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Abstract

This paper proposes a new approach for studying parameter identification in linearized
DSGE models, based on analytical evaluation of the Information matrix of such models. The
Information matrix is decomposed into a part that depends on the model only, and a part
which also depends on the data used for estimation. This allows researchers to determine:
first, whether the parameters of the model are identified; second, whether identification is
strong or weak; and third, if identification problems are detected, whether they originate
in the structure of the model, or in the data. We apply this approach to study parameter
identification in a large-scale monetary business cycle model estimated by Smets and Wouters
(2007). We find that, for parameters that are identifiable, identification is generally very weak.
Moreover our results indicate that the problem is largely embedded in the structure of the
model, and, therefore, cannot be resolved by using more informative data. We also show
that there are substantial differences in the parameters estimates obtained with classical and
Bayesian estimation methods. We conclude that using estimated DSGE models for policy
analysis should be done with caution since, when identification is weak, the results are likely
to be strongly influenced by the prior distribution.
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... A lot of your posteriors look exactly like the priors...

Richard Blundell, when awarding Frank Smets and Raf Wouters with the Hicks-Tinbergen Medal at the 2004 EEA Meetings.

1 Introduction

The last several years have witnessed a remarkable growth in the research on empirical evaluation
of DSGE models. Nowadays researchers routinely estimate rich micro-founded models, that until
recently had to be calibrated. Unlike reduced-form or single equation estimation methods, the full
set of model parameters are being estimated in an internally-consistent fashion. This, together with
the finding that empirical DSGE models can fit the data as well as model-free reduced-form vector
autoregressions (VAR), has made them extremely popular in central banks and other policy-making
institutions.!

A question which is rarely addressed in the empirical DSGE literature is that of parameter
identifiability. This is surprising as identification is a prerequisite for estimation of the parameters,
and the ability to do that for full-fledged structural models is believed to be one of the main
accomplishments of this line of research. That parameter identification is a potentially serious issue
for DSGE models is not a new concern. Among the authors who have made this point are Sargent
(1976) and Pesaran (1989). More recently Beyer and Farmer (2004) provide several examples of
commonly used models that are unidentifiable. They argue that the problem is likely to be common
in DSGE models.

In most empirical DSGE papers the question of parameter identification is not confronted di-
rectly. Usually, if some of the parameters are considered to be of lesser interest, and/or with
potentially problematic identifiability, their values are calibrated and assumed known, instead of
being estimated. Furthermore, since DSGE models are frequently estimated using Bayesian meth-
ods, potential identification problems remain hidden due to the use of priors. As a result, it is often
unclear to what extent the reported estimates reflect information in the data instead of subjective
beliefs or other considerations reflected in the choice of prior distribution for the parameters. One
reason why this is an important issue is that DSGE models are increasingly being used for analyz-
ing policy-relevant questions, such as, for instance, the design of optimal monetary policy. Such
analysis often hinges crucially on the values assigned to the parameters of the model. It is, there-
fore, important to know how informative is the data for the parameters of interest, and whether
there are any benefits from estimating instead of calibrating the models we use to address policy
questions.

The objective of this paper is to shed light on the relative importance of information from the
data versus subjective prior beliefs for the estimation of a state-of-the-art DSGE model. We ad-
dress the problem in two steps. First, we develop a new identification analysis procedure, based
on analytical evaluation of the information matrix, and use it to study the identification of the
parameters in the model. Second, we estimate the model using maximum likelihood, and com-
pare the results to those obtained by using Bayesian techniques. The model we consider is a
large-scale New Keynesian business cycle model with various real and nominal frictions developed
and estimated in Smets and Wouters (2007). Similar models have been studied, using Bayesian
techniques, in Onatski and Williams (2004), DelNegro, Schorfheide, Smets, and Wouters (2005),

1Models similar to the one considered in this paper have been estimated, and are used for policy analysis in
institutions such as the Federal Reserve Board, the European Central Bank, Bank of England, RiksBank, the Bank
of Canada, and the IMF.



Justiniano and Primiceri (2006), and Boivin and Giannoni (2006). Previous research suggests that
the model fits the data well, in some cases outperforming unrestricted vector autoregressions in out-
of-sample forecasting. Schmitt-Grohe and Uribe (2004) and Levin, Onatski, Williams, and Williams
(2005) study the design of optimal monetary policy rules in estimated versions of that model (see
also Juillard, Karam, Laxton, and Pesenti (2006)).

Although its importance has been recognized (see e.g. An and Schorfheide (2005)), the iden-
tification of parameters in this or other similar DSGE models has not been studied previously.
Perhaps the main reason for this is that applying the standard approach to identification is very
difficult for DSGE models (see Schorfheide (2007)). In general, DSGE models have the following
form:

EtJ(Zt+1,Zt,Zt_1,Ut;9) =0 (11)

where J is a non-linear function of the endogenous variables Z, and the exogenous shocks U, and 6
is a vector of deep parameter. Since the model in (1.1) is, for most purposes, too difficult to work
with, researchers use a linear or log-linear approximation of (1.1) around the steady state. The
resulting system of linear stochastic equations is of the form

EtJ(Zt—‘rlaZt;Zt—laUt;e) :0 (12)

where Z is the log-deviation of Z from its steady-state level, and J is function linear in the variables
Z and U. Solving the linearized version of the DSGE model yields a reduced form model, given by

R(Zy, Zy—1,Up;7) =0 (1.3)

where R is a linear function of Z and U, parameterized by the vector of reduced form parameters
T

A classic result of Rothenberg (1971) relates the identification of parameters to the information
matrix of the model. In particular, a singular information matrix indicates that some parameters
in @ are not identifiable. Finding the information matrix in DSGE models, however, is not straight-
forward since, for most models, the mapping from the structural model - (1.2) to the reduced-form
one - (1.3), can only be found numerically. This makes the analytical derivation of the information
matrix by direct differentiation of the likelihood function impossible.

In Iskrev (2007a) we showed how the information matrix can be evaluated analytically for
linearized DSGE models. We factorize the information matrix for 6 as a product of two terms:
one is the gradient of the mapping from reduced from parameters 7 to deep parameters 6; the
second is the information matrix of the reduced-form model (1.3). Both factors can be derived
and evaluated analytically. This approach not only makes a precise evaluation of the information
matrix possible, but also provides a necessary condition for identification of the deep parameters,
which does not depend on the data. The condition is that the the gradient of the mapping from
0 to 7 has a full rank. This mapping is completely independent from the data used in estimation.
Thus, we can detect identification problems that are inherent in the structure of the DSGE model,
and not caused by data deficiencies. In addition, we can determine which parameters cause the
identification problems, and, possibly, find a better identified parametrization of the model we are
interested in estimating.

Following this approach, we conduct a thorough identification analysis of the model we consider
in our case study. In particular, we draw a large number of points from the parameter space of the
model, and check the necessary and sufficient rank conditions at each one of them. In addition,



we evaluate the conditioning of the matrices whose ranks determine identification. In doing so we
establish not only whether the parameters are identifiable in the strict sense, but also how strong
identification is. We do this for six parameterizations that differ in which parameters are assumed
to be known. Then we turn to the estimation of parameters using quarterly US data. We depart
from the previous studies in using maximum likelihood for estimation of the model. This allows
us to compare parameter estimates driven by the data only, with those obtained with Bayesian
methods, which are determined by both the data and the prior distribution. When the number of
observations is large, the two approaches should produce similar results. In small samples, however,
the prior distribution could be very influential, especially when identification is weak. This may
result in parameter estimates that have little to do with the actual data used for estimation.

On the identification side, we find that Smets and Wouters (2007), who state that three of the
deep parameters of the model are not identifiable, are correct only with respect to two of them.
The third one - wage markup parameter, is, in fact, identifiable, although generally very weakly
so. When we restrict our analysis to identifiable parameterizations, we find that identification is
generally quite weak. We show that this problem is to a large degree embedded in the structure
of the model, and thus cannot be resolved by using more informative data. Furthermore, we are
able to determine which of the deep parameters are most responsible for the weak identifiability
of the model as a whole. We find, for instance, that it is difficult to distinguish between the
elasticity of labor supply, the Calvo parameter for wages, and two wage mark up parameters.
These four parameters are nearly confounded in most of the parameter space. Similar problem is
found with respect to monetary policy rule parameters - it is difficult to distinguish among the
response coefficients to inflation, output, and past interest rate.

On the estimation side, we find that disposing with the strong priors used in previous studies
affects substantially the estimates of the parameters in the model. This has important implications
for the behavior of the model, as we show using impulse response and variance decomposition
analysis.

Our paper is not the first to systematically study parameter identification in DSGE mod-
els. An important recent contribution that deals exclusively with these issues is Canova and Sala
(2006). There are three important differences between their study and the present paper. First,
they approach parameter identification from the perspective of a particular limited information
estimation method, namely, impulse response matching (see Rotemberg and Woodford (1998), and
Altig, Christiano, Eichenbaum, and Linde (2005) for explanation and illustration of this estimation
approach). As they recognize, identification failures of that or other limited information methods
does not imply that the problems are generic to all estimation methods. In contrast, if identification
fails or is weak when a full information approach is used, as we do here, it will remain a problem
for any alternative estimation method. Second, unlike this paper which evaluates the information
matrix analytically, Canova and Sala (2006) use numerical approximation of the Hessian. It is well
known that numerical differentiation could be very imprecise for highly non-linear functions, as is
the case with DSGE models.2 Moreover, with our approach for computing the information matrix,
we are able to distinguish between the model structure and the data, as sources of identification
problems. Finally, unlike Canova and Sala (2006) who study identification only in the neighbor-
hood of a particular point in the parameter space, we do that for a large number of points drawn
randomly from everywhere in the space. Thus we are able to characterize parameter identification
as a global instead of a local problem of the theoretical model.

2Hansen, McGrattan, and Sargent (1994) also argue in favor of using analytical derivatives when estimating DSGE
models



Regarding the effect of priors for Bayesian estimation of DSGE models, results similar to ours
are reported in Onatski and Williams (2004). They estimate a similar large-scale New Keynesian
model, using European data, and find that greater prior uncertainty results in substantially different
parameter estimates, compared to those obtained with the tighter priors common in the empirical
DSGE literature. They do not address formally the issue of parameter identifiability, as we do in
this paper.

The rest of the paper is organized as follows. The next section provides an overview of the
model we study. Section 3 describes our identification approach, and discusses the results from
the analysis of parameter identifiability in the model. In section 4 we estimate the model using
maximum likelihood, and compare the results to those reported in Smets and Wouters (2007).
Section 5 concludes and gives directions for future work.

2 The model

The model in Smets and Wouters (2007) (see also Christiano, Eichenbaum, and Evans (2005)) is
an extension of the standard RBC model featuring a number of nominal frictions, such as price and
wage stickiness, and real rigidities - habit formation in consumption, investment adjustment cost,
monopolistic competition, and variable cost of adjusting capital utilization. In addition, it contains
a large number of serially correlated structural shocks. In this section we present a brief outline of
the main components of the model. For details see the appendix accompanying Smets and Wouters
(2007).

2.1 Households

There is a continuum of households indexed by h, each having the following utility function

E, [i A1 _IJC <(Ct+s(j) - )\Ct+s—1(j))1ac> exp(ic_'_; Lt+s(j)1+‘”)] (2.1)

where Cy44(j) is consumption, Ly s(7) is hours worked; X is an external habit persistence parameter.

Each household supplies differentiated labor services monopolistically to a continuum of labor
markets charging nominal wage denoted with W;(j); W; is an index of the nominal wage in the
economy.

Households supply homogeneous labor to labor unions (indexed by 1), who then sell it to labor
packers. Labor services are differentiated by a union, who therefore have market power. Wage
setting by unions is subject to nominal rigidities a la Calvo - each period a union can set the
nominal wage to the optimal level with constant probability equal to 1 — &,,. Unions which cannot
adjust their nominal wage optimally, change it according to the following indexation rule

Wips(l) = Wi (Dmye w0 (2.2)

where 7 is the deterministic growth rate, ¢, measures the degree of wage indexation to past inflation,
and 7, is the steady state rate of inflation.



Labor packers buy differentiated labor services L;(l) from unions, package and sell composite

labor L;, defined implicitely by
Y (Ll
/ H( t();)\wt>dl:1 (2.3)
0 Ly ’

to the intermediate good sector firms. The function H is increasing, concave, and satisfies
H(1) = 1; Ay, is a stochastic exogenous process changing the elasticity of demand, and the wage
markup over the marginal disutility from work.

In addition to supplying labor at wage Wy, households rent capital to the firms producing
intermediate goods, and earn rent at rate R (j). Households accumulate physical capital according
to the following law of motion:

Rili) = (1= 9)Kima () + 2|1 5(795) | i) (2.0
Ii-1(j)
where § is the rate of depreciation, I; is gross investment, and the investment adjustment cost
function S satisfies S’ > 0, S” > 0, and in steady state S =0, S’ = 0. &! represents the current
state of technology for producing capital, and is interpreted as investment-specific technological
progress (Greenwood, Hercowitz, and Krusell (2000)).

Households control the utilization rate Z;(j) of the physical capital they own, and pay
Pia(Z;(7))K¢—1(j) in terms of consumption good when the capital intensity is Z;(j). The in-
come from renting capital to firms is RFK;(j), where K(j) = Z;(j)K;—1(j) is the flow of capital
services provided by the existing stock of physical capital K; 1(j). The utility function (2.1) is
maximized with respect to consumption, hours, investment, and capital utilization, subject to the
capital accumulation equation (2.4), and the following the per-period budget constraint

. . Biys(j) t}:-s(j) .
Crro(i) + i) + it gy = sy
t+ (J) t+ (]) 5g+th+sPt+s t+ Pt+s t+ (])
Rk sZ s _7 . _ . Biis_1(7 14 s(g
+ (H tts(J) _G'(Zt+s(]))>Kt+s—l(]) + == 1) + = 4) (2.5)
Pt+5 Pt+s Pt+s

where By, , is a one-period nominal bond expressed on a discount basis. ? is an exogenous premium

on the bond return, T} is lump-sum taxes or subsidies, and 1, is profit distributed by the labor
union.

2.2 Firms

A perfectly competitive sector produces a single final good used for consumption and investment.
The final good is produced from intermediate inputs Y;(¢) using the following technology:

/01 g (Yéj) ; )\m) di=1 (2.6)




where G is increasing, concave, and G(1) = 1; A, is exogenous stochastic process affecting the
elasticity of substitution between different intermediate goods, also corresponding to markup over
marginal cost for intermediate good firms.

Firms maximize profit given by
1
PYi - [ P@Yi(id (2.7
0

where P;(i) is the prize of intermediate good Y;(i).

Intermediate goods are produced in a monopolistically competitive sector. Each variety i is
produced by a single firm using the following technology:

Yi(i) = 0K (i) (v La(i)) = — B (2.8)

where ® is fixed cost, €} denotes total factor productivity, and v is deterministic growth rate of
labor augmenting technology.

