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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models with nominal rigidities and a monetary policy

represented by interest rate feedback rules are emerging as the workhorse of applied monetary policy analysis

in many central banks. Much of the empirical work with DSGE models, e.g. Smets and Wouters (2003),

Del Negro, Schorfheide, Smets, and Wouters (2007), Levin, Onatski, Williams, and Williams (2005), as well

as the theoretical work summarized in Woodford (2003) is based on models in which real money balances

directly enter the households’ utility function. Such money-in-the-utility-function (MIU) specifications are

informally motivated by the insight that money balances reduce transaction costs and therefore increase

utility. Once monetary policy is represented by an interest-rate-feedback rule and real money balances enter

the utility function in an additively separable fashion, the model becomes block triangular and aggregate

outcomes are not affected by the money stock. In fact, it has become common practice to consider cash-less

models, which are obtained by letting the weight on real money balances in the utility function converge to

zero. Econometric work typically excludes a measure of the money stock from the list of observables and

ignores the model implied money demand equation. While the cashless approach appears reasonable if the

estimated model is used to study the propagation of structural shocks other than money demand shocks,

it is not innocuous for welfare analysis. To the extent that real money balances indeed affect households’

utility, they are relevant for assessing the welfare consequences of changes in monetary policy.

The contribution of our paper is threefold. First, as an alternative to the commonly used MIU model, we

develop an estimable DSGE model in which in every period economic activity takes place in two markets. In

a decentralized market (DM), households engage in bilateral trade with a fraction of households producing

and a fraction of households consuming. The centralized market (CM) resembles a standard DSGE model

with nominal rigidities where production is carried out by firms. Physical capital is a factor of production in

both markets. Demand for money arises because the transactions in the decentralized markets are facilitated

by a medium of exchange. The basic structure of our model economy is based on recent work by Lagos and

Wright (2005, henceforth LW) and Aruoba, Waller, and Wright (2007, henceforth AWW). Our specification

adds nominal rigidities in the centralized market, represents monetary policy by an interest rate feedback

rule, and introduces stochastic disturbances to technology, preferences, government spending, and monetary

policy to make the model amenable to econometric estimation methods. While the structure of our model

to a large extent resembles that of a canonical New Keynesian model with capital, the presence of the decen-

tralized market provides a micro-founded motive for holding money and creates a non-separability between

consumption and the value of real money balances. Hence, our model differs from an MIU specification both

in terms of the resulting money demand equation as well as its welfare implications.

Second, using post 1984 U.S. data on output, inflation, interest rates, and the money stock we use
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Bayesian techniques surveyed in An and Schorfheide (2007) to estimate our search-based DSGE model. We

also fit a standard MIU model with nominal rigidities to the same set of observations. While most of the

work on search-based monetary model has been theoretical, our analysis produces formal estimates of the

taste and technology parameters that determine the exchange in the decentralized market. We compare the

fit of the money demand equations obtained from the two estimated models. The non-separable structure

of the search model creates a tight link between technology shocks and the fluctuations in the stock of

money. In fact, we find that about 75% of the variation in money is due to technology shocks. Moreover,

money demand shocks, represented as shocks to the taste for goods produced in the decentralized market,

affect aggregate output, inflation, and interest rates. The separability between real money balances and

consumption embodied in our estimated MIU model, on the other hand, creates a fairly large disconnect

between fluctuations in the stock of money and the rest of the economy. About 80% of real money balances

are due to money demand shocks, which in turn do not affect output, inflation, and interest rates. However,

imposing the additional structure of the decentralized market in the search based model comes at a cost: its

overall fit relative to the MIU specification as measured by Bayes factors is worse. While the search-based

model provides tighter linkages between output, inflation, interest rates, and money, it fails to explain some

of the cross correlations.

Finally, we compare the effects of changes in the central bank’s target inflation rate on steady state

welfare using the two estimated DSGE models. Our choice of estimation objective function requires the

models to fit both the post 1984 average velocity in U.S. data as well as the fluctuations in M2. Since

our estimates imply that the households place very little weight on real money balances in the MIU model,

its welfare implications essentially resemble that of a cashless New Keynesian model. Since it is costly for

firms to choose prices optimally and suboptimal prices lead to a distortion, a target inflation rate near

zero maximizes steady state welfare. The welfare implications of the search-based model are driven by two

opposing forces: on the one hand, the presence of nominal rigidities makes price changes costly and welfare

reducing. On the other hand, the Friedman motive for keeping the nominal rate near zero is present in the

model: inflation is a tax on money holdings. If this tax is large, then it depresses economic activity in the

decentralized market, which is welfare reducing.

The remainder of the paper is organized as follows. We provide a detailed derivation and discussion of

the search-based DSGE model in Section 2. A canonical MIU model with nominal rigidities and capital can

be obtained by shutting down the decentralized market in the search-based model and adding a real-money-

balance term to the households’ utility function. This MIU model is described in Section 3. The Bayesian

estimation results are presented in Section 4 and the welfare analysis is summarized in Section 5. Finally,

Section 6 concludes. Detailed derivations for the two DSGE models are provided in the Appendix.
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2 The Search-Based Model

The model is an extension of the two-sector model developed in LW. In every period, there is economic

activity in two markets, which we label the decentralized market (DM) and the centralized market (CM). In

the DM, households engage in decentralized bilateral trade with other households with one party producing

and the other consuming, while the CM resembles a standard macro model where production is carried out

by firms.

