping DI line in Figure 2.

Figure 2 also illustrates two results arising under a mandate, to monitor the systemic importance of

�nancial institutions. Under this mandate, both, the LoLR and the DI supervisors will be: (i) less

forbearing towards non-systemic institutions (Figure 2); and (ii) more forbearing towards system-

ically important institutions (Figure 3). This follows from interpreting the liquidation cuto¤s for

which � = 0 as representing the decision to close bank B in the absence of systemic risk (
 = 0). In

this case, regulation outcomes regarding bank B are the same regardless of what happens to bank A.

Figure 3 illustrates the results of Proposition 2. The solid lines represent liquidation cuto¤s in

the absence of systemic risk (
 = 0) and the dashed lines represent the environment in the presence

of systemic risk (
 > 0). The presence of systemic risk makes regulators more forbearing towards

the systemic institution. The decision to close bank A increases the probability that bank B is

liquidated � due to more stringent solvency standards, increasing the expected costs associated

with its failure. As a result, regulators become less willing to liquidate bank A in order to avoid

the expected downside consequences of systemic risk.

2.3 Equilibrium in a Uni�ed Regulator Architecture

2.3.1 Non-systemic bank

Because under a UR; the LoLR and a DI problems are solved simultaneously, intuition would

suggest that a UR would internalize the excessive forbearance incentives faced by each individual

regulator leading to the lowest degree of excessive regulatory forbearance. However, it is important

to recall that what is at stake is the maximization of regulators�utility and not necessarily social

welfare. Propositions 3 and 4 formally state the conditions under which UR leads to the lowest

oversight forbearance of non systemic and the systemic banks, respectively.

Proposition 3 Consider the case of a uni�ed regulator with DI and LOLR functions under its

purview. At t=2, once it is known whether bank A remains open (� = 0) or not (� = 1), bank B
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Figure 4: Higher probability of closing non-systemic institutions in crisis under single and multi-
regulator arrangements. The solid lines represent the liquidation cuto¤s of the LoLR, the DI, and
the single regulator for the non-systemic bank B when bank A is not closed. The dashed lines
represent the liquidation cuto¤s of the LoLR, the DI, and the single regulator for the non-systemic
bank B when bank A is closed.

is closed if the realized value of uB falls below

uuB (�) �
LBYB

P max f0; !Bg+ �cB +DB
+ 
�.

The uni�ed regulator has the same payo¤ as that of the DI when the decision is to close bank

B. However, their payo¤s are di¤erent when bank B is allowed to continue operating. If bank B

fails, the uni�ed regulator has to back all the deposits while the DI only responds for those not yet

covered by the LoLR. This makes the uni�ed regulator less forbearing. If bank B succeeds, the

uni�ed regulator receives the liquidity injection times the penalty rate P while the DI has a payo¤

of zero. For moderate liquidity shocks, the uni�ed regulator�s payo¤ is more weighted towards that

of when bank B fails, implying lower forbearance. Since the DI is less forbearing than the LoLR

for moderate shocks, this implies that the uni�ed architecture results in less forbearance than the

multiregulator setting.
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Figure 5: More forbearance toward systemic institutions under single regulator and multiregulator
arrangements. The solid lines represent the LoLR, the DI, and the single regulator liquidation
cuto¤s for the systemic bank A in the absence of systemic risk. The dashed lines represent the
LoLR, the DI, and the single regulator liquidation cuto¤s for the systemic bank A when bank A�s
degree of systemic risk is positive.

The uni�ed regulator has a higher payo¤ than that of the LoLR when the decision is to close

bank B due to the salvage value. This makes the uni�ed regulator less forbearing for a given size of

liquidity shock. However, their payo¤ di¤er when bank B is not closed. If bank B succeeds, both

get the liquidity injection times the penalty rate P . However, the uni�ed regulator�s payo¤ when

bank B fails is independent of the liquidity injection � all deposits need to be backed � while

the LoLR payo¤ is decreasing in the liquidity shock. It follows that the uni�ed regulator�s payo¤

when he does not close bank B is increasing in the liquidity shock, implying greater forbearance.

The opposite is true in the multiregulator arrangement. Therefore, when the liquidity shock is

su¢ ciently high, the uni�ed regulator setting is more forbearing than the multiregulator one. This

is illustrated in Figure 4.
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2.3.2 Systemic bank

Proposition 4 Consider the case where a uni�ed regulator has DI and LOLR functions. Then

bank A is closed for uA values below

uuA (
) �
LAYA

P max f0; !Ag+DA + �cA + 
 (P max f0; !Bg+ �cB +DB) Pr
�
uB � uuB (� = 0)

� .
The regulator will be softer on potentially systemic institutions. Consolidating standard regula-

tory functions without additional tools to preclude institutions from becoming systemic in the �rst

place will not eliminate regulators�incentives to be lenient with systemically important institutions.

In fact, these incentives could be exacerbated.

The failure of a systemically important institution increases the likelihood of failures among

non-systemic institutions. These increased costs mean that any regulator will be more lenient with

a systemically important institution, as illustrated by the downward shift in lines in Figure 5. On

the other hand, since distress in the systemic institution negatively a¤ects the chances of survival

of the non-systemic institution, the regulator is less likely to save the non-systemic institution as

illustrated by the upward shift of lines in Figure 4. The presence of systemic risk does not relax a

regulator�s standards for rescue of non-systemic institutions.

2.4 Comparing Multiple- vs Uni�ed-Regulator Architectures

In this subsection we compare the multiregulator and uni�ed regulator arrangements in terms of

forbearance. We derive several comparative statics associating the levels of forbearance in each

case with the model�s primitive parameters.