As with wages, every period only a fraction 1 — {p of intermediate firms can set optimally the
price of the good they produce. The remaining &, firms index their prices to past inflation according

to:
Py(t) = 7Py (i) il ™7 (2.9)

where 1, measures the degree of price indexation to past inflation.

2.3 The Government

The budget constraint of the government is

B
PG +B_1 =T + ﬁt (2.10)
t

where G; is government consumption in terms of final good.

The central bank sets the nominal interest rate according to the following rule
Bi (B[ (m "™ (Yi\"]77 (Yo Yir \" 2.11)
R k) |\=) \¥ Yo /Y,

where R* is the steady state level of the gross nominal interest rate, and r; is a monetary policy
shock; Y™ is the potential level of output, defined as the output in a flexible price and wage economy.

2.4 Shocks



There are seven exogenous shocks in the model, five of which (risk premium, TFP, investment-
specific technology, government purchases, and monetary policy) follow AR(1) processes:

b

Ine? = pylned_; + 7P (2.12)
Iney = pglned | +nf (2.13)
Ine, = pilnei_; +n; (2.14)
Inef = pglnef_y + pgani +nf (2.15)
Inef = pplne] ;+n; (2.16)
and the remaining two - wage and price markup shocks follow ARMA(1,1) processes:
InAp: = (1—pw)Indy +pwn Ay i—1 + 07 + (2.17)
InAy, e = (1=pp)Ind,+pplndp 1 +mf + ppny—y (2.18)

3 Parameter Identification

3.1 Model Solution

The economy in the model is assumed to evolve along a deterministic growth path, with v being
the gross rate of growth. To solve the model, we first detrend all growing variables - consumption,
investment, capital, real wages, output and government spending, and then all equilibrium condi-
tions are log-linearized around the deterministic steady state of the detrended variables. A detailed
discussion of all log-linear equations can be found in Smets and Wouters (2007)

The linearized system can be written in the following way (see the Appendix for details):

Fozt = FlEtZt+1 + FQthl + FgUt (31)

’ ’ /
where Z; is a 33 x 1 vector given by Z; = [th, Zts} , Where th and Z; are defined as

!

. k -
th = |:C{7l{vwgaqfﬂzfvrtfvricvktf?kgflaytfaztf
and

Zf = [cf,lf,m,wf,qf,if,rfs,rf,k:f,/;:f_l,yf,zf,mct,E?,ei,ef,ef,ef,e?,az,nf,77;”],
where the small letter represent the percent deviation of the respective variable from its steady
state level®. Z7 is a vector collecting the variables in the flexible price and wage version of the
economy, and Z* collects the variables from the sticky price and wage economy. U; is a vector of
the seven structural shocks:

Uy = [77?777?’77{7775)7775777?777:]/

3¢ here is the percent deviation of real value of capital from the steady state level of one.



The coefficient matrices I'g, I';, I's and I's are functions of a 39 x 1 vector of deep parameters
6, defined by

0= [57 )‘wagyaf‘:pvgw»pgavﬁ7ﬂwaﬂp7a7w7(Paacvh7(I)7Lw7§w7LpagpvahrmrAyary»Pa Pa; Pb,

Pgs PIsPrsPpsPwsVs0a,0b,09,01,0r,0p, Uw]l (32)

There are several algorithms for solving linear rational expectations models like (3.1) (see for
instance Blanchard and Kahn (1980), Anderson and Moore (1985), Klein (2000), Christiano (2002),
Sims (2002)). Depending on the value of @, there may exist zero, one, or many stable solutions.
Assuming that a unique solution exists, it can be cast in the following form:

Z, = AZ,_, + BU, (3.3)

where A and B are functions of #, and are unique for each value of #. We collect the reduced-form
parameters in a vector 7, defined as

7 = [vec(A)’, vec(B)"
We also define the function mapping 6 into 7 as
T = h(0)

The deep parameters of the model cannot be estimated directly from (3.3) as some of the
variables in Z are not observed. In particular, the observable variables in the model are

Xt = [ Ct lt Tt W ’l:t T¢ Yt ]
and the remaining 39 — 7 = 32 variables in Z are treated as latent.

Instead, we can write the reduced-form system in a state space form, with transition equation
given by (3.3), and the following measurement equation:

Xy =CZ (3.4)
where C is a 7 x 33 matrix constructed the rows of 33 x 33 identity matrix.

Assuming that U; is normally distributed, the conditional log likelihood function I(X, ) can be
computed recursively using the Kalman filter (see Hamilton (1994, ch.13)).

3.2 Identification of §

Let © be the parameter space of §. We say that 6y € © is globally identifiable if no other
0, € © yields in the same value of the likelihood function. Local identification, on the other hand,
requires that the value of the likelihood at 6y is unique in some neighborhood of 6y. Clearly,
local identifiability is necessary for a parameter to be globally identified. Finally, when all a priori
admissible values 6 € © are identifiable, we say that the model is identified.

10



A well-know result from Rothenberg (1971, Theorem 1) is that a necessary and sufficient con-
dition for local identification of 6y is that the information matrix, defined by

j@ = *E[lee (X7 9)]

has a full rank when evaluated at 8y. Here lypy is the Hessian with respect to 6 of the log-likelihood
function (X, 6). Using this condition we can, in principle, determine the identifiability of the model
as a whole by evaluating the rank of the information matrix at all points of the parameter space.

The problem with applying this result to determine identifiability in DSGE models is that the
mapping from 6 to the log-likelihood function is, for most models, not available in analytical form.
The likelihood function is determined by A and B, which have to be solved for numerically with some
of the algorithms mentioned earlier. This makes it impossible to derive analytically the information
matrix by direct differentiation of the log-likelihood function. Using numerical differentiation, on
the other hand, is computationally very costly, and is known to be very inaccurate for highly non-
linear functions which is typically the case for DSGE models. Not only is the function non-linear,
but it has to be evaluated numerically in the first place.

In Iskrev (2007a) we presented an alternative approach for evaluating the information matrix.
It is based on a result by Rothenberg (1966) who showed that Jy can be expressed in the following

way?
Jo=H'J.H (3.5)
where J; is the information matrix of the unrestricted model, and H is the gradient of h, i.e.
H = hg(0)

Both H and J, can be derived analytically. We outline the derivation of H below; see Iskrev
(2007a) for references on how J, can be computed.

The first step in finding H is to realize that, even though A cannot be written explicitly, we can
find an implicit function relating # and 7. From (3.1) and (3.3) and the law of iterated expectations
we obtain the following two sets of equations (see the Appendix for details):

(T —T1A)A—Ty =0 (3.6)
(T —T1A)B—T3=0 (3.7)

A and B depend on 6 only through 7, while Ty, I';, I's and I's are functions of 6 only. The

expressions in (3.6) and (3.7) define an implicit function F'(#,7(6)) = 0.° Therefore, by the implicit

function theorem we have®

or(0)

oo’

In practice, it is straightforward to compute Fy and F, using standard packages for symbolic

calculus, such as the Symbolic Toolboxr in Matlab. The computation is further simplified by the

fact that F' can be factored as’

H =20 = —(Fr(0,7(0))) Fo(0,7(0)) (3:8)

F(0,7(0)) = Fi(r(0)) F2(0) (3.9)

4This follows from a straightforward application of the rule for differentiating composite functions.

5Evaluating the matrix F' proved to be an extremely useful method for detecting and correcting programming
errors. See the Appendix for more details on this and a complementary method for doing that.

6To apply the implicit function theorem, we need the matrix F-(6,7(0)) to be invertible. This was true for all
admissible values of 6 used in our identification analysis. See below for details.

"see the Appendix in Iskrev (2007a)

11



The approach described above is useful not only because it avoids numerical differentiation, and
allows for an accurate evaluation of the information matrix. It may also help in discovering the
sources of the identification problems, if such occur. The roots of identification failures may be
either in J., or H, or both. The first matrix measures how well the reduced form parameters 7
are identified, and depends, in part, on the properties of the data, as X is used in its calculation.
H, on the other hand, tells us how well identified are the deep parameters 6 given 7, and does not
depend on the data. Therefore, finding a rank deficient, or poorly conditioned H, means that 0 is
not identifiable, or is weakly identifiable, due to reasons inherent in the structure of the model.

We should make it clear from the outset that the information matrix approach to identification
is for local analysis only. In general, global identification analysis for models that are non-linear
in the parameters is not feasible.® In Iskrev (2007b) we derive conditions for global identification
of the structural parameters in linearized DSGE models, i.e. parameters in which the structural
equations are linear.? However, the goal in the empirical DSGE research is usually to estimate the
deep parameters, for which identification can be analyzed only locally.

3.3 Identification analysis procedure

In the previous section we outlined how the information matrix Jg can be evaluated. Using that
approach, we can determine whether the particular value of #, where the matrix is evaluated, is
identifiable or not. The model as a whole is identified if all points from the parameter space © are
identifiable. It is clearly not feasible to check the rank condition for all points in ©, and instead we
will perform such checks for many randomly drawn points from ©.!° Our proposed identification
analysis procedure consists of the following steps:

1. Draw randomly a point §’ from ©.

2. Check whether the reduced-form solution of the linearized structural model exists and is
unique. If both of these conditions are not satisfied, go back to (1).

3. Evaluate the rank and the conditioning of H. If it is of less then full rank, go back to (1).

4. Evaluate the rank and the conditioning of Jy.

In Step (1) we take one a priori admissible value of § which we then threat as the true parameter
value in steps (2) to (4). Upon completion of the procedure, we will know if that value of € is
identifiable, and how strong identification is. Step (2) is necessary to ensure that there exists a
unique likelihood function at 7. Conditions for existence and uniqueness of the solution can be

8See Rothenberg (1971) for more details.
9We distinguish between deep and structural parameters. For instance, if one of the equations in the linearized
DSGE model is the New Keynesian Phillips curve

W +v)A-¢B)(A—0) @
= FE, _
mt L+ wp tTe+1 + 1+ =B)C yt+1+wﬂ7rt 1+et
we call 8, @, 1, v and ( deep parameters, and v; = 1+[;5, Yo = (¢+V()1(_1~_7;§))C(1_C) and 3 = ﬁ - structural

parameters.
10Boswijk and Doornik (2003) suggest this approach for checking identification of cointegration relationships.
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found in Sims (2002), and are automatically checked by most computer algorithms for solving
linear rational expectations models. We call admissible the values of 6 for which these conditions
are satisfied. In Step (3) we check the necessary condition for identification. Finding that H is
rank deficient, or poorly conditioned at 67, tells us that this particular point of the parameter space
is either not identifiable, or is weakly identifiable for structural reasons, i.e. irrespectively of the
data. To complete step (4) we need to evaluate J,, which depends on the data as well as on 6.
Therefore we need to first generate data Z, assuming that 67 is the true parameter value. From
the rank and conditioning of Jy we then determine whether 67 is identified or not, and whether
identification, from both the model and the data, is strong or weak.

Before going further we should clarify what we mean by conditioning of a matrix, and how
we measure it. The conditioning of a (square) matrix indicates how far the matrix is from being
singular. A well conditioned matrix is far from singular, while poorly conditioned one is almost
singular. This property of matrices is made precise with the matrix condition number, which
is the reciprocal of that distance (see section 3.5 for further discussion the condition number).
Why is this relevant for us? Remember that the information matrix tells us how informative is
the likelihood for the parameters of interest. Thus, the further the information matrix is from
singularity, i.e. the smaller is the condition number, the more informative is the likelihood, and
better identified are the estimated parameters. When the information matrix is exactly singular,
the condition number is equal to infinity, and the likelihood function is absolutely flat in some
directions, and is thus completely uninformative with respect to one or more parameters. A poorly
conditioned information matrix, on the other hand, has a large condition number, and indicates
that the likelihood is nearly flat in some directions, and thus provides very little information for
some parameters. This is analogous to collinearity in the linear regression model, and the weak
instruments problem - in the instrumental variables setup.

3.4 Identification of the Smets Wouters (2007) model

Now we apply the procedure from the previous section to the model described in section 2.
We take the parameter space © to be the one defined by the prior distribution of @, as specified in
Smets and Wouters (2007). A summary of that distribution is provided in Table A.1 of Appendix A.
This prior distribution is very common in the recent studies using Bayesian methods to estimate
similar New Keynesian DSGE models. An alternative approach would be to treat all a priori
admissible parameter values as equally likely, that is, to assume uniform priors. The benefit of our
approach is that it provides a better coverage of the parts of the space that are considered in the
literature as more plausible. For instance, the discount factor § could, theoretically, lie anywhere
between 0 and 1. However, values close to .99 are considered to be much more likely than values
close to 0. This type of considerations are reflected by the choice of shape and parameters of the
prior distribution.

In their estimation procedure Smets and Wouters (2007) treat five deep parameters as known.
These are: discount rate J, share of government spending in GDP g,, steady state markup in the
labor market A, and the two curvature parameters of the aggregation functions in the labor and
final good sectors - €, and €w''. For the first two parameters the reason is that they are difficult

HThese parameters measure the percent change in the elasticity of demand due to a one percent change in the
relative price/wage of the good/labor service, evaluated in steady state. In the simple case, where the aggregator func-
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to estimate with the data used in estimation. The markup and the two curvature parameters, on
the other hand, are asserted to be unidentifiable. The second claim is easier to check, so we look
into it first.

The easiest way to detect lack of identification of one or more deep parameters is to examine
matrix H = 8(%?). It must have full column rank for 6 to be identified. Moreover, if a parameter
is generally unidentifiable, it would not matter at what admissible value of § we compute H, as it
will be with reduced rank for any 8 € ©. In what follows we use the posterior mode of 8 reported
in Smets and Wouters (2007). When 6 includes all 39 parameters listed in (3.2), the rank of H
is 36. One of these parameters, however, is the trend growth rate « for which there is additional
information in the trending observed variables that we have not taken into account. Treating v as
known, and computing H for the remaining 38 deep parameters, we conclude that two of them are
not identifiable. Closer inspection of H (see section 3.6 for more details) shows us that €, and €,
are indistinguishable from the Calvo probability parameters &, and &,. In other words, one can
identify either €, or &, but not both simultaneously, and similarly for €, and &,. No such problem
appears to exist regarding A,,, and when we compute H after €, and €,, are removed from 6, it has
full rank. We conclude, therefore, that there is nothing in the model that makes the wage markup
parameter )\, unidentified. Computing the full information matrix J9 = H'J, H confirms that A,
is indeed identified at the posterior mode of 6.

As we mentioned above, having v among the parameters with respect to which H is computed
causes additional identification problems. It may be useful to know what the source of these
problems is, and whether it would be possible to estimate v from the stationary version of the
model using detrended data. To answer these questions we computed H for 6 that includes ~, and
sequentially exclude one of the remaining deep parameters. We find that H has reduced rank when
d, B, ¢, A and ~ are all included, and is with full rank whenever one of these five parameters is
excluded. This implies that v can be identified, using detrended data only, if either §, 3, ¢ or A
is kept fixed instead of estimated. This is true, for instance, for the parametrization estimated in
Smets and Wouters (2007), where it is assumed that § is known.