We extend the LW model in two dimensions. First, we include physical capital as a factor of production,

following AWW. The only deviation we have from AWW in this regard is that we introduce an adjustment

cost for investment to improve the empirical fit. Second, we replace the neoclassical structure on the firm

side with a New Keynesian one. Intermediate goods producing firms sell their differentiated output to final

good producers. The intermediate good producers face a downward sloping demand curve for their product

and choose prices to maximize their profits. However, in any period only a fraction of these firms is able to

re-optimize their prices. The remaining firms either adjust their prices by the lagged inflation rate or not at

all. This mechanism of generating nominal rigidity is due to Calvo (1983) and widely used in the literature

on New Keynesian DSGE models. Unlike in more elaborate empirical version in Smets and Wouters (2003)

and Christiano, Eichenbaum, and Evans (2005), we exclude habit formation, wage stickiness, and variable

capital utilization from our model specification. In turn we will describe the firms’ problem in the centralized

market (Section 2.1), the households’ decision problems in both the centralized and the decentralized market

(Section 2.2). We then characterize the behavior of fiscal and monetary policy (Section 2.3) and derive

an aggregate resource constraint (Section 2.4). Our model economy is subject to aggregate disturbances,

characterized in Section 2.5. A summary of all the equilibrium conditions is provided in the Appendix.

2.1 Firms in the Centralized Market

The setup of the centralized market resembles that of a New Keynesian DSGE model. Production is carried

out by two types of firms in the CM: final good producers combine differentiated intermediate goods. In-

termediate goods producing firms hire labor and capital services from the households to produce the inputs

for the final good producers. To introduce nominal rigidity we follow Calvo (1983) by assuming that only a

constant fraction of the intermediate goods producers is able to re-optimize prices.

2.1.1 Final Good Producers

The final good Yt in the CM is a composite made of a continuum of intermediate goods Yt(i):

Yt =
[∫ 1

0

Yt(i)
1

1+λ di

]1+λ
. (1)
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Note that the elasticity is (1 + λ)/λ. λ = 0 corresponds to the linear case and λ → ∞ corresponds to the

Cobb-Douglas case. We will constrain λ ∈ (0,∞). The final good producers buy the intermediate goods on

the market, package them into Yt units of the composite good, and resell them to consumers. These firms

maximize profits in a perfectly competitive environment. Their problem is:

max
Yt,Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)di s.t. (1) (2)

taking Pt(i) as given. The first-order condition is:

Pt(i) = PtY
λ

1+λ

t Yt(i)−
λ

1+λ . (3)

Therefore,

Yt(i) =
(
Pt(i)
Pt

)− 1+λ
λ

Yt. (4)

Combining this condition with the zero profit condition one obtains an expression for the price of the

composite good:

Pt =
[∫ 1

0

Pt(i)−
1
λ di

]−λ
. (5)

2.1.2 Intermediate Goods Producers

Intermediate goods producers, indexed by i, use the following technology:

Yt(i) = max
{
ZtKt(i)αHt(i)1−α −F , 0

}
, (6)

Firm i’s profit is given by:

Πt(i) = Pt(i)Yt(i)− PtWtHt(i)− PtR
k
tKt(i). (7)

All firms take factor prices Wt and Rkt , as well as the prices of the other firms and the aggregate price level

as given. We distinguish two types of firms: (i) firms are allowed to re-optimize their price Pt(i) and (ii)

firms that are not able to re-optimize their price. Firms that are not allowed to choose Pt(i) optimally,

satisfy the demand for their differentiated good (4) and choose capital and labor inputs to minimize costs.

Firms that are able to change their price in an optimal fashion, maximize future expected profits. The profit

maximization problem can be solved in two steps. First, given a desired level of output Yt(i) we determine

the cost-minimizing choice of factor inputs. Second, we determine the profit maximizing price Pt(i) and

quantity Yt(i) that satisfies (4).

Cost minimization subject to (6) yields the conditions:

PtWt = µt(i)Pt(i)(1− α)ZtKt(i)αHt(i)−α (8)

PtR
k
t = µt(i)Pt(i)αZtKt(i)α−1Ht(i)1−α (9)
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where µt(i) is the Lagrange multiplier associated with (6). In turn, these conditions imply:

Kt(i) =
α

1− α

Wt

Rkt
Ht(i).

If we integrate both sides of the equation with respect to di and define Kt =
∫
Kt(i)di and Ht =

∫
Ht(i)di

we obtain a relationship between aggregate labor and capital:

Kt =
α

1− α

Wt

Rkt
Ht. (10)

Thus, the aggregate capital labor ratio is a linear function of the ratio of factor prices.