2.4.1 Non-systemic bank

Given the liquidity shock !�B, the liquidation cuto¤s of the uni�ed regulator and the multiregula-

tor cross each other, i.e., both regulators are equally forbearing. Liquidity shocks below (above)

this point imply that the multiregulator arrangement is more (less) forbearing than the uni�ed one.

Therefore, increases in !�B reduces the �dominance region�, i.e., the set of liquidity shocks for which

the uni�ed regulator arrangement is less forbearing than multiregulator arrangement.The following

proposition states that the dominance region is increasing in the liquidation value, the bankruptcy

cost, the penalty rate, and decreasing in the level of deposits.
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Proposition 5 Consider a multiregulator arrangement, which has agencies LoLR and DI, and

a uni�ed regulator, which has DI and LOLR functions. Let umB (�) and uuB (�) be their respective

liquidation thresholds for bank B. Then

1. If !B = 0, then uuB (�) = umB (�), i.e., the uni�ed regulator and the multiregulator arrangements

are equally forbearing.

2. Suppose !B > 0.

(i) If uuB (�) > uLoLRB (�) for all !B 2 (0; DB], then the multiregulator arrangement is always

more forbearing than the uni�ed regulator arrangement.

(ii) If 9!�B 2 (0; DB] such that uuB (�) = uLoLRB (�), the the multiregulator arrangement is more

forbearing than the uni�ed regulator arrangement for !B 2 (0; !�B) and less forbearing for !B 2

[!�B; DB]. In addition, if � is su¢ ciently large, then !
�
B increasing in LB, cB, P , and decreasing

in DB.

The intuition behind the results is as follows. Increases in the liquidation value LB make the

uni�ed regulator less forbearing � it increases the payo¤ when bank B is closed � and does not

change the behavior of the LoLR. Therefore, the LoLR and the uni�ed regulator are equally for-

bearing only at higher levels of liquidity shock, which make the LoLR less forbearing and the uni�ed

regulator more forbearing. It follows that increases in the liquidation value improves the uni�ed

regulator arrangement over the multiregulator setting. Higher values of political cost cB make both

the uni�ed regulator and the multiregulator more forbearing. The reason is that closing bank B now

results in higher costs with certainty while the realization of these costs when bank B is not closed is

uncertain � only if bank B fails. However, because the uni�ed regulator has to back all the deposits

(while the LoLR only loses the liquidity injection) when bank B fails, the decrease in the liquidation

cuto¤ of the uni�ed regulator is relatively smaller. Therefore, the impact of cB on forbearance is

lower for the uni�ed regulator. It follows that higher political costs reduce the region for which the

multiregulator setting is less forbearing than the uni�ed regulator arrangement. A similar logic ap-

plies to changes in P . Increases in DB make the uni�ed regulator more forbearing � increases the

costs of closing the bank � and do not change the incentives of the LoLR. As a result, the higher

the amount of deposits the larger the relative performance of the multiregulator arrangement.
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2.4.2 Systemic bank

Proposition 6 Consider a multiregulator arrangement, which has agencies LoLR and DI, and a

uni�ed regulator, which has DI and LOLR functions. Suppose !B � 0 and let umA (
) and u
u
A (
)

be their respective liquidation thresholds for bank A. Then

1. If !A = 0, then uuA (
) = u
m
A (
), i.e., the uni�ed regulator and the multiregulator arrange-

ments are equally forbearing.

2. Suppose !A > 0.

(i) If uuA (
) > uLoLRA (
) for all !A 2 (0; DA], then the multiregulator arrangement is more

forbearing than the uni�ed regulator arrangement.

(ii) If 9!�A 2 (0; DA] such that uuA (
) = uLoLRA (
), the the multiregulator arrangement is

more forbearing than the uni�ed regulator arrangement for !A 2 (0; !�A) and less forbearing for

!A 2 [!�A; DA]. In addition, if � is su¢ ciently large, then !�A increasing in LA, cA, cB, DB, P , 
,

and decreasing in DA.

From the last proposition, we can see that the region where the uni�ed regulator is less forbear-

ing than the multiple regulators is increasing in the liquidation value, bankruptcy costs, penalty

rate, systemic risk, and level of deposits of bank B, and decreasing in the level of deposits of bank

A. The results regarding LA, cA, P , and DA parallel those for non-systemic bank. The other results

concerning the attributes of bank B follow from the link between the two banks due to systemic

risk. The intuition for the other results is as follows. Higher values of cB increase the expected costs

associated with the closure of bank B � either due to regulatory action or bank failure. This also

increases the losses resulting from either closure or failure of bank A as both outcomes increase the

probability that bank B is closed (due to systemic risk). Closure of bank A increases the insolvency

risk of bank B with certainty while allowing bank A to continue results in the same outcome only

if bank A fails. Therefore, increases in cB make regulators more forbearing towards the systemic

bank. Because the uni�ed regulator has to fully guarantee the deposits (while the LoLR only loses

the liquidity injection) the reduction in the liquidation threshold associated with the bank A for

the uni�ed regulator is lower. As a result, higher cB increases the dominance region, i.e., the region

for which the uni�ed regulator setting is less forbearing than the uni�ed regulator arrangement.
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3 The Model with Private Information

In the previous section we assumed that the degree of systemic risk imposed by bank A (that is, the

parameter 
) was publicly known. In this section we extend our analysis to an environment where

there is incomplete information regarding the value of 
. Thus, assume that 
 has publicly known

distribution Z (
) with support
�
�; �
�
and expected value 
 � E [e
]. The DI can always choose to

observe, costlessly, the realized 
. If the DI chooses to observe 
, then the LoLR automatically

observes a signal from a coarser information set. The DI can then supplement the LoLR�s infor-

mation with a report of its own observation. We will assume that the LoLR�s information set takes

the following form.

ff
gj
 < 
�g [ f[
�; 1]g

In other words, there exists a value 
� such that, if the DI receives information 
 < 
� then the

LoLR receives identical information. If 
 � 
� then the LoLR does not observe 
; and instead

only knows that it lies in the interval [
�; 1]: Let 
 � E [e
j
 � 
�].
3.1 Information sharing

We begin by assuming that the DI elects to receive the information. For 
 < 
�, there are no

strategic information sharing considerations and our former results go through. The same is true

for values 
 � 
� such that uDIA (
) > uA. In this case, bank A is liquidated, which is exactly the

action desired by the DI.