We study the identifiability of the model for six parameterizations that differ in the parameters
assumed to be known. The parameters are those assumed known in Smets and Wouters (2007) plus
~. The values of the fixed parameters, reported in table 3.1 below, are also taken from that paper.
The trend parameter v is held fixed in all cases except parametrization 5. In parametrization 1
all other parameters are left free. In parameterizations 2 to 4 one of the other three parameters
- 0, Ay and gy respectively, is also assumed known. Considering these cases allows us to compare
the strength of these parameters’ identifiability. In parametrization 5 all parameters except y are
fixed. Since § is one of them, as we explained above, « is identified from the stationary model. In
parametrization 6 all parameters are assumed known and thus it is closest to the parametrization
estimated in Smets and Wouters (2007).'2

We draw 1,000,000 points from © and perform steps (1) to (3) described in section 3.3 for each
one of them. The distributions of the actual draws are shown in Figure A.1. We sort the admissible
draws and divide them into 10 groups; then we perform step (4) for 100 points from each group.
Thus we compute the full information matrix Jg for 1,000 admissible points from ©. We did not

tions H and G have the Dixit-Stiglitz functional form, both parameters are equal to zero (see Eichenbaum and Fisher
(2007))

12The difference is that in Smets and Wouters (2007) + is estimated using trending data, while in parametrization
6 v is assumed known.
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Table 3.1: Parameterizations
1 2 3 4 5 6
6 free .025 free free .025 .025
Ay free free 1.5 free 1.5 1.5
gy free free free .18 .18 .18
v 431 431 431 431 free .431

evaluate that matrix for all admissible draws because with the routine we use for evaluation of J.,
it takes very long to compute that matrix.

Between 96% and 98% of the draws were admissible (see table A.2 in Appendix A). There was no
stable solution for about .1% to .3% of them, and for about 2% to 4% there were multiple solutions.
Matrix H had a full column rank for all of the admissible draws. Thus the necessary condition for
identification was satisfied everywhere in the parameter space. Table A.3 in Appendix A reports
the ten deciles of the distribution of the condition numbers of H for all six parameterizations. The
information matrix Jy failed to be of full rank for about 2% of the 1000 draws for which it was
evaluated. Table A.5 in Appendix A shows the ten deciles of the distribution of the condition
numbers of Jg. We see that even though it has a full rank for almost all of the draws, its condition
numbers is extremely high which implies that the matrix is poorly conditioned virtually everywhere
in the parameter space.

Table 3.2: Cross-correlations

Aw Gy Ip © Oc h [ Lw Ew Lp oy Ay Ty

B 42 98 -.07 .28 44 -40 -85 -24 -41 26 -.36 42 -.30
© .95 26 -.92 1 90 -78 -24 -87 -95 90 -.73 96 -.98
e .99 40 -.78 .90 1 -96 -54 -91 -99 .84  -.88 .86  -.88
h -91 -.36 69 -78 -.96 1 .56 .90 92  -.67 95 -T2 .78
Lw -90 -.21 75 =87 -91 .90 .29 1 90 -.71 .88  -.79 .87
Ew -99 -38 84 -95 -99 .92 .49 .90 1 -.89 83 -91 .92
Lp .90 22 -.76 .90 .84 -67 -33 -71 -89 1 -51 .89  -81
&p .52 89 -1 .30 b8 -61 -98 -34 -52 .31 -.53 .38 -.31
oy -.82 -.30 69 -73 -88 .95 45 .88 .83 -.51 1 -.66 .75
TAy .92 37 -84 .96 86  -72  -32 -79 -91 89 -.66 1 -93
Ty -92 -.29 93 -98 -88 .78 .22 .87 92 -381 75 -.93 1
p .89 32 -T4 .88 .84 -68 -40 -69 -.88 95  -.57 91 -.78
pr .81 50 -.56 .65 87 -94 -68 -79 -82 51 -.93 .61 -.68
or -.96 -.45 81 -91 -97 .93 .50 91 97 -.76 91 -.88 .92
op -.81 -.04 99 -91 -76 .67 0 .74 82 -.T4 .67 -.83 .92

Note: Pairwise correlation coefficients corr(éi, éj) exceeding .95 in absolute value. The values are
obtained by inverting and normalizing the information matrix evaluated at € for which the
condition number of the matrix is equal to the median value from Table A.3. High correlation
between the estimates of two deep parameters indicates that they are difficult to identify.

The poor conditioning of the information matrix suggests that some of its columns are nearly
linearly dependent. Since the information matrix is equal to the inverse of the asymptotic covariance
matrix for the estimate of 6, this in turn implies that there exists a strong degree of interdependence
among the estimates of some of the deep parameters. This creates identification problems as these
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parameters’ separate effects on the likelihood are difficult to isolate!®. We can measure the degree
of linear dependence by computing the correlations between the columns of the covariance matrix.
The complete set of pairwise correlation coefficients may be obtained by inverting and normalizing
the information matrix.!* Table 3.2 shows all pairs of parameters whose estimates have correlation
exceeding .95 in absolute value. The correlation coefficients were computed at the value of 6§ where
the condition number of Jy equals the median of all points at which the information matrix was
evaluated. We see, for instance, that the estimate of the wage markup parameter A, is extremely
highly correlated with &, and o.. This partially confirms the claim in Smets and Wouters (2007)
that this parameter is difficult to identify in their model, although, as we discussed above, they
are mistaken in asserting that \,, is not identified. Other parameters that would be very difficult
to identify at this particular value of 6 are o., &,, h and o; as well as the policy rule coefficients
p, py and pay. Although these observations are made on the basis of single point 6 from the
parameter space, they remained valid for many other parameter values we tried. In addition, as
can be seen from Table A.6, very high degree of linear dependence can also be found for other pairs
of parameters, such as o, &, h and Az, or 7, p, p;r and o;. The correlation coefficients reported
in Table A.6 were computed at 6 equal to the value where the condition number of Jy equals the
7-th percentile of all points at which the information matrix was evaluated. Since the condition
number of matrix is higher - 6.4 x 10® vs. 1.8 x 107, the linear dependencies shown in Table A.6
are substantially stronger than those reported in Table 3.2.

We draw the following three conclusions from this exercise. First, although the necessary and
sufficient condition for identification is generally satisfied, the conditioning of the information matrix
is very poor, indicating that 0 is very weakly identified in most of the parameter space. Second,
the reasons for weak identification are mainly in H, which is entirely determined by the structure
of the model, and not affected by the data. To see that, remember the relationship between the
information matrix Jy and H (see equation (3.5)). Even when 7, is very well conditioned, poor
conditioning of H will result in poorly conditioned Jy. For instance, suppose that there is very
small amount of uncertainty in the estimate of 7, and J, has a condition number equal to one. In
particular, we let J, = J% be a diagonal matrix whose inverse - the covariance matrix for 7, has
non-zero elements equal to 1% of the true values of 7. The deciles of the distribution of the condition
numbers of Jg = H'J* H are shown in table A.4. If, for instance, the condition number of H is 6e2
- the median for parametrization 1, we find that the condition number of Jy is about 3.7e5. Thus,
even though Jy was computed in relatively small number of points from ©, our findings regarding H
suggest that the identification of @ is generally weak. Third, the strength of identification improves
only a little when J, A, and g, are kept fixed. We see that by comparing the conditioning of H
and Jy for parametrization 1 and 6. The difference is relatively small. Moreover, the improvement
seen in parametrization 6 is, at least partly, due to the smaller number of free parameters, and not
only because the identifiability of the fixed parameters is much weaker. Of these three parameters,
gy appears to be be the worst identified one. This can be deduced by comparing the conditioning
of parametrization 4 with that of parameterizations 2 and 3.

13 This is easy to see for the linear regression model y = X3+ ¢€. When two of the regressors, X; and X are nearly
collinear, the corresponding coefficients, 8; and §; will be difficult to identify. Also, since the covariance matrix of
the estimate ﬁ is proportionate to EX’X, high collinearity between the regressors implies high correlation between
the corresponding elements of B

4 That is, we divide each %, j covariance term of the matrix by the product of the standard deviations of variables
¢ and j. Neely, Roy, and Whiteman (2001) also use the correlation matrix of the parameter estimates to determine
the sources of identification problems
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3.5 Discussion

Our analysis of parameter identification in the Smets and Wouters model suggests that weak
identifiability, and not complete failure of identification, is likely to be the more serious problem for
DSGE models in general. Even when some parameters are not identifiable, as is the case with ¢,
&ps Ew, and &, in the model we consider, this is easy to detect - by computing the rank of Jacobian
matrix H, and straightforward to deal with - by fixing instead of estimating parameters that lack
identification. Unlike identifiability in a strict sense, which is a ”either/or” property of the model,
what ”weak identification” means is harder to define.

In this paper we use the information matrix condition number to measure the strength of iden-
tification. As we mentioned above, the condition number of a matrix measures the distance from
singularity of the matrix. More precisely, a matrix condition number is the reciprocal of the the
distance, in a norm-sense, of a non-singular matrix to the set of singular matrices (Demmel (1987)).
Thus, the smaller the condition number of the information matrix, the further it is from singularity,
and the stronger the identification of parameters. In the econometrics literature Forchini and Hillier
(2005) also propose the condition number of the information matrix as a measure of the strength of
identification in parametric models, and show that it is closely related to the concentration param-
eter, suggested by Stock, Wright, and Yogo (2002) as a measure for the strength of identification
in linear models.

The condition number of the information matrix is therefore a natural and simple measure
of the strength of parameter identification. It is particularly useful for the purpose for studying
identifiability of a model in general, as we do in this paper, as it summarizes in a single number
the properties of the whole information matrix, thus allowing us to characterize the strength of
identification at a large number of points in the parameter space. It remains unclear, however, how
high should the condition number be, to indicate serious identification problems. In the numerical
analysis literature it is suggested, as a rule of thumb, that condition numbers greater than the
reciprocal of the square root of the machine precisions, lead to unreliable results. For PCs this
number is 6.7¢7. On the other hand, matrices with condition numbers greater than 4.5el5 are
numerically singular. With reference to these number, the values reported in Tables A.3 and A.5
suggest very poor identification. The two rule of thumb numbers, however, are solely based on the
fact that computers compute with finite precision, and does not take into account the sampling
uncertainty that plays important role in estimation with finite data. Thus, the values indicating
weak identification are likely to be much lower.'®> What this value is, or how to find such threshold
for a particular class of models, is an open question in econometrics in general, and a complete
investigation of it is beyond the scope of this paper. Instead, here we first show one possible
approach for addressing it, and then discuss the implications for the model we study.

One useful property of the condition number is related to the problem of solving a linear system
of equations:

Az =b (3.10)

For (3.10) to have a unique solution, A must have a full column rank. It is often important
to know how errors in the (estimate of) A and/or b, affect the solution for z. Such information is

151 thank James Stock for making this point to me.
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provided by the condition number of A, which gives an upper bound on size of the error in x, given
errors in A and/or b; that is
Az ANA  Ab
— < d(A)| — + —
z = on (4) ( A * b )

Furthermore, it can be shown that there exist errors AA or Ab, for which the bound is attained.

(3.11)

Using this property of the condition number, we can find an upper bound for the elements of
the asymptotic covariance matrix of the parameter estimates. This follows from the fact that, for
the MLE estimator 0, the covariance matrix V(é) is equal to the inverse of the information matrix,
and therefore we have

Jo(0)V(0) =1 (3.12)
This implies (see Edelman and Rao (2005))

AV(H) (AT (0)
V) <cond(J9(0))< 50(0) ) (3.13)

Hence, when cond(Jg(6)) is large, even small errors in the estimate Jg(6) of Jg(f), will cause
large errors in the estimate of the covariance matrix V(é) In particular, the standard errors for 6 -
the diagonal elements of V(6), could be very imprecisely estimated when cond(Jg(6)) is high. To see
how large these errors could be in our example, we carried out the following Monte Carlo simulation
exercise. For each of the ten deciles shown in Table A.5, we assumed that the corresponding matrix
Jp(0) is the true information matrix. We then added small errors to the diagonal elements of
J¢(0), drawn from standard normal distribution with variance equal to 1% of the true value. The
resulting matrix Jg(6) is then inverted and the percentage error in the diagonal elements of V(0)
recorded. Table A.7 in Appendix A shows the results from 1000 repetitions. The reported numbers
are percent error in the standard errors of 6 for 1 percent error in the corresponding diagonal
element of Jy. The results demonstrate that the estimated covariance matrix is very sensitive to
even small errors in the estimate of the information matrix, and the higher the condition number

of Jy is, the larger the errors in the estimate of V(6) tend to be. This shows us that the standard
errors obtained by inverting the information matrix are practically meaningless.

An alternative strategy for investigating the relationship between the condition number of the
information matrix, and the small sample properties of the estimator, would be to conduct a
standard Monte Carlo study, where data is generated and parameters estimated a large number
of times. Unfortunately, for a highly non-linear model with a large number of parameters like the
one we consider, this approach is impractical. The main problem is that in order to ensure that
a global maximum is reached, for even one set of data, is extremely difficult, and requires, at the
least, initializing the optimization procedure with a large number of starting points. This makes the
time and computational cost of such a study prohibitive. Thus, instead of the main model, we did a
Monte Carlo study of small rational expectations model with only two parameters. The model and
the simulation results are presented in Appendix C. We can see in Table C.1, a larger condition
number is associated with a substantial increase in both the bias and the mean squared error of the
maximum likelihood estimator. These results are consistent with the findings in literature on the
effects of weak identification in linear models (see for instance Hahn, Hausman, and Kuersteiner
(2004) and Flores-Lagunes (2007)).
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3.6 Why is identification weak?

The analysis so far suggests that the model as a whole is poorly identified. Moreover, our
findings regarding H indicate that the cause for this is in the structure of the linearized model.
This is because poor conditioning of H translates into poor conditioning of the information matrix,
and consequently, weak identification of 6. In this section we explore this further by focusing on H
and trying to understand what makes it ill-conditioned.

To remind the reader, H is the gradient of the function mapping 6 into the reduced-form
parameters 7. Since the likelihood function depends on € only through 7 (see section 3.2), a
necessary condition for identification of 6 is that the inverse mapping, from 7 to 6, is unique. For
this we need H to have full column rank. The condition will fail if, for instance, two of the deep
parameters have exactly the same or exactly proportioned effect on 7, i.e. gT)Tl x 68072 . In that case
H will have two linearly dependent columns, and will be rank-deficient. This was the case with
the curvature parameters €,, and €,, and the Calvo parameters - &, and &,, respectively. Weak-
identification, on the other hand, may arise if two deep parameters have very similar, although not
exactly the same, or exactly proportioned effect on 7. Then the corresponding two columns of H
will be almost but not exactly collinear, and the matrix will be poorly conditioned. In the former
case the two parameters are said to be confounded, and in the later - nearly confounded.