Total variable cost (V Ct) is given by

V Ct(i) =
(
Wt +Rkt

Kt(i)
Ht(i)

)
Ht(i) =

(
Wt +Rkt

Kt(i)
Ht(i)

)
Z−1
t

(
Kt(i)
Ht(i)

)−α
Y vt (i),

where Y vt (i) = ZtKt(i)αHt(i)1−α is the “variable” part of output Yt(i). The real marginal cost MCt is the

same for all firms and equal to:

MCt =
(
Wt +Rkt

Kt(i)
Ht(i)

)
Z−1
t

(
Kt(i)
Ht(i)

)−α
(11)

= α−α(1− α)−(1−α)W 1−α
t (Rkt )

αZ−1
t .

Conditional on the optimal choice of factor inputs, nominal profits as a function of output Yt(i) and prices

Pt(i) can then be expressed as

Πt(i) = [Pt(i)− PtMCt]Yt(i)− PtMCtF . (12)

Since the last part of this expression does not depend on the firm’s decision, it can be safely ignored

subsequently.

We assume that prices are sticky as in Calvo (1983). Specifically, each firm can re-adjust prices with

probability 1 − ζ in each period. We depart from the Calvo-setup in assuming that for those firms that

cannot adjust prices, Pt(i) will increase at the geometric weighted average of the fixed rate π∗∗ and of last

period’s inflation πt−1 with weights 1− ι and ι, respectively. We define the price adjustment factor

πadjt+s|t =
s∏
l=1

πιt+l−1π
1−ι
∗∗

and adopt the convention that πadjt|t = 1. Firms that are unable to re-optimize their prices simply satisfy

the demand for their product according to (4). For those firms that are allowed to re-optimize prices, the

problem is to choose a price level P ot (i) that maximizes the expected present discounted value of profits in

all states of nature where the firm is stuck with that price in the future:

max
P o

t (i)
IEt

[ ∞∑
s=0

ζsβsΞpt+s|t
[
P ot (i)πadjt+s|t − Pt+sMCt+s

]
Yt+s(i)

]
(13)

s.t. Yt+s(i) =

[
P ot (i)πadjt+s|t

Pt+s

]− 1+λ
λ

Yt+s,
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where βsΞpt+s|t is the time t value of a dollar in period t + s for the consumers. We assume that markets

are complete so that βsΞpt+s|t is the same for all consumers. It is shown in the Appendix that the first-order

conditions can be reduced to the following set of equations:

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(14)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(15)

F (1)
t = (1 + λ)F (2)

t (16)

Here we are considering only the symmetric equilibrium in which all firms that can readjust prices will choose

the same P ot (i). In the above formula, we dropped the i index and used the definitions pot = P ot /Pt and

πt = Pt/Pt−1. Equations (14) to (16) essentially determine the optimal price pot as a function of marginal

costs.

2.1.3 Aggregate Price Dynamics

From (5) it follows that:

Pt =
[
(1− ζ)(P ot )−

1
λ + ζ(πιt−1π

1−ι
∗∗ Pt−1)−

1
λ

]−λ
. (17)

Hence,

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
. (18)

The system of equations (14) - (16) and (18) links inflation to real marginal costs and output and hence

defines a so-called New Keynesian Phillips curve.

2.2 Households

There is a continuum of ex-ante identical households in the economy. These households derive utility from

their activities in the two markets. A household that consumes qt units of consumption good in the DM

gets utility χtu(qt) while he gets utility U(xt) by consuming xt units in the CM. The disutility of effort in

the DM for a seller and disutility of labor for a worker in the CM is linear:1

Ut = U(x)−Aht

 +χtu(qt) if buyer in DM

−et if seller in DM
(19)

Instead of using the disutility of effort et in the DM, we express the disutility as a function of output produced

by the seller. To see this, we assume the following structure. For a seller, the output qt is obtained using the
1This assumption, in particular the linearity of disutility of labor in the CM is a critical assumption that prevents a

non-degenerate distribution of money holdings.
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production function qt = Ztf(et, kt) where Zt is a technology shock which is common across the two markets.

This production function can be inverted to get et = ξ(qt, kt, Zt). Using the linear disutility in effort, we can

define c(qt, kt, Zt) = ξ(qt, kt, Zt) as the utility cost of production for the sellers. We have cq > 0, ck < 0, and

cZ < 0.

While we keep general functions in the description and the derivation of the model, we are going to use

the following functional forms in our estimation

u (q) = ln (q + κ)− ln(κ), U (x) = B ln(xt), f (e, k) = e1−αkα

where κ > 0 is a small constant to make sure qt = 0 can be handled and B determines the relative weight of

the utility from consuming the CM and DM goods. We use a natural logarithm for both utility functions and

use the same Cobb-Douglas production function as the function used by the intermediate good producers

in the CM as these are necessary conditions for balanced-growth in this model. Also, using the derivations

above, we get

c (q, k, Z) =
1

Z1/(1−α)
q1/(1−α)k−α/(1−α),

In a given period, the households participate in the DM followed by the CM. To characterize the household’s

behavior in this economy, we start from the problem of the household in the CM, followed by the DM

problem.