3.1.1 The DI has incentive to act strategically

Consider the case in which 
 � 
� and u
DI
A (
) � uA, i.e., the DI does not want to liquidate

institution A. When uLoLRA (
) � uA, the LoLR would have incentive to provide liquidity support

to this institution A. A report sent by the DI to the LoLR saying 
 is such that uLoLRA (
) > uA,

if believed, would cause the LoLR to refuse to provide liquidity support to bank A. The resulting

outcome is the opposite of that desired by the DI.

When uA < uLoLRA (
), a talking strategy from the DI stating 
 is such that uLoLRA (
) � uA,

if believed, would cause the LoLR to provide liquidity assistance to bank A, which is the outcome

wished by the DI. As a result, information sharing is strategically important and suggests the
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Figure 6: DI�s incentive to reveal information. The purple point represents a realization of
(!A; !B; uA). The dashed-dotted purple lines represent the LoLR and DI liquidation cuto¤s
given 
�, which is the value of gamma such that the LoLR�s cuto¤ goes through the realization
(!A; !B; uA). The solid blue line represents the LoLR�s liquidation cuto¤ given 
. The dotted red
lines represent the LoLR and DI liquidation cuto¤s given 
�. The dashed blue lines represent the
LoLR liquidation cuto¤s for realized 
 above and below 
�. The DI has (does not have) incentive
to report truthfully for realized gamma above (below) 
�.

DI has an incentive to draft a report in such a way as to induce LoLR to act according to DI 0s

preferences. In what follows, we assume 
 � 
� and uDIA (
) � uA unless stated otherwise.

Let the DI send a message m : [0; 1]!M to the LoLR, where without loss of generality it can

be assumed that M is a �nite set. The LoLR observes the message, forms belief 
 (m) = E [e
jm],
and takes action lA 2 f0; 1g. The decision of the LoLR will be based on the u threshold associated

with 
 (m). We denote this threshold by uLoLRA (
 (m)). Let 
� be such that uLoLRA (
�) = uA.

3.1.2 Communication is ine¤ective

If 
 � 
� � 
�, then for any message m 2M we have 
 (m) � 
�, which implies uA = uLoLRA (
�) �

uLoLRA (
 (m)). Therefore, bank A is not liquidated. Consider now the cases in which 
� � 
 < 
�

and 
� < 
� � 
. If 
� < 
� � 
, which is a situation described by the lower dashed blue line
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in Figure 5, the DI has incentives to fully reveal information on the degree of A�s systemic im-

portance. This follows from the fact that, if the LoLR believes the report, he provides liquidity

support to bank A. However, the DI does not have incentive to reveal his information to the LoLR

if 
� � 
 < 
�, which is the case represented by the upper dashed blue line in Figure 5. The reason

is that, if the LoLR believes the report, he does not provide liquidity assistance to bank A.

One must note that if 
� < 
� � 
, then any message m such that 
 (m) � 
� implies

uLoLRA (
 (m)) � uLoLRA (
�) = uA. In this case, the LoLR provides liquidity to bank A and the

bank is not liquidated. This would also be the action of the LoLR if he observed 
, which implies

the he would be better o¤ after communication. However, if 
� � 
 < 
�, then any message m

such that 
 (m) � 
� implies uLoLRA (
 (m)) � uLoLRA (
�) = uA < u
LoLR
A (
). As a result, the LoLR

would not liquidate the bank. The LoLR is worse o¤ with communication since his decision would

be to liquidate the bank if he knew 
. This analysis suggests that fully separating equilibria do not

exist. The proposition below con�rms this intuition.

Proposition 7 If 
 � 
� and uDIA (
) � uA , then babbling equilibria exist, i.e., equilibria in which

m (
) = m8
 � 
�. In addition, every equilibrium has the same outcome as that of a babbling

equilibrium, i.e., communication is ine¤ective.

The result of the last proposition parallel those of Kahn-Santos in that regulators with private

information fail to share information. In our model, the DI fails to share information that induces

the LoLR to take an action di¤erent than he would have taken in the absence of communication.

Therefore, if 
 � 
�, then bank A will not be liquidated if 
� is large enough and will be liquidated

if otherwise.

Corollary 1 If 
 � 
�, then bank A is not liquidated if 9 b
 2 [0; 1] such that E [e
j
� � e
 � b
] = 
�
and is liquidated if otherwise.

The above corollary states the following. Given that the posterior belief regarding the degree

of systemic risk is higher than the initial conjecture, the better the bank�s �nancial condition �

lower liquidity shocks (!) and higher solvency signals (u) � the more likely the LoLR revises the

decision to not provide liquidity injections.
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3.2 Information gathering

We now investigate the incentive of the DI to gather information given 
�. Although a higher

revealed degree of systemic risk results in better outcomes form the DI�s point of view, it is not

always the case that the DI wants to learn about 
. The reason is that, if the revealed 
 is low,

the LoLR might liquidate the bank while the DI wants its continuation. Our next result states

that the DI might not gather information even if it is free to do so.