To find out whether parameter confoundedness is a serious problem in our model, we computed,
for all pairs of parameters 6; and ¢;, the correlation between gTTi and 6%:' This was done for all
admissible values 6 that were drawn and used in the analysis described in section 3.3. Thus, unlike
the cross-correlations reported in Table 3.2 and Table A.6, which point to troublesome parameters
at a single point in the parameter space, here we determine which parameters cause identification
problems for the model in general. Figure 1 shows 16 pairs of parameters for which the correlation
coefficient exceeded .9 in absolute value for at least 10% of the points. For each pair the figure
shows the distribution of the correlation coefficients. For instance, the histogram in the upper-left
corner indicates that for about 68% of the points the correlation between ;z\Tw and 6652 was .9
or more; for 13% of the points, correlation was between .8 and .9, etc. Similarly, the correlation
between g—; and 6‘,97: (upper-right corner) was —.9 or less, for about 37% of the points, and between
—.8 and —.9 - for about 33% of the points.

We see that there are three groups of parameters - the preference parameters o., A, and pp,
the labor supply parameters o, Ay, and &,, and the policy function parameters p, ry, px, and pr,
that, within each group, may have very similar effects on the reduced-form parameters 7. We also
find that the same is true, although to a lesser degree, for the capital share parameter a and the
discount rate 3, as well as the Calvo parameter for prices &,, indexation parameter for prices ¢, and
the fixed cost parameter ®. For the reasons given above these parameters may be hard to identify
separately.

We should note, however, that the high degree of near-confoundedness does not occur everywhere
in the parameter space. For each of the 16 pairs of parameters in Figure 1, there are points § € © for
which the correlations are weak. In addition, there are points for which the sign of the correlation
is reversed. For instance, in around 3% of of all draws, the correlation between % and 86):“ was
very close to zero, and in .8% of them it was negative. On the other hand, other pairs of deep

parameters may also exhibit near-confoundedness, although not as frequently as those discussed
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Figure 1:

above.

Remark. It is worth mentioning that parameter near-confoundedness problems in the latest
version of the ”Smets and Wouters” model are much less severe than those in earlier versions. This
is due to the somewhat simpler structure of the current model. For instance, the autocorrelation
coeflicient of the preference shocks, present in the previous versions of the model, was very difficult
to distinguish from the habit persistence and elasticity of intertemporal substitution parameters
A and o.. In the current version similar role is played by the risk premium shock, but the near-
confoundedness among p,, A and o, is not as strong as before. Another change that improves the
identifiability of the model is the simplified monetary policy rule. In the earlier versions of the model
the central bank responded to both past inflation and output gap, which was making it difficult to
separately identify the response coefficients for current and past inflation and output gap. On the
other hand, in the current version the policy shock is assumed to follow an autoregressive process
whereas before it was i.i.d. As we can see in Figure 1, p,. is potentially difficult to distinguish from
p and p.

To summarize, our analysis of parameter identification in the model described in section 2
shows that it is generally weak. The results regarding matrix H indicate that the sources of
poor identification are primarily in the structure of the model.'® One such source is parameter
confoundedness which in some cases could be dealt with by fixing the values of some parameters.

16Strictly speaking, identification of fully articulated economic models, such as DSGE models, is completely de-
termined by the structure of the model since every aspect of the likelihood can be traced back to the underlying
deep parameters and structural relationships. We find it useful, though, to distinguish between the role of H, which
depends on 6 only, and J,, which depends on both 6 and the data.
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Unfortunately this does not seem to provide a fully satisfactory solution of the problem in the model
we consider. Parametrization 6, which we found to be relatively better identified, has information
matrix that is still relatively poorly conditioned for much of the parameter space. This implies
that the data would provide little information for the parameters of this model. Moreover it is
unlikely that the identification would be strengthened much by increasing the length or improving
the quality of the data used in estimation.

In this section we studied the identification of the theoretical model as it is, without reference
to a particular data set used in estimation. Thus the problems we found may arise whenever this
or similar DSGE models are estimated. To find out how strong identification is at a particular
parameter estimate, that is, conditional on a specific data set, one should examine the conditioning
of the information matrix evaluated at that particular point. Furthermore, if Bayesian techniques
are used for estimation, in addition to the posterior mode, one could also evaluate the conditioning
of the information matrix for all points from the posterior distribution. We return to that in the
next section, after the estimation results are presented.

4 Empirical Analysis

The results from the previous section suggest that the likelihood, and therefore the data, is not
very informative about the parameters of the model. One consequence of this is that estimating
the model using Bayesian techniques, as in Smets and Wouters (2007), one places relatively large
weight on the priors compared to the likelihood. To explore this further in this section we estimate
the model by maximizing the the likelihood only, and then compare the results with the posterior
mode estimates reported in Smets and Wouters (2007)

We start by describing the data to which the model is applied. Then we turn to estimation of
the model.

4.1 Data

The model is estimated using quarterly US data over the period 1966:1-2004:4. The observed
variables are: real consumption (c), real investment (i), real output (y), real wages (w), hours (h),
inflation (), and the nominal interest rate (r).

Consumption is personal consumption expenditures. Investment is fixed private investment.
Wages are hourly compensation for nonfarm business. Real consumption, investment and wages
are obtained by deflating the nominal variables with the GDP implicit price deflator. Real output
is real GDP. Hours are average hours for nonfarm business. Inflation is the first difference of the log
GDP implicit price deflator. Consumption, ivestment, and output are expressed in per capita terms
by dividing with civilian population of 16 and older. The nominal interest rate is the quarterly
average of the Federal Funds rate.

More details on the definitions and data sources used are provided in the data Appendix to
Smets and Wouters (2007).
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4.2 Estimation

4.2.1 Maximizing the likelihood function and the posterior density

Both MLE and Bayesian estimation require the evaluation of the likelihood function. To do that
we first solve the linearized structural model (3.1) to find the state equation (3.3); then the Kalman
filter is used to evaluate the log-likelihood I(Z;0) = InL(Z;0) of the reduced-form model (3.3)-
(3.4). In order to keep the estimate of 6 within theoretically meaningful bounds, we optimize the
likelihood with respect to unbounded variables that are one-to-one transformations of the restricted
variables in the . The bounds on the parameters in 6 are shown in Table D.1, and are the same as
those used by Smets and Wouters (2007). In addition, when computing the likelihood we impose
the restriction that the model has a unique solution. This is achieved by setting the value of the
likelihood to a very small number for values of § that result in multiple or no solutions.

Using the Bayes rule, the posterior density can be expressed as
L(Z;0)p(9)
p(Z)
where p(0) denotes the prior distribution of §. Thus, to maximize the posterior density, we evaluate

the likelihood, as before, and the prior p(), which alternatively may be though of as a penalty
function.

p(0;Z) = o< L(Z;0)p(0) (4.1)

A well-known practical problem with non-linear optimization/estimation is that one can not
be certain that a global maximum is found, and not just a local one. A common strategy for
dealing with this is to try many different starting values. Our approach was to combine simulation
techniques, gradient and non-gradient based optimization methods. We started with picking ten
of the points drawn for the purpose of identification analysis (see section 3.3), which yielded the
highest values of the likelihood or the posterior density. Then, taking these points as starting
values, we run ten Markov chains generated by the random walk implementation of the Metropolis-
Hastings algorithm (we follow Schorfheide (2000), see the appendix for more details). The modes of
the distributions generated by each chain were then used as starting values for several optimization
routines, and the final maximizer was determined by direct comparison of the resulting values.

4.2.2 Results

We estimate two different parameterizations of the model. In the first one three of the identified
parameters - depreciation rate d, wage markup \,,, and government spending share in output g,, are
assumed known, and not estimated. This is the parametrization estimated in Smets and Wouters
(2007). The values at which these parameters are fixed - .025, 1.5 and .18, respectively, are also
taken from that paper. In the second parametrization these parameters are estimated.

We follow Smets and Wouters (2007) and estimate the model using data for the full sample
period (1966:1-2004:4), and for two subperiods (1966:1-1979:2 and 1984:1-2004:4). This is done in
order to investigate the sources of the differences in the economic environment during these two
periods.

The estimation results for the first parametrization are presented in Tables 4.1 (deep param-
eters), and 4.2 (shock parameters). In addition to our maximum likelihood estimates, and the
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Table 4.1: Estimation Results: Deep Parameters

1966:1-2004:4 1966:1-1979:2 1984:1-2004:4
Parameter Bayesian MLE  Bayesian MLE Bayesian MLE
© 5.49 7.86 3.62 2.12 6.23 14.98
O¢ 1.40 1.70 1.39 1.21 1.48 1.62
h 0.71 0.70 0.63 0.53 0.69 0.71
&w 0.74 0.88 0.66 0.73 0.75 0.95
oy 1.92 2.90 1.52 1.55 2.30 2.32
& 0.66 0.68 0.56 0.63 0.74 0.79
L 0.59 0.78 0.59 0.86 0.47 0.44
lp 0.23 0.01 0.46 0.25 0.21 0.01
P 0.55 0.77 0.35 0.16 0.70 1.00
P 1.61 1.88 1.43 1.38 1.54 1.63
Ty 2.03 2.49 1.66 3.00 1.77 2.48
p 0.82 0.87 0.81 0.91 0.84 0.87
Ty 0.08 0.12 0.18 0.40 0.09 0.07
TAy 0.22 0.24 0.21 0.27 0.16 0.19
T 0.82 0.91 0.72 0.76 0.67 0.79
100(8~ —1) 0.16 0.01 0.15 0.01 0.13 0.03
! -0.10 -0.18 0.03 0.04 -0.55 -2.46
~y 0.43 0.42 0.34 0.32 0.45 0.36
e 0.19 0.18 0.20 0.15 0.22 0.19
Log Likelihood: -840.1 -820.6 -320.2 -303.6 -337.8 -304.4
cond(Jg): 2.7e7 4.5e7 4.0e7 1.0e9 6.6e7 3.1e8

Note:  =.025, A\, = 1.5 and gy = .18 are fixed. 7, and [ are quarterly steady state inflation rate, and
steady state hours worked.

posterior mode values from Smets and Wouters (2007), we report the values of the log likelihood as
well as the condition number of the information matrix evaluated at the respective point estimates.

Starting with the deep parameters estimated over the whole sample, the results show significant
differences between the MLE and Bayesian estimates for most of them. Particularly large is the
effect on ¢, oy, tp, tw , & , ¥, and r,. Smaller, but still substantial are the differences for o., @,
Ty, T, and [. For the remaining parameters the estimates are very close.

The maximum likelihood estimates of both Calvo parameters, &, and &,, are higher than their
Bayesian estimates. This implies longer average duration of the wage (8.3 vs. 3.9 quarters) and
price (3.1 vs. 2.9 quarters) contracts. The estimates of ¢, and t,, suggest much larger degree of
indexation of wages, and much weaker degree of price indexation than those implied by the Bayesian
estimates.!”

The elasticity of the investment adjustment cost function () is also larger according to the ML
estimates, as are fixed cost parameter (®), and the elasticity of the capacity utilization adjustment
cost function (¢).

17This findings are consistent with the remarks in Smets and Wouters (2007) on the effect of relaxing their priors.
See their footnote 9.

23



Overall, for all frictions in the model, except the habit persistence parameter (h), the ML
estimates are substantially different and larger than the Bayesian ones. The latter are in turn larger
than the respective means of the prior distribution, which is therefore the most likely explanation
of the observed discrepancies.

The ML estimate of the monetary policy rule parameters suggest a stronger interest rate re-
sponse to inflation, output gap, and the change in output gap, as well as higher degree of interest
rate smoothing. Again, these differences among the Bayesian and the maximum likelihood estimates
can be attributed to the use of the particular prior values.

Table 4.2: Estimation Results: Shock Processes

1966:1-2004:4 1966:1-1979:2 1984:1-2004:4
Parameter Bayesian MLE Bayesian MLE Bayesian MLE
Pa 0.96 0.97 0.97 0.99 0.94 0.97
Db 0.18 0.14 0.40 0.60 0.14 0.07
Pg 0.98 0.98 0.91 0.91 0.97 0.97
I 0.71 0.70 0.61 0.47 0.65 0.67
Pr 0.13 0.01 0.22 0.07 0.30 0.19
Pp 0.90 0.95 0.51 0.82 0.75 0.92
Pw 0.97 0.98 0.97 1.00 0.83 0.70
Pga 0.53 0.45 0.59 0.55 0.40 0.33
L 0.89 0.96 0.85 0.97 0.62 0.61
p 0.74 0.77 0.46 0.98 0.60 0.83
Oa 0.45 0.43 0.58 0.61 0.35 0.37
op 0.24 0.25 0.23 0.20 0.19 0.20
o4 0.52 0.54 0.54 0.52 0.42 0.41
or 0.45 0.45 0.52 0.56 0.40 0.35
or 0.24 0.23 0.20 0.21 0.12 0.12
op 0.14 0.12 0.22 0.26 0.12 0.12
Ow 0.24 0.27 0.20 0.25 0.22 0.24
Log Likelihood: -840.1 -821.7 -320.2 -303.6 -337.8 -304.4
cond(Jg): 2.7e7  4.5e7 4.0e7  1.0e9 6.6e7  3.1e8

Note: § =.025, Ay, = 1.5 and gy = .18 are fixed

Turning to the estimates of the exogenous shock parameters, presented in Table 4.2, we see that
the MLE and Bayesian estimates are quite close. One exception is the autocorrelation parameter of
the policy shock (p,), which is estimated to be substantially larger when a prior (with mean of .5)
is used. This confirms the observation made in Smets and Wouters (2007) that "the data appear
to be very informative on the stochastic processes of for the exogenous disturbances” (p.9). One
implication of this is that we should expect that the forecast error variance decompositions of the
model variables will be quite similar across the two sets of estimates.

Regarding the estimates obtained using data from the two subsamples, we observe much larger

discrepancies among the maximum likelihood and Bayesian estimates of the deep parameters. For
some parameters, for instance r, for the first subperiod, and ¢ - for the second, the ML estimates
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were pushed towards the bounds for those parameters. Similar experience, resulting from relaxation
of the prior precision, was reported in Onatski and Williams (2004). One possible explanation of
these discrepancies is that much less data is used for estimation, which makes the likelihood relative
less informative, and the priors - relative more influential with respect to the posterior distribution.
This is indicated by the high value of the condition numbers of the information matrix. These
values are quite high even when all data is used, but particularly so for two subsample estimates.
As we discussed in Section 3.5, having such a poorly conditioned information matrix makes the
estimated asymptotic covariance matrix highly sensitive to even small estimation errors in Jy, thus
making the estimated standard errors meaningless. Because of that we do not report such errors
for the MLE estimates.

Remark. Unlike in Section 3, where we computed condition numbers of the information matrix
at the true values of 6, here the parameters are estimated, and therefore subject to sampling
uncertainty. Accounting for this uncertainty is straightforward for the estimates obtained with
Bayesian methods. We can simply find the posterior distribution of cond(Jy). The 5-th and 95-
th percentiles of the distribution are 2.4e7 and 2.9e7, respectively. It is not obvious how to put
similar confidence bounds on the condition number of the information matrix evaluated at the ML
estimates.