2.2.1 Centralized Market

The households take as given the aggregate price level in the CM, Pt, the nominal interest rate Rt, and the

factor prices Wt and Rkt . Using Wt(m̂t, kt, it−1, bt, St) and Vt(mt, kt, it−1, bt, St) to denote the value functions

in the CM and DM of period t where m̂t is the money balances of the household entering the CM, the CM

problem2 is

Wt(m̂t, kt, it−1, bt, St)

= max
xt,ht,mt+1,it,kt+1,bt+1

{U(xt)−Aht + βEt[Vt+1(mt+1, kt+1, it, bt+1, St+1)]}

s.t. Ptxt + Ptit + bt+1 +mt+1 ≤ PtWtht + PtR
k
t kt + Πt +Rt−1bt + m̂t − Tt (20)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (21)

given the laws of motion for the aggregate shocks, St. Here A is the disutility of one unit of labor, Rt−1 is

the gross nominal return on a government bond purchased in period t − 1, Tt is a nominal lump-sum tax

2We could index households with j, but we will see that the assumption of complete markets implies that the index will

drop out of most of these variables. In equilibrium households will make the same choice of consumption, money demand, and

investment. So, we drop this index from the outset.
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and Πt denotes the total profits the household receives from intermediate good producers. (21) shows how

capital is accumulated where the adjustment cost function S(.) satisfies properties S(1) = 0, S′(1) = 0 and

S′′(1) > 0. Using Υt to denote the Lagrange multiplier for (21) and after eliminating h using (20), the FOC

are

xt : U ′(xt) =
A

Wt
(22)

mt+1 :
U ′(xt)
Pt

= βEVt+1,m(mt+1, kt+1, it, bt+1, St+1) (23)

it : U ′(xt) = Υt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEVt+1,i(mt+1, kt+1, it, bt+1, St+1) (24)

kt+1 : Υt = βEVt+1,k(mt+1, kt+1, it, bt+1, St+1) (25)

bt+1 :
U ′(xt)
Pt

= βEVt+1,b(mt+1, kt+1, it, bt+1, St+1) (26)

assuming that an interior solution exists. This leads to two key results. First, since the individual state

variables, (m̂t, kt, it−1, bt) do not appear in (23)-(26), household’s decisions in the CM do not depend on his

state variables. More specifically, for any distribution of assets (m̂t, kt, bt) across agents entering the CM,

the distribution of (mt+1, kt+1, bt+1) is degenerate.3 Second, we have the following envelope conditions,

Wt,m(m̂t, kt, it−1, bt, St) =
A

PtWt

Wt,k(m̂t, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt

Wt,i(m̂t, kt, it−1, bt, St) = Υt

(
it
it−1

)2

S′
(

it
it−1

)
Wt,b(m̂t, kt, it−1, bt, St) =

ARt−1

Wt

which show that Wt(.) is linear in m̂t which will be important in the DM problem below. Finally, the

Lagrange multiplier associated with the households’ nominal budget constraint (20) is U ′(xt)/Pt. Under the

assumption that households have access to a complete set of state-contingent claims we obtain that

Ξpt+1|t =
U ′(xt+1)/Pt+1

U ′(xt)/Pt
. (27)

which the firms use to discount the future. We need to specify the details of the DM to characterize the

equilibrium next. Specifically we will find Vm, Vk, Vi and Vb to obtain the equilibrium conditions.
3This result requires a small qualification for bond holdings. There are two parts of the argument that guarantees the

degeneracy. The first part relies on the observation that (m̂t, kt, bt) does not appear in (26). The second part relies on the

strict concavity of V (.) or, more specifically, the strict monotonicity of Vb () which means the choice of bt+1 is unique. Both

parts of the argument go through for money and capital in our environment, but only the first part goes through for bonds

since Vb () is constant as we show below. This means that in principle there could be multiple values of bt+1 that households

choose, which can create a distribution of bond holdings. Fortunately, such a distribution of bonds holdings is not important

for any of our results because bond-holdings will not affect the bargaining problem, as we show below.
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2.2.2 Decentralized Market

As we said, the centralized market in this model resembles a standard New Keynesian DSGE model. It

is important to recognize that transactions in the CM take place without requiring a medium of exchange.

Unlike a standard monetary model where money demand is generated by constructs such as cash-in-advance,

money-in-the-utility-function or transaction costs, we follow a search-based approach. The DM is critical in

generating the money demand. All trades take place in bilateral meetings. The agents are anonymous in

the DM which means no household would accept an IOU from another household and any trade must be

quid pro quo. Following AWW, at the start of each DM a measure σ of households receive a taste shock that

make them buyers and another σ measure of households become sellers. Alternatively, we can consider the

setup in LW where each household can produce a measure σ of goods out of a measure one of all possible

goods, and they like consuming another σ measure of goods.4 When two households meet at random, with

σ probability there is a single coincidence where one party likes the good the other party can produce but

not vice versa. The literature started by Kiyotaki and Wright (1989) and many papers that follow show

that a medium of exchange will emerge in an environment where the agents are anonymous and there is a

double-coincidence problem such as the one above. In a monetary equilibrium, in such single-coincidence

meetings, the party who likes what the other party has (the buyer), uses money to purchase the good from

the seller.5 The possibility to consume in the DM generate a demand for money in this model.