Proposition 8 Let 
 be such that uDIA
�


�
= uA. If

1. max
�
uLoLRA

�


�
; uDIA

�


�	
� uA,

2. 
 � �, i.e., 
 is below the lower bound of the support of Z (
).

3. @ b
 2 [0; 1] such that E [e
j
� � e
 � b
] = 
�, and
4. If 
� � 
�,

then in equilibrium the DI chooses not to observe 
.

This result shows that a multiregulator setting decreases the amount of information gathered

even if information can be collected at no cost. The reason is that, if the expected outcome of

revealing information makes a regulator worse o¤, then that regulator has less incentive to gather

the information in the �rst place. Therefore, as a basic result, there is better gathering and using

of information by a uni�ed regulator than by a divided one.

4 Concluding Remarks

An important ingredient missing from most recent reform proposals mandating the oversight of

systemic risk is the analysis of regulators� incentives. This includes �regulatory forbearance� for

the incentive to keep institutions a�oat when they should be unwound� which will likely vary across

the alternative ways the regulatory functions could be allocated.

We show how adding a systemic risk monitoring mandate to the regulatory mix without a set

of associated policy tools does not alter the basic regulator�s incentives at the heart of some of

the regulatory shortcomings leading to this crisis. Regulators often have the incentive to keep an

institution a�oat, even when insolvent, because regulators strongly dislike closing institutions un-

der their watch, especially because in some cases, given enough time, an institution may be back
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on its feet. Therefore, in the absence of concrete methods formally to limit �nancial institutions�

ability to become systemically important in the �rst place� regardless of how regulatory functions

are allocated� regulators may well be more forgiving with systemically important institutions com-

pared to those that are not. This is because the systemically important institutions will have a

more damaging e¤ect on other institutions under the regulators�purview. Moreover, competing

regulators are less likely to gather information and may have an incentive not to share information

once gathered.

While we acknowledge the limitations of our model, we see its main value in the illustration

of the importance of analyzing strategic considerations in the optimal allocation of regulatory

functions � particularly as a counterweight to analyses which ignore regulatory incentives.

Appendix

Proof of Proposition 1. Let sj 2 flB; dBg be the strategy of regulator j in the game starting
at t = 2 and de�ne sB � (sj ; s�j). The utility function of regulator j is given by

Uj (sj ; s�j) � E
h
Ij

�
sB; ~RB

�
� �cB�

�
sB; ~RB

�
�j (sB) j �

�
sA; ~RA

�
; euBi =

uB [Ij (sB; RB)� �cB� (sB; RB) �j (sB)] + (1� uB) [Ij (sB; 0)� �cB�j (sB)]

� �
�
sA; ~RA

�

 [Ij (sB; RB)� Ij (sB; 0)� �cB� (sB; RB) �j (sB) + �cB�j (sB)] .

In order to �nd the best response of regulator j given the strategy of regulator �j we calculate

Uj (1; s�j)� Uj (0; s�j) =

uB

�
Ij ((1; s�j) ; RB)� Ij ((0; s�j) ; RB)� �cB� ((1; s�j) ; RB) �j (1; s�j)

+�cB� ((0; s�j) ; RB) �j (0; s�j)

�
+ (1� uB) [Ij ((1; s�j) ; 0)� Ij ((0; s�j) ; 0)� �cB�j (1; s�j) + �cB�j (0; s�j)]

� �
�
sA; ~RA

�



24 Ij ((1; s�j) ; RB)� Ij ((0; s�j) ; RB)
��cB� ((1; s�j) ; RB) �j (1; s�j) + �cB� ((0; s�j) ; RB) �j (0; s�j)
�Ij ((1; s�j) ; 0) + Ij ((0; s�j) ; 0) + �cB�j (1; s�j)� �cB�j (0; s�j)

35
If a bank is closed by any regulator, the income accruing to each regulator is the same regardless

of the regulator responsible for the closure. This translates into Ij ((0; 0) ; �) = Ij ((1; 0) ; �) =
Ij ((0; 1) ; �), which we use to �nd that Uj (1; 0) � Uj (0; 0) = �cB > 0. As a result, regulator j

always choose sj = 1 given s�j = 0. We also �nd that

Uj (1; 1)� Uj (0; 1) = uB � �
�
sA; ~RA

�

 � Ij ((0; 1) ; 0)� Ij ((1; 1) ; 0)

Ij ((1; 1) ; RB)� Ij ((1; 1) ; 0) + �cB
.

It follows that, given s�j = 1, regulator j chooses sj = 1 for

uB � ujB (�) �
Ij ((0; 1) ; 0)� Ij ((1; 1) ; 0)

Ij ((1; 1) ; RB)� Ij ((1; 1) ; 0) + �cB
+ �

�
sA; ~RA

�
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and chooses sj = 0 if otherwise. Therefore, we have the following Nash equilibria:
�
s�j ; s

�
�j

�
= (0; 1)

for uB < ujB (�),
�
s�j ; s

�
�j

�
= (1; 0) for uB < u�jB (�), and

�
s�j ; s

�
�j

�
= (1; 1) for uB � umB (�) �

max
n
ujB (�) ; u

�j
B (�)

o
. The result from the proposition now follows from the observation that

ILoLR ((0; 1) ; 0) = 0, ILoLR ((1; 1) ; 0) = �!B, ILoLR ((1; 1) ; RB) = P!B, IDI ((0; 1) ; 0) = LBYB �
DB, IDI ((1; 1) ; 0) = � (DB �max f0; !Bg), IDI ((1; 1) ; RB) = 0.