The results reported in Tables 4.1 and 4.2 were obtained under the assumption that §, A,
and g, are known and fixed at the values assumed in Smets and Wouters (2007). As we discussed
in section 3 the reason given for not estimating these parameters was their poor identification.
However, we found evidence supporting that claim only with respect to A\,. In Table D.2 we
report the maximum likelihood estimates of the model parameters obtained when §, A, and g, are
assumed unknown and also estimated. The values we estimated for these parameters are 6 =.021,
Ao = 1.77, and g, = .3. Turning to the other parameters, the effect is most noticeable for the
policy rule parameters, the estimates of all of which increase substantially. The higher condition
numbers (6.7e10 vs. 2.7e10) suggest that thee identification of this parametrization is indeed weaker.
However, the difference is not particularly large and is, at least partly, due to the large number of
parameter estimated in the second case.

Overall, we find that the use of priors have significant effects on the parameter estimates for
the model we consider. This by itself does not imply that the model behavior is also affected
substantially. To asses the implications of different estimates on the internal dynamics and the
propagation mechanism of the model, we next compare the impulse responses to the structural
shocks, and the variance decompositions for the observed variables.

4.2.3 Impulse responses and variance decompositions

Impulse responses and variance decompositions are standard tools for gauging the behavior of
macroeconomic models, and assessing their credibility. Impulse response analysis allows us to trace
the dynamic interactions among economic variables, while the variance decompositions measure the
contribution of each structural shock to the total variation of each variable. Here we compare the
implications along these two dimensions of three different parameter estimates for the whole sample
period (1966:1-2004:4) - the Bayesian and ML estimates for the first parameterizations (columns 2
and 3 of tables 4.1 and 4.2), and the ML estimate for the second parametrization (columns 2 and 6
of Table D.2 in the Appendix). For ease of notation, henceforth we refer to the first two estimates
as SW and MLEI, and the the last one - as MLE2.
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Figures E.2 - E.8 plot the impulse responses (percent deviations from steady state level) of the
seven observed variables (output, consumption, investment, hours, inflation, wages, and interest
rate) to a one standard deviation in each of the seven structural shocks (productivity, risk premium,
government spending, investment, monetary policy, price and wage markup shocks). Overall, the
responses seem reasonable, and are, in most cases, qualitatively similar in the sense of having the
same sign on impact and similar dynamics. In particular, most impulse responses implied by the
two ML estimates are very close. The most common difference between MLE1 and MLE2 on one
hand, and SW - on the other, are in the magnitude and persistence of the responses. For instance,
the responses of output and consumption to productivity, investment or price markup shocks, take
longer to reach their peaks, and last longer under the MLE, compared to SW estimates. The
opposite is true for the response of most variables, and particularly investment and wages, to a
wage markup shock. In some cases there is also a substantial difference in the impact effect of
the shocks. For instance, wages and inflation respond much more strongly to monetary policy,
productivity, risk premium, or government spending shocks, under the SW estimates compared to
the MLE ones. In the case of response of wages to exogenous spending shock, the impact effects
are also in different directions (see Figure E.4). Under SW the response is positive and remains so
for up to 10 quarters, while the two ML estimates imply a smaller and negative response.

Tables F.1 - F.3 report, for the three parameter estimates - SW, MLE1 and MLE2 respectively,
the contributions of each structural shock to the forecast error variances of the observed variables
at different horizons. As with the impulse responses, the results are broadly similar, with some dif-
ferences emerging in the medium to long-run horizon. With respect to the determinants of output,
for instance, the Bayesian parameter estimates overemphasize, relative to the ML ones, the impor-
tance of wage markup, exogenous spending, and risk premium shocks, and underestimate that of
sector-neutral productivity, and price markup shocks. Similar differences may be observed regard-
ing inflation. Relative to the ML estimates, the Bayesian estimates overestimate the importance
of risk premium, exogenous spending, investment and monetary policy shocks, and underestimate
the importance of price markup shocks. These differences are again more significant at medium
and long-run horizons.

Similar differences in the importance assigned to different structural shocks can be observed with
respect to the other variables in the model. One property that all estimates have in common is
that ”demand” shocks, such as government spending, risk premium, or investment-specific shocks,
are the main driving forces behind the fluctuations in output in a short run. According to both
the Bayesian and ML estimates, these shocks 50% to 70% of the forecast error variance of output
at horizons of 1 to 4 quarters. On the other hand, at medium to long-run, ”supply” shocks -
productivity, price and particularly wage markup shocks, are the main driving forces behind the
fluctuations in output, explaining between 60% and 80% of the forecast error variance of output
at horizons of 10 years and beyond. These observations were made in Smets and Wouters (2007),
and as our results show, are robust to the method used for estimation.

5 Conclusion

One of the main promises of the rapidly expanding literature on empirical evaluation of DSGE
models, is that we can now estimate micro-founded structural models that until recently had to
be calibrated. However, the extent to which this is of practical use depends crucially on whether
the estimated parameters are well identified. In this paper we developed a new methodology that
can be used to address these questions - are the parameters identified, how strong is identification,
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are the identification problems inherent in the structure of the model, or due to data deficiencies -
for any linearized DSGE model. We then applied this methodology to study the identifiability of
parameters in a state-of-the-art monetary DSGE model, that is generally regarded as one of the
success stories of the empirical DSGE literature. We found that the parameters of the model are
poorly identifiable in much of the parameter space. In addition, our results suggest that the problem
is to a large extent inherent in the structure of the model. Thus, it is likely that other models in
the empirical DSGE literature, that share features of the model we considered, also suffer from
weak parameter identifiability. We showed how parameter confoundedness can be detected and
possibly alleviated by reparametrization. In our model this improved, but unfortunately did not
fully solved the identification problem. Estimating the model with maximum likelihood methods, we
found substantial differences in the parameter estimates compared to those obtained with Bayesian
methods. We attribute those differences to the the use of priors in the latter.

Are these differences important? The answer of this question depends on the purpose of estimat-
ing the model in the first place. For instance, using estimated DSGE models solely for forecasting
purposes does not require knowledge of the values of behavioral or technology parameters. Sim-
ilarly, if the estimated model is used to conduct impulse response and variance decomposition
analysis, then the strength of parameter identification is not that important. We saw evidence to
that effect in the last section, where quite different parameter values often implied very similar,
and even identical impulse response functions, or variance decomposition results. This should not
be surprising, as by definition weak local identification means that different deep parameters imply
very similar reduced-form dynamics. However, when estimated DSGE models are used of policy
analysis, such as designing optimal monetary policy, the values of the deep parameters may be
of crucial importance. This is because for the purpose of such analysis one needs to work with
non-linear versions of the model, for which the implications of different parameter values are likely
to be stronger than in the linearized version of the model.

Our results may cause one to seriously doubt the validity of parameter estimates reported in
some of the empirical DSGE literature. For instance, in their empirical comparison of the US
and Euro area business cycles, Smets and Wouters (2005) conclude that the structures of the two
economies are very similar, and have not changed much over time. Since the model they estimate
is similar to the one in this paper, these findings may be explained with the fact that they use the
same prior distributions for both economic areas, and the different sample periods. Of course, if
the priors are chosen so that they truly reflect the researcher’s a priori beliefs for the parameters of
interest, weak identification is not an issue, as long as care is taken to sample from the true posterior
distribution. We believe, however, that even when this is the case, conducting and reporting the
results of identification analysis as described here, would help in the communication of one’s finding
to a broader audience, who may not hold the same subjective beliefs as the authors. Providing
such information would help the reader assess the relative importance of the data and the priors,
and let her judge for herself the credibility of the reported estimates.

Given the increasing popularity of empirical DSGE analysis, one may wonder whether the
problems we have discussed in this paper are specific to our model, or endemic, as the analysis in
Beyer and Farmer (2004) may lead one to believe. To partially answer this question, we carried out
the identification analysis described in section 3.3 for three other DSGE models - a prototypical
three-equations New Keynesian model, a standard one-sector stochastic growth model, and a two-
country monetary New Open Economy model. The first two are stripped-down versions of our main
model, focusing on features that are important in the New Keynesian and the RBC economics,
respectively. The third one is an example of a model which is comparable, in terms of size and
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number of parameters, to our model, but simpler in terms of structural features. More information
on the models, and the results from the identification analysis is provided in the Appendix. We
find that parameter identification in these models, is much stronger than in the large scale New
Keynesian model adopted in this paper. Thus the problem with identification is not generic, and
should be addressed for each DSGE model separately.

One way to deal with the identification problems, when such are detected, is to re-parameterize
the structural model and estimate parameters that are well identified. This would be an useful
approach in situations where the values of the individual deep parameters are not of primary
interest, and estimating functions of such parameters is also acceptable. If, for instance, the DSGE
model is used for forecasting or to study the dynamic responses of economic variables to structural
shocks, this can be accomplished without estimating deep parameters. Moreover, in such situations
many of the cross-equation restrictions imposed when the deep parameters are estimated, can be
relaxed, thus making the results robust to larger classes of models. Another possible solution is to
work with higher order approximations instead of linearized models. McManus (1992) proves that
identification failures are much rearer in non-linear than in linear models, and argues that using
linear approximations is a major cause for poor parameter identifiability in econometrics. Although
the estimation of non-linear DSGE models is computationally much more demanding, recent work
by Rubio-Ramirez and Fernandez-Villaverde (2005), An (2005), and Amisano and Tristani (2006)
have shown how it could be accomplished. However, the procedures for studying identification
proposed here cannot be applied to non-linear models. The development of appropriate methods
is left for future work. Another question suggested by the findings in this paper, is whether the
difficulties with identification of some of the preference parameters is specific to our model as a
whole, or would arise in any model with the same specification of the consumer preferences. This
is also left for future investigation.
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A Case Study: Identification
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Figure A.1: Distributions of the draws of parameters used in the identification analysis.
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Table A.1: Prior Distribution of 8

Prior
Parameter Distr. Mean Stdd.
« N 0.300 0.050
P B 0.500 0.150
@ N 4.000 1.500
Oc N 1.500 0.375
h B 0.700 0.100
100(87' = 1) g 0.250 0.100
(0] N 1.250 0.125
Lw B 0.500 0.150
w B 0.500 0.100
lp B 0.500 0.150
ép B 0.500 0.100
ez} N 2.000 0.750
Tr N 1.500 0.250
Ay N 0.125 0.050
Ty N 0.125 0.050
p B 0.750 0.100
0 N 0.400 0.100
o B 0.025 0.005
Aw N 1.500 0.250
Gy N 0.180 0.050
Pga B 0.500 0.250
Pa B 0.500 0.200
Db B 0.500 0.200
Pg B 0.500 0.200
pI B 0.500 0.200
Pr B 0.500 0.200
Pp B 0.500 0.200
Pw B 0.500 0.200
L B 0.500 0.200
I B 0.500 0.200
Oa g 0.100 2.000
op G 0.100 2.000
og g 0.100 2.000
or g 0.100 2.000
or G 0.100 2.000
op g 0.100 2.000
Ow g 0.100 2.000

Note:N is Normal distribution, B is Beta-distribution, G is Gamma distribution,
7G is Inverse Gamma distribution. The inverse Gamma priors are in the form
plo;v,s) x o~ V™1 exp_”s2/2‘72
Stdd. column respectively.

; s and v are given in the Mean column and
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Table A.2: Admissability of draws

Param. Non-existence Indeterminacy Admissible

1 0.30% 3.20% 96.50%
2 0.10% 2.00% 97.90%
3 0.30% 3.10% 96.60%
4 0.20% 3.40% 96.40%
5 0.10% 4.10% 95.80%
6 0.20% 2.40% 97.40%

Note: The total number of draws is 1,000, 000.

Table A.3: Conditioning of H for different parameterizations.

Param. Decile of cond(H)

min 1 2 3 4 5 6 7 8 9 max

6.4e1 2.2e2 2.9e2 3.Te2 4.7¢2 6.0e2 7.9e2 1.1e3 1.6e3 3.2e3 3.lell
4.8¢l 2.0e2 2.8e2 3.6e2 4.5e2 58e2 7.6e2 1.0e3 1.6e3 3.1le3 2.9ell
4.3el  1.5e2 1.9e2 2.3e2 2.8e2 3.4e2 4.2e2 54e2 7.3e2 1.2e3 2.8e8
6.4e1 2.1e2 2.8e2 3.6e2 4.6e2 59e2 7.7e2 1.1e3 1.6e3 3.1e3 3.0ell
7.0el 282 3.9e2 4.9e2 6.1le2 T7.4e2 9.1e2 1.1e3 1.5e3 2.1e3 2.8e8
6 3.4el  1.3e2 1.7¢2 2.1e2 2.5e2 3.1e2 3.8¢2 4.9e2 6.6e2 1.1le3  2.8e8

QU W N~

Note: H = % is the gradient of the reduced-form parameters w.r.t. 8. rank(H) = dim(6) is a necessary
condition for identification of #. Large values of cond(H) imply near failure of this condition, thus
indicating weak identification. The statistics were computed on the basis of 1,000,000 random draws of

0.

Table A.4: Conditioning of H'H for different parameterizations.

Param. Decile of cond(H'H)
min 1 2 3 4 5 6 7 8 9 max
1 4.1e3 4.8e4 8.6e4 1.4eb 2.2¢5 3.7eb 6.2¢d 1.2e6 2.6e6 1.0e7 9.5e22
2 2.3e3 4.1ed T.6ed 1.3ed 2.1edb 3.4edb 58eb 1l.le6 2.4e6 9.4e6 8.5e22
3 1.8e3 2.2e4 3.6e4 5.5e4 8.0ed 1.2e5 1.8e5 2.9e5 5.3eb 1.4e6 7.6eld
4 4.1e3 4.5e4 8.1le4 1.3e5 2.1e5 3.5edb 6.0e5 1.1e6 2.5e6 9.6e6 9.0e22
5 4.9e3 8.0e4 1.5ed 2.4eb 3.7ed 5H.5eb 8.3ed  1.3e6 2.2e6 4.5e6 7.6eld

6 1.2e3 1.6e4 2.7ed 4.2e4 6.3ed 9.4ed 1.4e5 2.4ed5 4.4e5 1.1e6 7.6elb

Note: cond(Jg) = cond(H'H) if J; is perfectly well conditioned. Thus cond(H’H) can be thought of as
the unattainable lower bound for cond(Jy).
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Table A.5: Conditioning of Jy for different parameterizations

Param. Decile of cond(Jy)
min 1 2 3 4 5 6 7 8 9 max
1 4.2e5 1.6e6 2.1e6 4.9e6 8.1le6 1.8e7 5.0e7 6.4e8 2.3e9 2.2e10 4.4e24
2 2.7ed 4.7e5 1.3e6 2.9e6 3.3e6 3.7e6 4.9e7 3.5e8 2.2¢9 2.1el0 4.1e25
3 1.8e5 1.6e6 1.9e6 2.6e6 4.5e6 1.2e7 1.6e7 4.4e8 1.1e9 2.2e10 1.8el4
4 4.1e5 1.4e6 2.1e6 4.6e6 7.1le6 1.8e7 4.9e7 6.1e8 2.3e9 2.2e10 2.8e24
5 4.3ed T7.6ed 1.3e6 1.5e6 1.8¢6 2.0e6 1.5e7 2.8e8 1.0e9 2.1el0 1.6el4

6 1.0e5 4.2e5 1.1e6 1.5e6 1.8e6 2.0e6 1.4e7 1.9e8 1.0e9 2.1el0 1.6el4

Note: Jp = H’J;H is the information matrix for 6. rank(Jg) = dim(0) is a necessary and sufficient
condition for identification of 8. Large values of cond(Jy) imply near failure of this condition, thus
indicating weak identification. These statistics were computed on the basis of 1,000 random draws of 6.