The value of starting the DM for a household whose taste shock has not been realized yet is given by

Vt(mt, kt, it−1, bt, St) = σV bt (mt, kt, it−1, bt, St) + σV st (mt, kt, it−1, bt, St) (28)

+(1− 2σ)Wt(mt, kt, it−1, bt, St),

where the values of being a buyer and a seller are

V bt (mt, kt, it−1, bt, St) = χtu(qbt ) +Wt

(
mt − dbt , kt, it−1, bt, St

)
(29)

V st (mt, kt, it−1, bt, St) = −c(qst , kt, Zt) +Wt (mt + dst , kt, it−1, bt, St) (30)

with qbt and dbt (qst and dst ) denoting output and money exchanged when buying (selling) which are determined

via bilateral bargaining as describe below. We interpret χt as a money demand shock as it affects the utility

from consuming in the DM and money serves as a medium of exchange. Using (27) we have

Vt(mt, kt, it−1, bt, St) = Wt(mt, kt, it−1, bt, St) + σ

[
χtu(qbt )−

dbtA

PtWt

]
+ σ

[
dstA

PtWt
− c(qst , kt, Zt)

]
. (31)

4As AWW argue, the setup with idiosyncratic taste shocks and the setup with search leads to the same mathematical

construct which we describe below.
5As with any deep model of money, there is a nonmonetary equilibrium in this model which is dominated by the monetary

equilibrium in terms of welfare. We focus on the monetary equilibrium.
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To solve (23)-(26), we need:

Vt,m(mt, kt, it−1, bt, St) =
A

PtWt
+ σ

[
χtu

′ (qbt) ∂qbt∂mt
− A

PtWt

∂dbt
∂mt

]
+σ
[

A

PtWt

∂dst
∂mt

− cq(qst , kt, Zt)
∂qst
∂mt

]
(32)

Vt,k(mt, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt + σ

[
χtu

′ (qbt) ∂qbt∂kt
− A

PtWt

∂dbt
∂kt

]
+σ
[

A

PtWt

∂dst
∂kt

− cq(qst , kt, Zt)
∂qst
∂kt

− ck(qst , kt, Zt)
]

(33)

Vt,i(mt, kt, it−1, bt, St) = Wt,i(mt, kt, it−1, bt, St) (34)

Vt,b(mt, kt, it−1, bt, St) =
A

PtWt
Rt−1 (35)

It remains to specify how the terms of trade (q, d) are determined, so that we can substitute for their

derivatives in (32) and (33), for which we turn to the bargaining problem. We drop the time subscripts since

everything is period t. Our bargaining problem is

max
q,d

[
χu(q)− Ad

PW

]θ [
Ad

PW
− c(q, ks, Z)

]1−θ
s.t. d ≤ mb.

where θ is the bargaining power of the buyer, the first term is the buyer’s surplus and the second term is

the seller’s surplus.

Omitting the t subscripts and using the insights of LW and AWW, in any monetary equilibrium d = mb,

and this implies q ≤ q∗(ks, Z, χ) where q∗(ks, Z, χ) is the solution to χu′(q) = cq(q, ks, Z). Inserting d = mb

and taking the FOC with respect to q, we get

mb

P
=
g(q, ks, χ, Z)W

A
(36)

where

g(q, k, χ, Z) ≡ θc(q, k, Z)χu′(q) + (1− θ)χu(q)cq(q, k, Z)
θχu′(q) + (1− θ)cq(q, k, Z)

. (37)

We write q = q(mb, ks, χ, Z), where q(·) is given by solving (36) for q as a function of (mb, ks, χ, Z). Turning

to the partial derivatives we need, we get

∂d

∂mb
= 1,

∂q

∂mb
=

A

PWgq(q, k, χ, Z)
> 0, and

∂q

∂ks
= −gk(q, k, χ, Z)

gq(q, k, χ, Z)
> 0

while the other derivatives in (32) and (33) are 0.

Now reintroducing the time subscripts and inserting these results, (32) and (33) reduce to

Vt,m(mt, kt, it−1, bt, St) =
(1− σ)A
PtWt

+
σAχtu

′(qt)
PtWtgq(qt, kt, χt, Zt)

(38)

Vt,k(mt, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt − σγ(qt, kt, χt, Zt) (39)

where

γ(q, k, χ, Z) ≡ ck + cq
∂q

∂k
=
ck(q, k, Z)gq(q, k, χ, Z)− cq (q, k, Z) gk(q, k, χ, Z)

gq(q, k, χ, Z)
< 0. (40)
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2.2.3 Household’s Optimality Conditions

We obtain the optimality conditions for the household by simply substituting (34), (35), (38) and (39) in to

the household’s FOC to get the optimality conditions for the household. We also define µt ≡ Υt/U
′xt. For-

mally, taking as given
{
Pt, Rt,Wt, R

k
t ,Πt, Tt

}∞
t=0

and exogenous aggregate states {Zt, χt}∞t=0 , the household

solves for {xt,mt+1, kt+1, it, bt+1, µt}∞t=0 using the following equations:

Wt =
A

U ′(xt)
(41)

1 = βEt

[
U ′(xt+1)
U ′(xt)