Proof of Proposition 2. Let sj 2 flA; dAg be the strategy of regulator j in the game starting
at t = 1 and de�ne sA � (sj ; s�j). The utility function of regulator j is given by

Uj (sj ; s�j) �

E
h
I
�
sA; ~RA

�
� �cA�

�
sA; ~RA

�
� (sA) + E

h
I
�
s�B; ~RB

�
� �cB�

�
s�B; ~RB

�
� (s�B) j�

�
sA; ~RA

�
; euBi jeuAi

=

Z
8>>>><>>>>:
uA

24 Ij (sA; RA)� �cA� (sA; RA) � (sA) + uB (Ij (s�B; RB)� �cB� (s�B; RB) �B (s�B))
+ (1� uB) (Ij (s�B; 0)� �cB�B (s�B))

�� (sA; RA) 
 (Ij (s�B; RB)� Ij (s�B; 0)� �cB� (s�B; RB) �B (s�B) + �cB�B (s�B))

35
+(1� uA)

�
Ij (sA; 0)� �cA� (sA) + (uB � 
) (Ij (s�B; RB)� �cB� (s�B; RB) �B (s�B))

+ (1� uB + 
) (Ij (s�B; 0)� �cB�B (s�B))

�
9>>>>=>>>>; dFB.

In order to �nd the best response of regulator j given the strategy of regulator �j we calculate

Uj (1; s�j)� Uj (0; s�j) =

Z 8>><>>:
uA

24 Ij ((1; s�j) ; RA)� �cA� ((1; s�j) ; RA) � (1; s�j)

�� ((1; s�j) ; RA) 

�

Ij (s
�
B; RB)� Ij (s�B; 0)

��cB� (s�B; RB) �B (s�B) + �cB�B (s�B)

� 35
+(1� uA) [Ij ((1; s�j) ; 0)� �cA� (1; s�j)]

9>>=>>; dFB.

�
Z 8>><>>:

uA

24 Ij ((0; s�j) ; RA)� �cA� ((0; s�j) ; RA) � (0; s�j)

�� ((0; s�j) ; RA) 

�

Ij (s
�
B; RB)� Ij (s�B; 0)

��cB� (s�B; RB) �B (s�B) + �cB�B (s�B)

� 35
(1� uA) [Ij ((0; s�j) ; 0)� �cA� (0; s�j)]

9>>=>>; dFB
If a bank is closed by any regulator, the income accruing to each regulator is the same regardless

of the regulator responsible for the closure. This translates into Ij ((0; 0) ; �) = Ij ((1; 0) ; �) =
Ij ((0; 1) ; �), which we use to �nd that Uj (1; 0)�Uj (0; 0) = �cA > 0. As a result, regulator always
choose sj = 1 given s�j = 0. We also �nd that

Uj (1; 1)� Uj (0; 1) =

uA [Ij ((1; 1) ; RA)� Ij ((0; 1) ; RA) + �cA] + (1� uA) [Ij ((1; 1) ; 0)� Ij ((0; 1) ; 0)]

+

Z
uA
 [Ij (s

�
B; RB)� Ij (s�B; 0)� �cB� (s�B; RB) �B (s�B) + �cB�B (s�B)] dFB

= uA [Ij ((1; 1) ; RA)� Ij ((0; 1) ; RA) + �cA] + (1� uA) [Ij ((1; 1) ; 0)� Ij ((0; 1) ; 0)]

+

Z
umB (�=0)

uA
 [Ij ((1; 1); RB)� Ij ((1; 1); 0) + �cB] dFB
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It follows that, given s�j = 1, regulator j chooses sj = 1 for

uA � ujA (
) �
Ij ((0; 1) ; 0)� Ij ((1; 1) ; 0)

Ij ((1; 1) ; RA)� Ij ((1; 1) ; 0) + �cA + 
 [Ij ((1; 1); RB)� Ij ((1; 1); 0) + �cB] Pr
�
uB � umB (� = 0)

�
and chooses sj = 0 if otherwise. Therefore, we have the following Nash equilibria:

�
s�j ; s

�
�j

�
= (0; 1)

for uA < ujA (
),
�
s�j ; s

�
�j

�
= (1; 0) for uA < u�jB (
), and

�
s�j ; s

�
�j

�
= (1; 1) for uA � umA (
) �

max
n
ujA (
) ; u

�j
A (
)

o
. The result from the proposition now follows from the observation that

ILoLR ((0; 1) ; 0) = 0, ILoLR ((1; 1) ; 0) = �!A, ILoLR ((1; 1) ; RA) = P!A, IDI ((0; 1) ; 0) = LAYA �
DA, IDI ((1; 1) ; 0) = � (DA �max f0; !Ag), IDI ((1; 1) ; RA) = 0.

Proof of Proposition 3. The problem of the uni�ed regulator is analogous to that of a

regulator in the multiregulator setting assuming that the other regulator always choose not to close

the bank. If we let s 2 f0; 1g be the action of the uni�ed regulator starting at t = 2 and U (s) be
the utility function, we �nd that the uni�ed regulator does not close bank B if:

U (1)� U (0) = uB � �
�
sA; ~RA

�

 � I (0; 0)� I (1; 0)

I (1; RB)� I (1; 0) + �cB
� 0:

It follows that the uni�ed regulator does not close bank B if

uB � uuB (�) �
I (0; 0)� I (1; 0)

I (1; RB)� I (1; 0) + �cB
+ �

�
sA; ~RA

�



The result from the proposition now follows from the observation that I (0; 0) = LYB � DB,
I (1; 0) = �DB, I (1; RB) = P max f0; !Bg.