Table A.6: Cross-correlations

Aw B Hp P oc h @ Ew ol T P Pb pI
a 77 98 -54 -83 82 -84 -75 -82 -92 94 8 -74 89
P -97 -94 .85 1 -98 99 97 .98 93 -97 -97 59 -94
o .99 89 -87 -98 1 -99 -95 -99 -93 96 .98 -56 .94
h -99 -91 84 .99 -99 1 .94 .99 95 -97 -97 59 -93
£w -99 -89 .86 .98 -99 .99 .95 1 93 -96 -97 .58 -.93
& 96 .87 -8 -97 95 -95 -99 -95 -8 90 .92 -55 .87
r= .93 97 -75 -97 .96 -97 -89 -96 -97 1 98 -67 .97
p 97 92 -8 -97 98 -97 -92 -97 -93 .98 1 -58 .97
pr .92 92 -77 -94 94 -93 -8 -93 -92 97 .97 -57 1
op 50 .69 -24 -57 54 -57 -48 -56 -66 .64 .56 -99 .55
or -91 -94 73 94 -94 94 84 .94 97 -99 -97 63 -.99
op -95 -71 .98 .90 -93 90 .92 .93 77 -82 -89 .35 -.82

ow -99 -.86 .90 97  -99 .98 .94 .99 92 -94 -97 53 -.92

Note: Pairwise correlation coefficients corr(éi, éj) exceeding .95 in absolute value. The values are
obtained by inverting and normalizing the information matrix evaluated at € for which the
condition number of the matrix is equal to the 7-th percentile from Table A.3. High correlation
between the estimates of two deep parameters indicates that they are difficult to identify.
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Table A.7: Percent error in diag(V (d)) for 1% error in diag(J(6))

Param. Decile of Jy

min 1 2 3 4 5 6 7 8 9
4 93.6 202.2 -136.8 -294.9 355.7 -96.8 266.6 2245.6 49.3 -236.7
Aw 102.6 218.2 97.3 211.3 -132.5 -173.0 -265.0 -177.6 62.4 -56.2
9y 0.4 9.1 -495.3 -56.6 49.6  -587.8 159.5 -23.8 1308.6 1530.8
Pga -19.7  -123.8 -57.8 -34.1 -17.1 22.6 9.2 -16.9 -32.8 -12.3
3 65.5 54.9 -138.4 -736.3 68.6 -225.4 90.2 569.2 -58.5 -89.8
Haw -11.3 28.5 2.8 6.7 23.7 -7.5 -25.1 -23.2 -34.7 -324.4
Hp 18.8 89.3 114.5  -539.5 7.1 -76.6 -68.8 -14.0 128.0 -119.6
o -39.2  -369.0 69.1 -135.4 -31.2 -116.3 81.2 -27.5 -141.0 -234.6
P 52.8 54.0 -64.4 -75.5 -46.8 -13.5 203.6 -30.3  -1471.1 521.7
@ 66.7 65.9 56.0 -98.7 -35.9 -633.6 -164.0 -992.9 291.9  -1407.6
oc -40.2 -47.7 107.7 171.4  -1720.9 -176.7 127.8 203.4 199.3 156.9
h 163.7 -60.5 -42.8 83.9 36.6  1920.0 179.5 61.9 107.0 -136.9
P 160.5 -63.2 388.8 509.4 -119.7 1251.6 2346.8 185.1 -113.1 144.4
Lw -9.3 6.8 -382.7  -2314 -34.5 654.0 -123.2 -361.7 109.0 -112.5
Ew 319.4 153.1  -1231.1 187.7 59.1 159.9 104.6 327.6 310.5 -150.1
lp 99.3 309.5 178.8 549.4 612.1 57.7 -180.6 24.1 -88.5 -69.0
&p -67.0 59.4 -122.4 172.9 89.2 78.1 -68.2 -78.9 -81.0 -76.3
o] -144.1 134.3 -128.9  1450.5 73.7 30.9 -241.8 41.5 -114.9 123.9
T 77.6 -1394 337.8 102.2 -61.3 -872.6 138.7 -256.9  -9506.0 -4013.2
TAy -118.2 32.0 -48.8 24.9 -86.9 -24.1 -171.3  -4639.8 72.8 -38.5
Ty 71.7 -50.7 143.9 41.8 -216.4 -98.2 84.0 113.2 -198.2 -167.6
p -70.4 108.5 396.0 625.5 -121.6 289.8  -2027.8 97.0 -149.8 -408.1
Pa -36.7 -22.4 772.4 461.4 0.4 -32.5 8.9 -12.5 -29.7 -19.4
Pb -0.8 90.4 -69.7  -233.8 -204.0 -37.4 -90.3 957.3 118.8 179.8
Pg 0.8 1.4 0.8 14.5 -4.3 -4.7 38.5 -4.3 38.4 -20.2
133 -0.6 -87.2 -38.1 2.8 1.4 -179.7 214.4 43.1 12.3 -35.1
pr 6.4 -182.2 55  -189.0 1306.1 -78.6 -183.6 -86.1 68.0 11.1
Pp -5.1 1.8 -4.2 748.3 -8.4 -2.9 -227.3 -7.2 -7.7 -21.0
Pw -1.2 -0.4 58.0 -9.5 3.4 2.8 -2.8 63.1 -2.3 136.8
oq -88.9 -70.7 79.8 101.0 39.8 119.0 67.2 17.2 999.0 -348.2
op -5.9 -70.8 149.8  -148.7 76.2 60.1 268.5 -34.9 173.3 107.3
og -63.9 14.3 7.5 13.0 34.5 -24.8  -1221.2 14.2 -27.0 -28.7
or 1.0 -15.1 -58.5 -11.4 -27.8 34.8 -234.5 35.2 -14.5  10550.7
or -167.0 -41.1 3.4 -191.1 -57.3  1022.8 154.5 -162.7 -646.0 -656.9
op 19.7 50.0 167.8 -227.5 -14.6 117.5 173.0 12.5 42.2 25.4
ow -0.2 -8.6 7.6 -168.3 -12.0 -24.0 -256.9 128.7 25.6 -44.8

cond(Jp) 4.2e5 1.6e6 2.1e6 4.9e6 8.1e6 1.8e7 5.0e7 6.4e8 2.3e9 2.2e10

Note:

34



B Identification: Three Alternative Models

Table B.1: Conditioning of H for 3 different DSGE models

model Decile

min 1 2 3 4 5 6 7 8 9 10
New Keynesian 82 228 281 332 387 45.1 52.7 62.7 77.1 103.4  8.7e2
RBC 4.9 17.5 23.7 30.1 36.7 44.1 53.5 68.1 95.7 177.7  4.0e8
NOE (2 country) 12.3 41.3 522 629 750 89.6 1089 137.0 1854 303.5 1.lel0
Note:H = &7

5o 1s the gradient of the reduced-form parameters w.r.t. 6. rank(H) = dim(6) is a necessary condition
for identification of 6. Large values of cond(H) imply near failure of this condition, thus indicating weak
identification. The statistics were computed on the basis of 1,000,000 random draws of 6.
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C Monte Carlo Study: Small Example

Structural Model
Loye = DBy + Tiye—1 + Ty, (C.1)

where y is univariate and
To=(1+9), Ti=0+7+7%/2), Ta=0-7-7"/2), Tz=¢
Parameters: §, 7.

The reduced form solution is:

Y = Ays—1 + Bey (C.2)
where A and B can be calculated by hand:
_ W =24 o 20
24 2y+9% T 2+ 27492

Identification problems ¢ and ~ are difficult to identify separately when v &~ 0. One way to
see that is by computing H given by

98
95 5 0 2e772/(2+ 27 +~%)?

o l 24 % ] _ { 2/2 427 +72)  —4(1+)(1+8)/(2+ 27 +~2)?

When « =~ 0 the columns of H are almost collinear, which implies that, locally, the effect on A
and B of perturbing § is very similar to that of perturbing ~. Since the likelihood function depends
on the parameters only through A and B, this implies that they are poorly identified for v = 0.
For instance, if § = .25 and « = .01, the condition number of H is 51247. If § = 3.6 and v = 1.4,
on the other hand, the condition number of H is 11.

We can also see why the problem arises directly, by realizing that § and ~ only enter the

2 ~
likelihood function as either f = % org= 11/6 (we can write A = %, and B = %) When
v =0, f and g are very similar, which make it difficult to separate § from ~.

Table C.1: Condition number and finite sample properties of MLE: Example

Relative Bias Relative MSE
Parameter 1 2 3 4 5 1 2 3 4 )
) -0.3 0.6 1.0 1.0 1.1 1.0 2.7 3.2 3.3 3.5
vy -0.5  -0.6 1.4 125  68.7 0.9 3.9 37.8 376.2 766.8
cond(H) 2.6el b5.1e2 b5.led 5.1le6 2.0e7 || 2.6el 5.1e2 5.1led 5.le6 2.0e7

Note: Results from Monte Carlo study with 1000 repetitions.
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D Estimation

Table D.1: Parameter Bounds

Parameter lower bounds  upper bounds
) 2.000 15.000
oc 0.250 3.000
h 0.001 0.990
Sw 0.300 0.950
oy 0.250 10.000
&p 0.500 0.950
Lw 0.010 0.990
Lp 0.010 0.990
P 0.010 1.000
P 1.000 3.000
= 1.000 3.000
p 0.500 0.975
Ty 0.001 0.500
Ay 0.001 0.500
T 0.100 2.000
1008~ — 1) 0.010 2.000
l -10.000 10.000
o' 0.100 0.800
e 0.010 1.000
é 0.010 0.400
Aw 1.000 2.000
gy 0.150 0.300
Pa 0.010 1.000
Pb 0.010 1.000
Py 0.010 1.000
PI 0.010 1.000
pr 0.010 1.000
Pp 0.010 1.000
Pw 0.001 1.000
Pya 0.010 2.000
Haw 0.010 1.000
Ip 0.010 1.000
Oa 0.010 3.000
op 0.025 5.000
og 0.010 3.000
or 0.010 3.000
or 0.010 3.000
op 0.010 3.000
ow 0.010 3.000
Note:
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Table D.2: Estimation Results: MLE

Structural Shock processes
1966-2004  1966-1979  1984-2004 1966-2004  1966-1979  1984-2004

%) 7.924 2.000 15.00 Pa 0.972 0.993 0.977
Oc 1.680 1.193 1.617 Pb 0.124 0.614 0.092
h 0.724 0.533 0.703 Pg 0.976 0.925 0.965
Ew 0.853 0.743 0.950 pr 0.690 0.474 0.678
oy 2.883 1.606 2.466 Pr 0.010 0.069 0.187
& 0.669 0.637 0.786 Pp 0.939 0.827 0.926
L 0.789 0.836 0.438 Pw 0.980 0.995 0.656
Lp 0.010 0.220 0.010 Pga 0.510 0.615 0.323
P 0.748 0.185 1.000 Hw 0.967 0.971 0.554
P 1.812 1.352 1.627 Lp 0.755 0.988 0.832
Tr 3.000 3.000 2.600 Oa 0.433 0.613 0.369
p 0.889 0.902 0.878 ob 0.257 0.201 0.203
Ty 0.186 0.412 0.090 Og 0.514 0.496 0.385
Ay 0.275 0.284 0.211 or 0.463 0.575 0.351
T 1.004 1.321 0.782 or 0.228 0.210 0.120
100(% -1) 0.010 0.010 0.016 Op 0.122 0.268 0.116
] -0.692 -1.414 -2.276 Ow 0.273 0.245 0.239
y 0.408 0.318 0.364

@ 0.199 0.168 0.187

0 0.021 0.016 0.022

Aw 1.768 1.545 1.526

gy 0.300 0.300 0.299

Log L: -814.1 -301.3 -299.6 -814.1 -301.3 -299.6
cond(Jp): 6.0e7 1.8e9 4.2e8 6.0e7 1.8e9 4.2e8

Note: 6, Aw, and gy are estimated

38



E Impulse responses
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Figure E.2: Impulse Responses to a productivity shock
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Risk premium shock
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Figure E.3: Impulse Responses to risk premium shock
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Figure E.4: Impulse Responses to exogenous spending shock

40



Investment shock
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Figure E.5: Impulse Responses to investment shock
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Figure E.6: Impulse Responses to monetary policy shock
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Price markup shock
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Figure E.7: Impulse Responses to price markup shock
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Figure E.8: Impulse Responses to wage markup shock
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F Variance Decompositions

Table F.1: Variance Decomposition: Bayesian 1966:1-2004:4

product- risk exog. invest- monetary price wage

qrt ivity premium spend. ment policy markup markup
1 Output 0.164 0.264 0.363 0.136 0.053 0.019 0.002
Consumption 0.022 0.817 0.011 0.002 0.112 0.012 0.024
Investment 0.033 0.037 0.004 0.879 0.026 0.019 0.002
Hours 0.234 0.239 0.337 0.123 0.047 0.007 0.014
Inflation 0.036 0.004 0.002 0.014 0.019 0.725 0.199
Wages 0.018 0.007 0.000 0.003 0.004 0.292 0.676
interest rate 0.077 0.204 0.014 0.020 0.583 0.075 0.027
2 Output 0.193 0.210 0.274 0.200 0.077 0.035 0.011
Consumption 0.047 0.671 0.022 0.001 0.169 0.030 0.060
Investment 0.043 0.020 0.006 0.877 0.027 0.025 0.004
Hours 0.172 0.215 0.292 0.193 0.077 0.021 0.031
Inflation 0.047 0.006 0.004 0.022 0.030 0.597 0.295
‘Wages 0.031 0.009 0.000 0.010 0.011 0.297 0.642
interest rate 0.106 0.190 0.020 0.052 0.477 0.100 0.055
4 Output 0.242 0.124 0.179 0.250 0.093 0.067 0.044
Consumption 0.097 0.413 0.043 0.001 0.207 0.072 0.167
Investment 0.063 0.009 0.008 0.846 0.026 0.038 0.010
Hours 0.101 0.151 0.231 0.262 0.108 0.056 0.091
Inflation 0.052 0.007 0.005 0.031 0.042 0.464 0.399
‘Wages 0.056 0.011 0.001 0.026 0.022 0.330 0.555
interest rate 0.132 0.152 0.026 0.129 0.327 0.115 0.118
10 Output 0.312 0.046 0.088 0.196 0.064 0.111 0.183
Consumption 0.144 0.124 0.064 0.010 0.112 0.111 0.435
Investment 0.126 0.004 0.019 0.709 0.021 0.069 0.052
Hours 0.044 0.069 0.145 0.202 0.086 0.114 0.341
Inflation 0.046 0.007 0.006 0.037 0.053 0.346 0.505
Wages 0.126 0.008 0.000 0.059 0.032 0.407 0.368
interest rate 0.119 0.103 0.028 0.224 0.204 0.093 0.230
40 Output 0.308 0.018 0.045 0.089 0.026 0.071 0.443
Consumption 0.116 0.030 0.078 0.034 0.029 0.052 0.661
Investment 0.196 0.002 0.045 0.472 0.014 0.069 0.201
Hours 0.021 0.029 0.096 0.092 0.037 0.067 0.659
Inflation 0.041 0.006 0.008 0.035 0.048 0.298 0.564
Wages 0.291 0.004 0.004 0.072 0.022 0.398 0.208
interest rate 0.105 0.084 0.033 0.206 0.168 0.077 0.327
100  Output 0.295 0.016 0.042 0.079 0.023 0.063 0.482
Consumption 0.105 0.023 0.090 0.032 0.022 0.042 0.686
Investment 0.192 0.002 0.051 0.456 0.013 0.066 0.219
Hours 0.020 0.026 0.105 0.086 0.034 0.062 0.668
Inflation 0.040 0.006 0.010 0.034 0.046 0.285 0.579
Wages 0.314 0.004 0.010 0.072 0.021 0.377 0.202
interest rate 0.104 0.077 0.039 0.194 0.154 0.071 0.361