Rt
πt+1

]
(42)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEt

{
µt+1

U ′(xt+1)
U ′(xt)

(
it+1

it

)2

S′
(
it+1

it

)}
(43)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
(44)

µt = βEt

{
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(xt)
γ(qt+1, kt+1, χt+1, Zt+1)

}
(45)

mt+1

Pt
=

β

U ′(xt)
Et

{
g(qt+1, kt+1, χt+1, Zt+1)

[
σχt+1u

′(qt+1)
gq(qt+1, kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(46)

Equations (41) to (44) resemble the optimality conditions that arise in a standard DSGE model with

capital. (41) is a labor supply equation that relates the wage to the marginal utility of consumption, (42) is

the Euler equation for Bond holdings. (43) describes the evolution of the shadow price of installed capital,

µt, and (44) is the capital accumulation equation. Equations (45) and (46) reflect the presence of the

decentralized market. (45) is the Euler equation for capital stock holdings. The return to capital has two

components, namely the return from renting capital to intermediate good producing firms in the centralized

market, Rkt , net of capital depreciation, and the return to capital when producing in the decentralized market.

Finally, (46) can be interpreted as money demand equation.

The set of equations above determines the path of money balances, given m0 which is identical across

all households assuming an interior solution. As all households start period t with the same money balances,

mt = Mt where Mt is the aggregate money stock, the buyers in the DM enter the CM with m̂ = 0, the

sellers with m̂ = 2M while the remaining 1− 2σ households carry m̂ = M . Looking at (20), this means that

individual labor supply depends on the status of the agent in the previous DM as the money holdings . In

particular, we have

ht =


Ht + (Mt−0)

PtWt
buyers

Ht + (Mt−2Mt)
PtWt

sellers

Ht others

(47)

where Ht is aggregate hours which we define below. This shows buyers in the DM work more than others

since they have to make up for the money they have spent and sellers work less than others. We only care
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about total hours Ht in equilibrium and will not track individual ht.

2.3 Government

In period t, the government in this model collects a nominal lump-sum tax Tt, spends Gt on goods from the

centralized market, issues one-period nominal bonds Bt+1 that pay Rt gross interest tomorrow and supplies

the money to maintain the interest rate rule. It satisfies the following budget constraint every period

PtGt +Rt−1Bt +Mt = Tt +Bt+1 +Mt+1 (48)

Government expenditures as a fraction of real GDP (both the DM and CM output, appropriately aggregated)

Yt, denoted by gt are assumed to be exogenous:

Gt = (1− 1/gt)Yt. (49)

Monetary policy is represented by an interest-rate feedback rule

Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πt
π∗

)ψ1
(
Yt
Y∗

)ψ2
]1−ρR

exp (σrεrt ) , (50)

where R∗ is the gross steady state nominal interest rate, π∗ is the steady state (or target) inflation, Y∗ is

the steady state of real GDP and εrt is a policy shock.

2.4 Aggregate Resource Constraint and National Accounting

We begin by adding the households’ CM budget constraints (remember that there are three types of house-

holds as they enter the CM depending on their status in the previous DM) and the government budget

constraint to obtain

PtXt + PtIt + PtGt = PtWtHt + PtR
k
tKt + Πt. (51)

Now consider firms’ profits:

Πt =
∫
Pt(i)Yt(i)di− PtWt

∫
Ht(i)di− PtR

k
t

∫
Kt(i)di

=
∫
Pt(i)Yt(i)di− PtWtHt − PtR

k
tKt

= PtYt − PtWtHt − PtR
k
tKt

The last equality follows from the zero profit conditions for the final goods producers. Combining the

expression for profits with (51) we get

Xt + It +Gt = Yt, (52)
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which is the resource constraint in the CM. The relationship between output and the aggregate labor and

capital inputs is given by

Ȳt = Zt

∫
Kα
t (i)H1−α

t (i)di−F = ZtK
α
t H

(1−α)
t −F .

where Ȳ is the output of the intermediate good producers and the second equality follows from the fact that

the optimal capital labor ratio Kt(i)/Ht(i) only depends on relative factor prices which are common to all

firms. The relationship between Ȳt and Yt is given by

Ȳt = Yt

∫ (
Pt(i)
Pt

)− 1+λ
λ

di. (53)

We now have to determine the distribution of prices Pt(i). A fraction 1−ζ of firms was allowed to re-optimize

their prices in period t. For these firms Pt(i) = P ot . A fraction ζ(1− ζ) of firms re-set their prices in period

t− 1. Hence, for these firms Pt(i) = πιt−1π
1−ι
∗∗ P ot−1. Overall, we obtain∫ (

Pt(i)
Pt

)− 1+λ
λ

di = (1− ζ)
∞∑
j=0

ζj

(
(πt−1πt−2 · · ·πt−j)ιπj(1−ι)∗∗

πtπt−1 · · ·πt−j+1

P ot−j
Pt−j

)− 1+λ
λ

. (54)

To capture the law of motion of the price distribution we introduce a new variable

Dt = (1− ζ)
∞∑
j=0

ζj

(
(πt−1πt−2 · · ·πt−j)ιπj(1−ι)∗∗

πtπt−1 · · ·πt−j+1

P ot−j
Pt−j

)− 1+λ
λ

.