Proof of Proposition 4. The problem of the uni�ed regulator is analogous to that of a

regulator in the multiregulator setting assuming that the other regulator always choose not to close

the bank. If we let s 2 f0; 1g be the action of the uni�ed regulator starting at t = 1 and U (s) be
the utility function, we �nd that the uni�ed regulator does not close bank A if:

U (1)� U (0) = uA [I (1; RA)� I (0; RA)] + (1� uA) [I (1; 0)� I (0; 0)� �cA]

+

Z
uuB

uA
 [I ((1; RB)� I ((1; 0) + �cB] dFB � 0

It follows that the uni�ed regulator does not close bank B if

uA � uuA (
) �
I (0; 0)� I (1; 0)

I (1; RA)� I (1; 0) + �cA + 
 [I (1; RB)� I (1; 0) + �cB] Pr
�
uB � uuB (� = 0)

�
The result from the proposition now follows from the observation that I (0; 0) = LYA � DA,

I (1; 0) = �DA, and I (1; RA) = P max f0; !Ag.
Proof of Proposition 5. (i) If !B = 0 then we have uuB (� = 1) =

LBYB
�cB+DB

+ 
 =

max
�
uDIB (� = 1) ; uLoLRB (� = 1)

	
= umB (� = 1)
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(ii) If !B > 0 we need to compare

uuB (� = 1) =
LBYB

P!B + �cB +DB
+ 
 and umB (� = 1) = max

�
uLoLRB (� = 1) ; uDIB (� = 1)

	
,

where

uLoLRB (� = 1) =
!B

(P + 1)!B + �cB
+ 
;

uDIB (� = 1) =
LBYB � !B

�cB +DB � !B
+ 
.

One must note that

@uuB
@!B

< 0;
@uLoLRB

@!B
> 0; and

@uDIB
@!B

< 0 for � big enough.

If uuB > u
LoLR
B 8!B 2 (0; DB], then the uni�ed regulator arrangement is always less forbearing

than the multiregulator arrangement. To see this, note that for !B = 0, uDIB = uuB, and if � is big

enough, uDIB < uuB for !B > 0. Therefore u
u
B > u

m
B = max

�
uLoLRB ; uDIB

	
for � su¢ ciently large.

Suppose 9!�B 2 (0; DB] such that uuB = uLoLRB . Since uDIB < uuB for !B > 0 and � big

enough, uLoLRB (!�) = uuB (!
�) > uDIB (!�). In addition, uDIB > uLoLRB for !B = 0. Therefore, 9

!��B 2 (0; !�B) such that uDIB (!��B ) = u
LoLR
B (!��B ). Because u

DI
B is decreasing and uLoLRB is increasing

we have uuB > u
DI
B = max

�
uLoLRB ; uDIB

	
= umB for !B 2 (0; !��B ). Since uuB is decreasing and uLoLRB

is increasing, we have uuB > uLoLRB = max
�
uLoLRB ; uDIB

	
= umB for !B 2 [!��B ; !

�
B), and u

m
B =

max
�
uLoLRB ; uDIB

	
= uLoLRB > uuB for !B 2 [!�B; DB].

The critical point !�B solves u
LoLR
B = uuB. It is straightforward to see that 
 is cancelled out,

which makes !�B independent of 
. Di¤erentiating both sides with respect to LB we get

@!�B
@LB

=
YB [(P + 1)!

�
B + �cB]

P
�
!�B � LBYB

�
+ P!�B � LBYB + �cB +DB

,

which is clearly positive for � su¢ ciently large.

Di¤erentiating both sides of uLoLRB = uuB with respect to DB we get

@!�B
@DB

=
�!�B

P
�
!�B � LBYB

�
+ P!�B � LBYB + �cB +DB

,

which is clearly negative if � is big enough.

Di¤erentiating both sides of uLoLRB = uuB with respect to cB and P we get:

@!�B
@c

=
� (LBYB � !�B)

P
�
!�B � LBYB

�
+ P!�B � LBYB + �cB +DB

,

@!�B
@P

=
!�B (LBYB � !�B)

P
�
!�B � LBYB

�
+ P!�B � LBYB + �cB +DB

.

If ' (LB) � LBY � !�B < 0, then we have
@!�B
@cB

;
@!�B
@P < 0 for � big enough. If ' (LB) > 0, then

we have that @!
�
B

@cB
;
@!�B
@P > 0 for � su¢ ciently large. Therefore, we need to investigate ' (LB). One

23



can easily check that ' (0) = 0. In addition, ' (LB) = 0 and uLoLRB = uu can be simultaneously

satis�ed for LB =
DB
YB
. If we di¤erentiate @!�B

@LB
with respect to LB we get

@2!�B
@L2B

=
�@!�B
@LB

2
�
P
@!�B
@LB

� YB (P + 1)
�

P
�
!�B � LBYB

�
+ P!�B � LBYB + �cB +DB

,

which is positive for � big enough. In this case '00 (LB) < 0. By the Mean Value Theorem

9L�B 2
�
0; LB

�
such that '0 (L�B) = 0, which implies that ' (LB) achieves its maximum at L�B.

Since '0 (LB) is decreasing, '0 (LB) > 0 for LB < L�B and '
0 (LB) < 0 for LB > L�B.

We now claim that @!
�
B

@cB
;
@!�B
@P > 0 for all LB 2

�
0; LB

�
. We �rst show that the claim holds for all

LB 2
�
L�B; LB

�
. Because '0 (LB) < 0 for LB 2 (L�B; 1) and '

�
LB
�
= 0 , it follows that ' (LB) > 0

for LB 2
�
L�B; LB

�
. Therefore, @!

�
B

@cB
;
@!�B
@P > 0 for LB 2

�
L�B; LB

�
. We now show that the claim

holds for all LB 2 (0; L�B). This follows from the fact that ' (LB) > 0 for LB 2 (0; L�B). Suppose
not, i.e., ' (LB) = 0 for some L0B 2 (0; L�B). Because '0 (LB) > 0 for LB 2 (0; L�B), it follows that
' (LB) < 08LB 2 [0; L0B). But this contradicts the fact that ' (0) = 0.