Note: Based on the posterior mode of 6 reported in Smets and Wouters (2007). § = .025,

Aw = 1.5 and gy = .18 are fixed.
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Table F.2: Variance Decomposition: MLE1 1966:1-2004:4

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup markup
1 Output 0.150 0.252 0.393 0.151 0.039 0.012 0.002
Consumption 0.037 0.828 0.015 0.000 0.090 0.010 0.020
Investment 0.025 0.022 0.004 0.918 0.017 0.014 0.000
Hours 0.344 0.195 0.304 0.116 0.030 0.005 0.006
Inflation 0.041 0.001 0.002 0.001 0.006 0.769 0.180
Wages 0.018 0.000 0.000 0.001 0.000 0.283 0.698
interest rate 0.091 0.193 0.021 0.021 0.593 0.064 0.017
2 Output 0.183 0.194 0.296 0.235 0.061 0.025 0.007
Consumption 0.079 0.669 0.031 0.003 0.145 0.027 0.046
Investment 0.033 0.011 0.005 0.913 0.018 0.019 0.000
Hours 0.277 0.176 0.273 0.188 0.055 0.016 0.014
Inflation 0.052 0.001 0.002 0.001 0.009 0.694 0.241
Wages 0.025 0.000 0.000 0.005 0.001 0.260 0.709
interest rate 0.130 0.181 0.030 0.052 0.484 0.089 0.033
4 Output 0.234 0.109 0.186 0.312 0.080 0.056 0.024
Consumption 0.157 0.387 0.056 0.021 0.192 0.074 0.112
Investment 0.049 0.005 0.007 0.884 0.020 0.033 0.001
Hours 0.186 0.128 0.224 0.278 0.091 0.052 0.041
Inflation 0.058 0.001 0.003 0.002 0.012 0.622 0.303
Wages 0.039 0.001 0.000 0.014 0.003 0.291 0.652
interest rate 0.162 0.142 0.036 0.125 0.345 0.124 0.067
10  Output 0.312 0.037 0.081 0.276 0.067 0.138 0.090
Consumption 0.225 0.101 0.073 0.070 0.120 0.161 0.250
Investment 0.110 0.002 0.015 0.752 0.022 0.090 0.009
Hours 0.083 0.062 0.145 0.257 0.101 0.177 0.176
Inflation 0.059 0.001 0.004 0.001 0.015 0.528 0.391
Wages 0.083 0.001 0.000 0.041 0.010 0.416 0.449
interest rate 0.156 0.093 0.034 0.207 0.214 0.146 0.149
40  Output 0.370 0.012 0.031 0.130 0.027 0.152 0.278
Consumption 0.222 0.020 0.085 0.077 0.031 0.133 0.431
Investment 0.234 0.001 0.040 0.476 0.016 0.156 0.078
Hours 0.036 0.025 0.089 0.115 0.047 0.178 0.509
Inflation 0.052 0.001 0.006 0.003 0.015 0.432 0.491
Wages 0.219 0.001 0.004 0.057 0.009 0.540 0.171
interest rate 0.142 0.071 0.039 0.186 0.166 0.124 0.271
100  Output 0.371 0.010 0.026 0.110 0.022 0.130 0.330
Consumption 0.215 0.015 0.104 0.064 0.023 0.105 0.473
Investment 0.240 0.001 0.049 0.453 0.015 0.149 0.094
Hours 0.039 0.022 0.097 0.105 0.041 0.158 0.539
Inflation 0.052 0.001 0.008 0.004 0.014 0.406 0.516
Wages 0.275 0.001 0.011 0.055 0.008 0.504 0.147
interest rate 0.145 0.063 0.048 0.172 0.146 0.116 0.311

Note: § =.025, Ay, = 1.5 and gy = .18 are fixed.
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Table F.3: Variance Decomposition: MLE2 1966:1-2004:4

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup markup
1 Output 0.176 0.255 0.361 0.165 0.033 0.010 0.001
Consumption 0.032 0.863 0.011 0.000 0.075 0.006 0.013
Investment 0.027 0.023 0.006 0.918 0.015 0.012 0.000
Hours 0.303 0.215 0.306 0.138 0.028 0.004 0.005
Inflation 0.041 0.001 0.001 0.001 0.007 0.762 0.187
Wages 0.020 0.000 0.000 0.001 0.000 0.280 0.698
interest rate 0.091 0.239 0.023 0.023 0.542 0.061 0.020
2 Output 0.209 0.194 0.271 0.249 0.052 0.020 0.004
Consumption 0.073 0.723 0.024 0.001 0.128 0.018 0.033
Investment 0.035 0.011 0.007 0.914 0.016 0.017 0.000
Hours 0.240 0.192 0.273 0.217 0.051 0.013 0.012
Inflation 0.051 0.001 0.002 0.001 0.010 0.685 0.250
Wages 0.028 0.000 0.000 0.005 0.001 0.255 0.712
interest rate 0.129 0.222 0.033 0.058 0.435 0.086 0.037
4 Output 0.265 0.109 0.170 0.320 0.071 0.046 0.018
Consumption 0.162 0.441 0.049 0.013 0.185 0.058 0.092
Investment 0.053 0.004 0.011 0.884 0.018 0.029 0.001
Hours 0.158 0.139 0.224 0.310 0.088 0.045 0.037
Inflation 0.056 0.001 0.002 0.001 0.014 0.613 0.313
Wages 0.046 0.001 0.000 0.014 0.003 0.279 0.657
interest rate 0.157 0.172 0.040 0.138 0.303 0.117 0.073
10  Output 0.359 0.038 0.073 0.268 0.062 0.119 0.081
Consumption 0.254 0.117 0.071 0.057 0.123 0.143 0.235
Investment 0.120 0.002 0.023 0.749 0.019 0.077 0.011
Hours 0.074 0.069 0.146 0.271 0.103 0.163 0.175
Inflation 0.055 0.001 0.003 0.001 0.018 0.518 0.404
Wages 0.103 0.001 0.000 0.041 0.010 0.389 0.456
interest rate 0.147 0.114 0.038 0.228 0.187 0.134 0.153
40  Output 0.426 0.012 0.027 0.126 0.025 0.123 0.260
Consumption 0.252 0.023 0.084 0.073 0.031 0.110 0.426
Investment 0.252 0.001 0.057 0.488 0.014 0.119 0.070
Hours 0.036 0.028 0.087 0.123 0.049 0.158 0.520
Inflation 0.047 0.001 0.004 0.002 0.017 0.423 0.505
Wages 0.279 0.000 0.006 0.060 0.009 0.468 0.178
interest rate 0.130 0.091 0.040 0.207 0.151 0.114 0.267
100  Output 0.424 0.010 0.022 0.106 0.021 0.103 0.314
Consumption 0.248 0.017 0.097 0.062 0.023 0.083 0.472
Investment 0.262 0.001 0.066 0.459 0.013 0.113 0.086
Hours 0.039 0.024 0.089 0.109 0.042 0.138 0.559
Inflation 0.045 0.001 0.005 0.003 0.016 0.394 0.537
Wages 0.350 0.000 0.015 0.058 0.008 0.418 0.151
interest rate 0.131 0.081 0.045 0.191 0.135 0.105 0.310

Note: d, Aw, and gy are estimated.
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Table F.4: Variance Decomposition: Bayesian 1966:1-1979:2

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup  markup
1 Output 0.279 0.265 0.300 0.091 0.049 0.013 0.002
Consumption 0.086 0.792 0.000 0.001 0.110 0.011 0.000
Investment 0.061 0.083 0.020 0.794 0.034 0.008 0.000
Hours 0.141 0.315 0.370 0.111 0.057 0.005 0.001
Inflation 0.072 0.011 0.004 0.008 0.022 0.644 0.240
Wages 0.106 0.023 0.002 0.003 0.009 0.359 0.499
interest rate 0.114 0.342 0.038 0.018 0.345 0.068 0.075
2 Output 0.336 0.240 0.218 0.119 0.068 0.019 0.001
Consumption 0.155 0.676 0.001 0.001 0.143 0.021 0.003
Investment 0.088 0.057 0.028 0.779 0.036 0.010 0.002
Hours 0.091 0.328 0.312 0.161 0.091 0.013 0.004
Inflation 0.097 0.017 0.007 0.014 0.038 0.427 0.401
Wages 0.204 0.030 0.003 0.006 0.016 0.283 0.458
interest rate 0.129 0.338 0.046 0.040 0.247 0.063 0.139
4 Output 0.457 0.161 0.140 0.129 0.076 0.024 0.012
Consumption 0.312 0.457 0.005 0.001 0.158 0.034 0.033
Investment 0.154 0.031 0.044 0.713 0.035 0.011 0.012
Hours 0.055 0.279 0.259 0.212 0.128 0.027 0.039
Inflation 0.092 0.020 0.008 0.019 0.053 0.257 0.551
Wages 0.382 0.029 0.003 0.012 0.025 0.185 0.363
interest rate 0.132 0.280 0.051 0.079 0.144 0.041 0.274
10 Output 0.622 0.068 0.064 0.078 0.045 0.015 0.109
Consumption 0.503 0.173 0.013 0.000 0.081 0.020 0.209
Investment 0.329 0.013 0.079 0.468 0.022 0.007 0.081
Hours 0.054 0.165 0.170 0.163 0.101 0.024 0.322
Inflation 0.066 0.015 0.008 0.018 0.055 0.181 0.657
Wages 0.682 0.014 0.001 0.015 0.020 0.080 0.187
interest rate 0.096 0.180 0.044 0.098 0.086 0.026 0.471
40  Output 0.659 0.032 0.031 0.037 0.021 0.007 0.212
Consumption 0.553 0.059 0.014 0.008 0.028 0.007 0.330
Investment 0.528 0.006 0.066 0.223 0.010 0.003 0.163
Hours 0.043 0.092 0.100 0.096 0.057 0.014 0.599
Inflation 0.056 0.012 0.007 0.015 0.044 0.146 0.720
Wages 0.874 0.005 0.002 0.010 0.008 0.030 0.071
interest rate 0.080 0.132 0.034 0.076 0.064 0.019 0.594
100  Output 0.670 0.029 0.028 0.034 0.019 0.006 0.212
Consumption 0.600 0.044 0.013 0.009 0.021 0.005 0.308
Investment 0.563 0.006 0.059 0.199 0.009 0.003 0.160
Hours 0.078 0.086 0.095 0.091 0.053 0.013 0.584
Inflation 0.060 0.012 0.007 0.015 0.042 0.140 0.725
Wages 0.895 0.004 0.002 0.009 0.006 0.024 0.060
interest rate 0.098 0.122 0.033 0.071 0.059 0.018 0.600

Note: Based on the posterior mode of 6 reported in Smets and Wouters (2007). & = .025, A\, = 1.5 and
gy = .18 are fixed.
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Table F.5: Variance Decomposition: MLE1 1966:1-1979:2

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup markup
1 Output 0.403 0.252 0.225 0.037 0.068 0.014 0.001
Consumption 0.267 0.562 0.011 0.005 0.120 0.032 0.004
Investment 0.039 0.166 0.041 0.660 0.084 0.001 0.008
Hours 0.102 0.380 0.345 0.057 0.102 0.013 0.001
Inflation 0.160 0.006 0.001 0.000 0.033 0.421 0.379
Wages 0.188 0.007 0.000 0.000 0.001 0.121 0.683
interest rate 0.089 0.527 0.030 0.004 0.299 0.000 0.050
2 Output 0.473 0.239 0.152 0.040 0.085 0.009 0.001
Consumption 0.371 0.449 0.015 0.005 0.123 0.026 0.012
Investment 0.065 0.150 0.058 0.616 0.102 0.001 0.007
Hours 0.057 0.424 0.277 0.072 0.151 0.015 0.004
Inflation 0.151 0.006 0.001 0.001 0.039 0.392 0.411
Wages 0.306 0.013 0.000 0.000 0.005 0.108 0.567
interest rate 0.089 0.589 0.032 0.009 0.194 0.008 0.078
4 Output 0.603 0.167 0.093 0.034 0.091 0.005 0.006
Consumption 0.543 0.274 0.018 0.005 0.107 0.013 0.039
Investment 0.134 0.116 0.096 0.516 0.123 0.010 0.004
Hours 0.041 0.396 0.228 0.081 0.213 0.011 0.029
Inflation 0.118 0.006 0.001 0.001 0.043 0.419 0.413
Wages 0.465 0.016 0.001 0.001 0.013 0.129 0.376
interest rate 0.084 0.570 0.032 0.016 0.119 0.038 0.140
10  Output 0.745 0.068 0.040 0.016 0.054 0.027 0.050
Consumption 0.698 0.099 0.015 0.003 0.050 0.015 0.121
Investment 0.336 0.052 0.153 0.274 0.100 0.072 0.014
Hours 0.058 0.245 0.153 0.057 0.186 0.076 0.225
Inflation 0.091 0.005 0.001 0.000 0.052 0.342 0.509
Wages 0.724 0.008 0.000 0.001 0.017 0.101 0.150
interest rate 0.068 0.453 0.028 0.020 0.085 0.053 0.293
40  Output 0.787 0.025 0.015 0.006 0.020 0.015 0.130
Consumption 0.746 0.027 0.007 0.001 0.014 0.006 0.198
Investment 0.636 0.019 0.100 0.099 0.037 0.046 0.064
Hours 0.063 0.109 0.072 0.026 0.083 0.050 0.596
Inflation 0.064 0.003 0.000 0.000 0.039 0.242 0.652
Wages 0.928 0.002 0.000 0.000 0.005 0.032 0.033
interest rate 0.045 0.297 0.019 0.013 0.057 0.037 0.531
100  Output 0.710 0.012 0.007 0.003 0.010 0.007 0.250
Consumption 0.669 0.009 0.003 0.000 0.004 0.002 0.313
Investment 0.749 0.008 0.045 0.044 0.017 0.021 0.116
Hours 0.123 0.038 0.026 0.009 0.029 0.018 0.757
Inflation 0.030 0.002 0.000 0.000 0.018 0.112 0.839
Wages 0.971 0.001 0.000 0.000 0.002 0.013 0.013
interest rate 0.024 0.125 0.008 0.006 0.024 0.016 0.797

Note: § =.025, Ay, = 1.5 and gy = .18 are fixed.