We verify in the Appendix that Dt follows the law of motion:

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ)
[
P ot
Pt

]− 1+λ
λ

. (55)

Finally, we can write

YtDt = ZtK
α
t L

(1−α)
t −F . (56)

Turning to national accounting, nominal output is PtYt in the CM and σMt in the DM since only a fraction

σ of households spend all their money. Using Pt (the price of a CM good) as the unit of account, real output

is Yt for the CM and σMt/Pt for the DM. We define Mt ≡ Mt/Pt−1 as a measure of real money balances.

The total aggregate real output for the economy then is

Yt ≡ Yt + σ
Mt

πt
. (57)

2.5 Aggregate Shocks

We consider four aggregate disturbances in our model economy: Zt, is the random productivity term that

effects production in both markets, gt is a government spending shock, and εrt is a monetary policy shock.

Finally, we have a money demand shock, χt, which we model as a taste shock in the DM. We define

Z̃t = ln (Zt/Z∗) , χ̃t = ln (χt/χ∗) , g̃t = ln (gt/g∗) ,
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where Z∗, χ∗ and g∗ are steady state values / means of the respective random variable. We assume that the

exogenous disturbances evolve according to AR(1) processes:

Z̃t = ρzZ̃t−1 + σzε
z
t , χ̃t = ρχχ̃t−1 + σχε

χ
t , g̃t = ρg g̃t−1 + σgε

g
t

and we collect all innovations in ε = [εzt , ε
χ
t , ε

g
t , ε

r
t ] which follows a multi-variate standard normal distribution.

The law of motion for the exogenous processes completes the specification of the search-based DSGE

model. The equilibrium conditions are summarized in the Appendix. We derive the deterministic steady

state for this model and use a log-linear approximation to its dynamics to form a state-space representation

that is used for the Bayesian estimation.

3 A Money-in-the-Utility-Function Model

The specification of the MIU model closely resembles search-theoretic model described in the previous section.

The production side of the MIU economy is identical to the production sector in the centralized market.

Moreover, fiscal and monetary policy are identical as well and the economy is subject to the same set of

stochastic shocks. We only discuss the modifications to the household’s problem.

Since there is no decentralized market, households’ consumption is restricted to xt. The instantaneous

utility function is of the form

Ut = U(xt)−Aht +
χt

1− νm

(
mt

Pt

A

Z
1/1−α
∗

)1−νm

, (58)

where, as in the search-based model, U(xt) = B ln(xt). The third term on the right-hand-side of (58)

captures the value of holding real money balances. The scaling by A/Z
1/(1−α)
∗ can be interpreted as a re-

parameterization of χt, which has the effect that steady state velocity stays constant as we change A and

Z. Here mt are the (pre-determined) money holdings at the beginning of the period, and Pt is the price at

which the final good is sold in period t. Using again Wt(mt, kt, bt, St) to denote the value function of the

household in the centralized market, the household’s problem is given by

Wt(mt, kt, it−1, bt, St)

= max
xt,ht,mt+1,kt+1,it,bt+1

U(xt)−Aht +
χt

1− νm

(
mt

Pt

A

Z
1/1−α
t

)1−νm

+ βEWt+1(m+1, k+1, it, b+1, S+1)


s.t. Ptxt + Ptit + bt+1 +mt+1 ≤ PtWtht + PtR

k
t kt + Πt +Rt−1bt + m̂t − Tt (59)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (60)

To a large extent, the optimality conditions for the households resemble the ones derived for the cen-

tralized market in the search-based model. In fact, the labor supply function, the Euler equation for Bond
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holdings, the evolution of the shadow price of installed capital, and the capital accumulation equation are

identical to Equations (41) to (44). The Euler equation for capital stock holdings is given by

µt = βEt

{
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]}
, (61)

which is identical to (45) except that the term related to the DM does not appear. Moreover, the money

demand equation can be expressed as(
mt+1

Pt

)νm

=
βRt

U ′(xt)(Rt − 1)
Et

[(
A

Z
1/1−α
∗

)−νm χt+1

π1−νm
t+1

]
. (62)

Equations (61) and (62) replace the optimality conditions (45) and (46) in the search-based model. Notice

that mt+1 has been chosen in period t based on the realization of time t shocks. Hence, we detrend it by Pt

and define Mt+1 = mt+1/Pt with the understanding that Mt+1 only depends on realizations of shocks dated

t and earlier. Since Mt+1 does neither enter in the firms’ problems nor is it included in the interest-rate

feedback rule of the central bank, the model has a block-diagonal structure: the determination of output,

inflation, and interest rates does not depend on the money stock.

The equilibrium conditions for the MIU model are summarized in the Appendix. As we did for the search-

based model, we derive the deterministic steady state for the MIU model and use a log-linear approximation

to its dynamics to form a state-space representation that is used for the Bayesian estimation.