Proof of Proposition 6. (i) If !A = 0, then

uuA (
) =
LAYA

DA + �cA + 
 (�cB +DB) Pr
�
uB � uuB (� = 0)

� =
max

(
0;

LAYA

DA + �cA + 
 (DB + �cB) Pr
�
uB � umB (� = 0)

�) = umA (
)
(ii) If !A > 0 we compare

uuA (
) =
LAYA

P!A +DA + �cA + 
 [�cB +DB] Pr
�
uB � uuB (� = 0)

� and
umA (
) = max

�
uDIA (
) ; uLoLRA (
)

	
where

uLoLRA (
) =
!A

(P + 1)!A + �cA + 
�cB Pr
�
uB � umB (� = 0)

� ;
uDIA (
) =

LAYA � !A
DA � !A + �cA + 
 (DB + �cB) Pr

�
uB � umB (� = 0)

� .
It is straightforward to check that

@uuA
@!A

< 0;
@uLoLRA

@!A
> 0; and

uDIA
@!A

< 0 for � big enough:

If uuA > u
LoLR
A 8!A 2 (0; DA], then the uni�ed regulator arrangement is always less forbearing

than the multiregulator arrangement. To see this, note that for !A = 0, uDIA = uuA, and if � is big

enough, uDIA < uuA for !A > 0. Therefore u
u
A > u

m
A = max

�
uLoLRA ; uDIA

	
for � su¢ ciently large.

Suppose 9!�A 2 (0; DA] such that uuA = uLoLRA . Since uDIA < uuA for !A > 0 and � big

enough, uLoLRA (!�A) = uuA (!
�
A) > uDIA (!�A). In addition, u

DI
A > uLoLRA for ! = 0. Therefore, 9
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!��A 2 (0; !�A) such that uDIA (!��A ) = u
LoLR
A (!��A ). Because u

DI
A is decreasing and uLoLRA is increasing

we have uuA > u
DI
A = max

�
uLoLRA ; uDIA

	
= umA for !A 2 (0; !��A ). Since uuA is decreasing and uLoLRA

is increasing, we have uuA > uLoLRA = max
�
uLoLRA ; uDIA

	
= umA for !A 2 [!��A ; !

�
A), and u

m
A =

max
�
uLoLRA ; uDIA

	
= uLoLRA > uuA for !A 2 [!�A; DA].

The critical point !�A solves u
LoLR
A (:::; !�A; 
) = u

u
A (:::; !

�
A; 
). Di¤erentiating both sides with

respect to L we get

@!�A
@LA

=
YA [� (cA + 
cB Pr (�)) + (P + 1)!�A]

P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

.

Because !�A is bounded, this is clearly positive for � big enough.

Di¤erentiating both sides of uLoLRA = uuA with respect to DA we get

@!�A
@DA

=
�!�A

P
�
!�A � LYA

�
+ P!�A � LYA +DA + �cA + 
 (�cB +DB) Pr (�)

,

which is clearly negative for � su¢ ciently large.

Di¤erentiating both sides of uLoLRA = uuA with respect to cB, 
, cA, DB, and P we get:

@!�A
@cB

=

�Pr (�) (LAYA � !�A) + 
�cB

@ Pr(�)
@cB

(LAYA � !�A)� 
DB
@ Pr(�)
@cB

!�A

P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

@!�A
@


=
Pr (�)�cB (LAYA � !�A)�DB Pr (�)!�A

P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

@!�A
@cA

=
�cB (LAYA � !�A)

P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

@!�A
@DB

=

�cB

@ Pr(�)
@DB

(LAYA � !�A)� 
!�A
�
Pr (�) +DB @ Pr(�)@DB

�
P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

@!�A
@P

=

�cB

@ Pr(�)
@P (LAYA � !�A) + !�A

�
LAYA � 
DB @ Pr(�)@P � !�A

�
� 
!�A

�
Pr (�) +DB @ Pr(�)@P

�
P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

If ' (LA) � LAYA � !�A < 0, then we have @!�A
@cB

;
@!�A
@
 ;

@!�A
@cA

;
@!�A
@DB

;
@!�A
@P < 0 for � big enough. If

' (LA) > 0, then we have that @!�A
@cB

;
@!�A
@
 ;

@!�A
@cA

;
@!�A
@DB

;
@!�A
@P > 0 for � su¢ ciently large. Therefore,

we need to investigate ' (LA). One can easily check that ' (0) = 0. In addition, ' (LA) = 0 and

uLoLRA = uuA can be simultaneously satis�ed for LA =
DA+
DB Pr(�)

YA
. If we di¤erentiate @!�A

@LA
with

respect to LA we get

@2!�A
@L2A

=
�@!�A
@LA

2
�
P
@!�A
@LA

� YA (P + 1)
�

P
�
!�A � LAYA

�
+ P!�A � LAYA +DA + �cA + 
 (�cB +DB) Pr (�)

,

which is positive for � big enough. In this case '00 (LA) < 0. By the Mean Value Theorem

9L�A 2
�
0; LA

�
such that '0 (L�A) = 0, which implies that ' (LA) achieves its maximum at L�A.

Since '0 (LA) is decreasing, '0 (LA) > 0 for LA < L�A and '
0 (LA) < 0 for LA > L�A.

We now claim that @!
�
A

@cB
;
@!�A
@
 ;

@!�A
@cA

;
@!�A
@DB

;
@!�A
@P > 0 for all LA 2

�
0; LA

�
. We �rst show that the

claim holds for
�
L�A; LA

�
. Because '0 (LA) < 0 for LA 2 (L�A; 1) and '

�
LA
�
= 0 , it follows that
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' (LA) > 0 for LA 2
�
L�A; LA

�
. Therefore, @!