47



Table F.6: Variance Decomposition: MLE2 1966:1-1979:2

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup markup
1 Output 0.434 0.250 0.190 0.047 0.062 0.015 0.001
Consumption 0.275 0.558 0.014 0.007 0.109 0.034 0.004
Investment 0.032 0.180 0.038 0.666 0.078 0.002 0.005
Hours 0.069 0.413 0.319 0.079 0.103 0.016 0.001
Inflation 0.176 0.006 0.001 0.001 0.028 0.410 0.378
Wages 0.191 0.006 0.000 0.000 0.001 0.118 0.685
interest rate 0.095 0.547 0.028 0.007 0.270 0.000 0.052
2 Output 0.498 0.238 0.127 0.050 0.078 0.009 0.001
Consumption 0.380 0.445 0.018 0.008 0.111 0.027 0.012
Investment 0.054 0.166 0.055 0.625 0.094 0.001 0.004
Hours 0.035 0.452 0.248 0.095 0.148 0.016 0.005
Inflation 0.163 0.006 0.001 0.001 0.032 0.400 0.398
Wages 0.307 0.011 0.000 0.001 0.004 0.106 0.571
interest rate 0.092 0.606 0.029 0.013 0.172 0.009 0.078
4 Output 0.621 0.167 0.076 0.041 0.082 0.006 0.006
Consumption 0.552 0.272 0.022 0.007 0.095 0.014 0.038
Investment 0.115 0.133 0.093 0.532 0.117 0.008 0.002
Hours 0.035 0.418 0.199 0.102 0.203 0.012 0.031
Inflation 0.129 0.006 0.001 0.001 0.035 0.429 0.400
Wages 0.467 0.013 0.000 0.001 0.010 0.127 0.381
interest rate 0.084 0.588 0.027 0.022 0.104 0.041 0.134
10  Output 0.758 0.068 0.033 0.019 0.049 0.027 0.046
Consumption 0.710 0.099 0.019 0.003 0.044 0.015 0.110
Investment 0.300 0.064 0.156 0.291 0.097 0.071 0.021
Hours 0.074 0.256 0.133 0.069 0.174 0.076 0.219
Inflation 0.102 0.005 0.001 0.000 0.043 0.358 0.492
Wages 0.725 0.007 0.000 0.001 0.013 0.102 0.151
interest rate 0.069 0.480 0.024 0.025 0.076 0.056 0.271
40  Output 0.807 0.026 0.013 0.007 0.019 0.015 0.113
Consumption 0.773 0.027 0.010 0.002 0.012 0.006 0.170
Investment 0.582 0.024 0.112 0.110 0.038 0.048 0.085
Hours 0.068 0.123 0.070 0.034 0.084 0.054 0.567
Inflation 0.073 0.003 0.000 0.000 0.033 0.259 0.631
Wages 0.929 0.001 0.000 0.000 0.004 0.032 0.032
interest rate 0.049 0.335 0.017 0.018 0.055 0.041 0.486
100  Output 0.794 0.013 0.007 0.004 0.010 0.008 0.165
Consumption 0.772 0.009 0.004 0.001 0.004 0.002 0.208
Investment 0.738 0.011 0.051 0.049 0.017 0.021 0.113
Hours 0.165 0.057 0.033 0.016 0.039 0.025 0.665
Inflation 0.044 0.002 0.000 0.000 0.019 0.154 0.780
Wages 0.972 0.001 0.000 0.000 0.001 0.013 0.013
interest rate 0.034 0.189 0.010 0.010 0.031 0.023 0.702

Note: d, Aw, and gy are estimated.
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Table F.7: Variance Decomposition: Bayesian 1984:1-2004:4

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup  markup
1 Output 0.082 0.237 0.390 0.222 0.057 0.011 0.000
Consumption 0.005 0.844 0.006 0.001 0.129 0.010 0.005
Investment 0.019 0.024 0.004 0.918 0.026 0.008 0.001
Hours 0.271 0.187 0.314 0.174 0.044 0.005 0.005
Inflation 0.027 0.002 0.005 0.014 0.024 0.756 0.172
Wages 0.002 0.004 0.001 0.009 0.006 0.127 0.851
interest rate 0.119 0.192 0.036 0.052 0.476 0.088 0.035
2 Output 0.095 0.182 0.294 0.317 0.090 0.021 0.001
Consumption 0.013 0.703 0.014 0.008 0.218 0.025 0.018
Investment 0.025 0.013 0.006 0.913 0.029 0.011 0.002
Hours 0.210 0.162 0.269 0.258 0.077 0.012 0.012
Inflation 0.040 0.003 0.008 0.022 0.039 0.617 0.270
Wages 0.003 0.005 0.001 0.017 0.012 0.108 0.854
interest rate 0.142 0.153 0.045 0.103 0.403 0.092 0.062
4 Output 0.124 0.109 0.196 0.396 0.124 0.038 0.013
Consumption 0.038 0.451 0.032 0.033 0.316 0.060 0.070
Investment 0.041 0.007 0.010 0.885 0.034 0.016 0.007
Hours 0.139 0.114 0.215 0.341 0.122 0.029 0.039
Inflation 0.049 0.005 0.012 0.032 0.060 0.470 0.371
Wages 0.006 0.006 0.002 0.035 0.023 0.100 0.830
interest rate 0.160 0.110 0.054 0.201 0.279 0.083 0.113
10 Output 0.208 0.050 0.110 0.364 0.121 0.057 0.089
Consumption 0.092 0.166 0.072 0.091 0.245 0.083 0.251
Investment 0.098 0.003 0.027 0.769 0.039 0.026 0.038
Hours 0.077 0.067 0.162 0.319 0.142 0.056 0.178
Inflation 0.052 0.005 0.018 0.038 0.085 0.380 0.422
Wages 0.025 0.006 0.002 0.079 0.045 0.112 0.733
interest rate 0.153 0.075 0.061 0.299 0.176 0.057 0.179
40  Output 0.324 0.032 0.075 0.270 0.085 0.044 0.170
Consumption 0.150 0.070 0.170 0.150 0.117 0.045 0.299
Investment 0.167 0.003 0.077 0.620 0.033 0.023 0.077
Hours 0.062 0.052 0.160 0.265 0.118 0.050 0.293
Inflation 0.053 0.005 0.026 0.047 0.087 0.371 0.410
Wages 0.109 0.005 0.006 0.117 0.052 0.113 0.598
interest rate 0.152 0.067 0.085 0.306 0.161 0.053 0.175
100  Output 0.331 0.031 0.075 0.268 0.084 0.044 0.168
Consumption 0.153 0.063 0.209 0.154 0.105 0.041 0.274
Investment 0.167 0.003 0.082 0.617 0.033 0.023 0.076
Hours 0.063 0.051 0.170 0.264 0.116 0.049 0.288
Inflation 0.054 0.005 0.030 0.049 0.087 0.367 0.407
Wages 0.117 0.005 0.012 0.118 0.051 0.111 0.587
interest rate 0.154 0.065 0.099 0.305 0.155 0.052 0.171

Note: Based on the posterior mode of 6 reported in Smets and Wouters (2007). & = .025, A\, = 1.5 and
gy = .18 are fixed.
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Table F.8: Variance Decomposition: MLE1 1984:1-2004:4

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup markup
1 Output 0.103 0.222 0.394 0.234 0.032 0.011 0.005
Consumption 0.027 0.832 0.004 0.017 0.088 0.016 0.017
Investment 0.009 0.006 0.002 0.968 0.007 0.009 0.000
Hours 0.340 0.163 0.290 0.172 0.023 0.008 0.003
Inflation 0.031 0.000 0.001 0.001 0.001 0.819 0.147
Wages 0.004 0.000 0.000 0.001 0.000 0.110 0.885
interest rate 0.085 0.190 0.027 0.031 0.537 0.116 0.015
2 Output 0.115 0.156 0.290 0.356 0.050 0.021 0.011
Consumption 0.058 0.651 0.008 0.049 0.154 0.038 0.042
Investment 0.012 0.003 0.002 0.963 0.008 0.012 0.000
Hours 0.274 0.137 0.256 0.261 0.044 0.018 0.009
Inflation 0.045 0.000 0.002 0.002 0.002 0.729 0.221
Wages 0.006 0.000 0.000 0.001 0.000 0.093 0.900
interest rate 0.118 0.150 0.037 0.066 0.481 0.120 0.028
4 Output 0.135 0.083 0.177 0.468 0.069 0.042 0.025
Consumption 0.113 0.352 0.015 0.131 0.213 0.080 0.096
Investment 0.019 0.001 0.003 0.945 0.010 0.020 0.001
Hours 0.182 0.094 0.204 0.369 0.077 0.046 0.029
Inflation 0.058 0.000 0.003 0.003 0.002 0.633 0.300
Wages 0.010 0.000 0.000 0.003 0.000 0.099 0.888
interest rate 0.151 0.106 0.046 0.138 0.369 0.129 0.059
10  Output 0.181 0.029 0.078 0.470 0.072 0.090 0.080
Consumption 0.163 0.086 0.020 0.250 0.153 0.130 0.197
Investment 0.051 0.001 0.007 0.863 0.016 0.052 0.010
Hours 0.078 0.046 0.130 0.388 0.107 0.127 0.124
Inflation 0.071 0.000 0.005 0.007 0.003 0.526 0.388
Wages 0.029 0.000 0.000 0.011 0.000 0.155 0.804
interest rate 0.166 0.067 0.051 0.215 0.239 0.127 0.134
40  Output 0.296 0.010 0.031 0.302 0.045 0.101 0.214
Consumption 0.230 0.019 0.028 0.245 0.061 0.102 0.315
Investment 0.170 0.001 0.022 0.624 0.018 0.096 0.069
Hours 0.042 0.022 0.088 0.233 0.080 0.154 0.381
Inflation 0.080 0.000 0.009 0.013 0.003 0.474 0.421
Wages 0.157 0.000 0.002 0.058 0.002 0.281 0.501
interest rate 0.176 0.053 0.064 0.220 0.190 0.106 0.191
100  Output 0.325 0.009 0.029 0.281 0.041 0.096 0.219
Consumption 0.260 0.017 0.035 0.225 0.055 0.092 0.315
Investment 0.180 0.001 0.024 0.611 0.018 0.096 0.071
Hours 0.059 0.021 0.090 0.234 0.074 0.157 0.365
Inflation 0.081 0.000 0.010 0.013 0.003 0.473 0.420
Wages 0.238 0.000 0.005 0.064 0.003 0.259 0.430
interest rate 0.191 0.050 0.070 0.226 0.178 0.099 0.187

Note: § =.025, Ay, = 1.5 and gy = .18 are fixed.
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Table F.9: Variance Decomposition: MLE2 1984:1-2004:4

product- risk exog. invest- monetary price wage

qrt ivity premium  spend. ment policy markup markup
1 Output 0.118 0.237 0.371 0.228 0.032 0.010 0.004
Consumption 0.041 0.834 0.003 0.010 0.084 0.013 0.014
Investment 0.008 0.005 0.002 0.970 0.006 0.008 0.000
Hours 0.345 0.176 0.276 0.169 0.024 0.007 0.003
Inflation 0.031 0.000 0.001 0.001 0.001 0.815 0.150
Wages 0.004 0.000 0.000 0.001 0.000 0.111 0.884
interest rate 0.090 0.225 0.030 0.032 0.497 0.111 0.015
2 Output 0.135 0.168 0.271 0.348 0.050 0.019 0.009
Consumption 0.086 0.661 0.007 0.033 0.148 0.031 0.035
Investment 0.011 0.003 0.002 0.965 0.007 0.011 0.000
Hours 0.277 0.151 0.244 0.259 0.045 0.017 0.008
Inflation 0.045 0.000 0.002 0.002 0.001 0.725 0.225
Wages 0.006 0.000 0.000 0.001 0.000 0.091 0.901
interest rate 0.121 0.180 0.041 0.069 0.444 0.116 0.029
4 Output 0.621 0.167 0.076 0.041 0.082 0.006 0.006
Consumption 0.552 0.272 0.022 0.007 0.095 0.014 0.038
Investment 0.115 0.133 0.093 0.532 0.117 0.008 0.002
Hours 0.035 0.418 0.199 0.102 0.203 0.012 0.031
Inflation 0.129 0.006 0.001 0.001 0.035 0.429 0.400
Wages 0.467 0.013 0.000 0.001 0.010 0.127 0.381
interest rate 0.084 0.588 0.027 0.022 0.104 0.041 0.134
10  Output 0.215 0.030 0.070 0.460 0.070 0.083 0.072
Consumption 0.227 0.091 0.017 0.216 0.150 0.118 0.181
Investment 0.049 0.001 0.008 0.873 0.014 0.048 0.007
Hours 0.080 0.051 0.125 0.392 0.110 0.124 0.119
Inflation 0.071 0.000 0.003 0.008 0.002 0.523 0.392
Wages 0.032 0.000 0.000 0.010 0.000 0.154 0.804
interest rate 0.157 0.080 0.053 0.230 0.220 0.124 0.136
40  Output 0.352 0.010 0.026 0.291 0.042 0.091 0.188
Consumption 0.307 0.020 0.022 0.226 0.058 0.089 0.278
Investment 0.179 0.001 0.022 0.635 0.017 0.089 0.057
Hours 0.045 0.025 0.082 0.239 0.084 0.153 0.372
Inflation 0.080 0.000 0.006 0.014 0.003 0.470 0.427
Wages 0.177 0.000 0.002 0.053 0.002 0.275 0.491
interest rate 0.166 0.064 0.061 0.231 0.176 0.104 0.197
100  Output 0.395 0.009 0.024 0.264 0.038 0.084 0.186
Consumption 0.358 0.017 0.026 0.203 0.050 0.078 0.268
Investment 0.197 0.001 0.023 0.617 0.016 0.088 0.058
Hours 0.069 0.023 0.081 0.239 0.077 0.156 0.354
Inflation 0.081 0.000 0.006 0.014 0.003 0.469 0.427
Wages 0.284 0.000 0.004 0.058 0.002 0.246 0.406
interest rate 0.186 0.060 0.064 0.234 0.165 0.098 0.192

Note: d, Aw, and gy are estimated.
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