�
A

@cB
;
@!�A
@
 ;

@!�A
@cA

;
@!�A
@DB

;
@!�A
@P > 0 for LA 2

�
L�A; LA

�
. We

now show that the claim holds for LA 2 (0; L�A). This follows from the fact that ' (LA) > 0 for

all LA 2 (0; L�A). Suppose not, i.e., ' (LA) = 0 for some L0A 2 (0; L�A). Because '0 (LA) > 0 for

LA 2 (0; L�A), it follows that ' (LA) < 08LA 2 [0; L0A). But this contradicts the fact that ' (0) = 0.

Proof of Proposition 7. The result that babbling equilibria exist comes from the observation

that if the LoLR�s belief treats all messages as uninformative, i.e., 
 (m) = 
, and if messages are

independent of types, m (
) = m8
 � 
�, then the optimal action taken by the LoLR given


 (m) = 
 and the message strategy adopted by the DI are best responses to each other.

Consider the case in which 9 b
 2 [0; 1] such that E [e
j
� � e
 � b
] = 
�. As a result, 
 � 
�

and uLoLRA (
) � uDIA (
�) = u, which implies that the outcome of a babbling equilibrium has the

LoLR not liquidating bank A for all 
 � 
�.
Suppose there is an equilibrium in which the LoLR liquidates bank A for some 
00 � 
�. If

8
0 � 
� we have m (
0) = m (
00) = m, then the equilibrium is a babbling equilibrium, in which

case consistency of beliefs requires 
 (m) = 
 and the LoLR does not liquidate bank A for all


 � 
�, which is a contradiction. Let m (
0) 6= m (
00) for some 
0 and let M 0 be the set of di¤erent

messages sent in equilibrium. For every m0 2 M 0 we de�ne the set � (m0) =
�
m�1 (m0)

	
. Clearly,

[�0 (m0) = [
�; 1].

Suppose the LoLR liquidates bank A for all m0 2 M 0. Let � be the measure associated with

the distribution Z. Optimality requires 
 (m0) < 
�8m0 2 M . However, one must note thatP
m02M 0

�(�(m0))
1�Z(
�)

R
�(m0) 


z(
)
�(�(m0))d
 = 
 must hold. But since 
 (m

0) < 
�, we have a contradiction

as
P
m02M 0

�(�(m0))
1�Z(
�)


 (m0) <
P
m02M 0

�(�(m0))
1�Z(
�)


� = 
� � 
. Therefore, there must 9m0 2 M 0

such that 
 (m0) � 
�, i.e., the LoLR does not liquidate bank A upon seeing message m0. But

by assumption the LoLR liquidates bank A upon receiving m (
00) 6= m0. Therefore, the DI that

observes 
 2 � (m (
00)) has an incentive to deviate and reportm0, which contradicts the assumption

that there is an equilibrium in which the LoLR liquidates bank A for some 
00 � 
�.
Now consider the case @ b
 2 [0; 1] such that E [e
j
� � e
 � b
] = 
�. In this case 
 < 
� and

uLoLRA (
) > uDIA (
�) = u, which implies that the outcome of a babbling equilibrium has the LoLR

liquidating bank A for all 
 � 
�.
Suppose there is an equilibrium in which the LoLR does not liquidate bank A for some 
00 � 
�.

If 8
0 � 
� we have m (
0) = m (
00) = m, then the equilibrium is a babbling equilibrium, in which

case consistency of beliefs requires 
 (m) = 
 and the LoLR liquidates bank A for all 
 � 
�, which
is a contradiction. Letm (
0) 6= m (
00) for some 
0 and letM 0 be the set of di¤erent messages sent in

equilibrium. For every m0 2M 0 we de�ne the set � (m0) =
�
m�1 (m0)

	
. Clearly, [�0 (m0) = [
�; 1].

Suppose the LoLR does not liquidate bank A for all m0 2 M 0. Optimality requires 
 (m0) �

�8m0 2 M . However, one must note that

P
m02M 0

�(�(m0))
1�Z(
�)

R
�(m0) 


z(
)
�(�(m0))d
 = 
 must hold. But

since 
 (m0) � 
�, we have
P
m02M 0

�(�(m0))
1�Z(
�)


 (m0) �
P
m02M 0

�(�(m0))
1�Z(
�)


� = 
� > 
. Therefore, we

have a contradiction. As a consequence, 9m0 2M 0 such that 
 (m0) < 
�, i.e., the LoLR liquidates

bank A upon seeing message m0. But by assumption, the LoLR does not liquidate bank A upon
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receiving m (
00) 6= m0. Therefore, the DI that observes 
 2 � (m0) has an incentive to deviate and

report m00, which contradicts the assumption that there is an equilibrium in which the LoLR does

not liquidates bank A for some 
00 � 
�.
Proof of Proposition 8. If theDI chooses not to learn about 
, then bank A is not liquidated

since max
�
uLoLRA

�


�
; uDIA

�


�	
� uA. Suppose the DI chooses to learn about 
. Because 
 is

below the lower bound of the support of Z (
), for any observed 
 we have uDIA (
) � uDIA
�


�
= uA,

which implies that the DI prefers bank A not to be liquidated. If 
 � 
�, then because @ b
 2 [0; 1]
such that E [e
j
� � e
 � b
] = 
�, bank A is liquidated and the DI is worse o¤. Let 
 < 
�. Since

� � 
�, we have that uLoLRA (
) > uLoLRA (
�) � uLoLRA (
�) = uA, which implies that the LoLR

always liquidate bank A. Therefore, the DI is worse o¤ if he chooses to learn 
.
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