4 Empirical Analysis

We will now turn to the estimation of the search-based and the MIU model. We use a Bayesian approach

discussed in detail in An and Schorfheide (2007). We begin by describing the data set (Section 4.1). We

then proceed by describing the specification of the prior distributions used for the parameters of the two

DSGE models (Section 4.2). Finally, we present the parameter estimates as well as implied steady states,

variance decompositions, and impulse response dynamics (Section 4.3).

4.1 Data

Our empirical analysis focuses on quarterly U.S. postwar data on aggregate output, inflation, interest rates,

and money. Unless otherwise noted, the data are obtained from the FRED2 database maintained by the

Federal Reserve Bank of St. Louis. Our measure of per capita output is defined as real GDP (GDPC96)

divided by civilian noninstitutional population (CNP16OV). The population series is provided at a monthly

frequency and converted to quarterly frequency by simple averaging. Since the quarterly flow statistics

reported in the National Income and Product Accounts are annualized, we divide real GDP by 4. Inflation
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is defined as the log difference of the GDP deflator (GDPDEF) and multiplied by 400 to obtain annualized

percentages. Our measure of nominal interest rates corresponds to the Federal Funds Rate (FEDFUNDS).

The Fed Funds Rate is also provided at monthly frequency and we use simple averaging to convert it to

quarterly frequency. As a measure of money we use the sweep-adjusted M2S series provided by Cynamon,

Dutkowsky and Jones (2006). This series is provided at monthly frequency without seasonal adjustment.

We apply the EVIEWS default version of the X12 filter to perform the seasonal adjustment and then use

simple averaging to convert the series from monthly to quarterly frequency. Finally, we divide our M2 series

by population and the GDP deflator to obtain a measure of per capita real money balances.

The models presented in Sections 2 and 3 are specified to capture stationary fluctuations around a

deterministic steady state. Hence, we take the natural log of per capita output and real money and extract

a deterministic trend by OLS regressions over the sample period 1959:I to 2006:IV. We scale the deviations

from the linear trend by 100 to convert them into percentages. At this point, we have removed information

about the average velocity in the postwar data, which we need to pin down some of the parameters in our

DSGE model. We therefore compute the sample average of the ratio of money and nominal output, take

the natural logarithm, scale it by 100 and add it to our detrended log money series. For the subsequent

estimation we restrict the sample period to 1984:I to 2005:IV.

4.2 Restricted Parameters and Prior Distributions

The goal of our empirical analysis is to compare the propagation of shocks and the steady state welfare

implications of the search-based DSGE model and the MIU model. Hence, it is desirable to restricted a

subset of the model parameters prior to estimation. These restrictions are reported in Table 1. We fix π∗

at the average inflation rate in our sample. Moreover, we let rA be equal to the difference of the average

Federal Funds Rate and the average inflation rate between 1984 and 2005 and let β = 1/(1 + rA/400).

Using these parameter values for both DSGE models implies that the steady state inflation and nominal

interest rates are equal to the post-1984 sample averages. We fix the depreciation rate δ at 0.013. This

value is obtained as the average ratio of fixed asset depreciation and the stock of fixed assets between 1959

and 2005 (Source: NIPA-FAT11 (current cost net stock) and NIPA-FAT13 (current cost depreciation), fixed

assets and consumer durables). We set g∗ = 1.299, which is obtained from the average ratio of consumption

plus investment and GDP. The deviations of output from a linear trend in our post-1984 sample are highly

persistent. To capture this persistence we let ρz = 0.98, a value that is consistent with the stationarity

assumption embodied in our theoretical models as well as the observed persistence in the data.

We also impose that the estimated models agree on the conduct of post-1984 monetary policy. To this

end, we conduct a preliminary estimation of the MIU model with capital without the money series. The
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mechanics of this estimation are identical to those of the subsequent estimation of the full model. The

only difference is, that the monetary policy rule parameters are estimated. The preliminary analysis yields

ψ̂1 = 1.82, ψ̂2 = 0.18, and ρ̂R = 0.78. We fix the policy rule coefficients at these estimates for the subsequent

analysis with both models. Moreover, both in the search-based model as well as in the MIU model we let

F = 0 (no fixed costs) and π∗∗ = 1, meaning that firms that do not re-optimize prices either keep their

prices constant or adjust with lagged inflation. We estimate the degree of dynamic indexation, captured by

the parameter ι.

For the MIU model, the economy-wide mark-up is given by the parameter λ, which we fix at 15%. The

model dynamics do not depend on Z∗, A, and B and our estimation sample does not contain any information

on these parameters. Hence, we fix them such that a posteriori the estimated MIU model and the estimated

search-based model will agree on the weight B that the centralized market goods receive in the instantaneous

utility function, the steady state level of GDP, and the steady state labor productivity in the centralized

market.6 Finally, we use the steady state relationships to re-parameterize the search model in terms of the

steady state (inverse) velocity, rather than χ∗. The steady state velocity is then essentially estimated by the

average velocity in the sample (which we added to the real money balance series). In turn, this generates an

estimate of χ∗.

To estimate the search model, we fix Z∗ = 1 and A∗ = 1. These two parameters essentially control the

level of steady state output and labor productivity in the centralized market. We also set χ∗ = 1 and let B

adjust in the estimation such that the model captures the average velocity of money in the sample. Since

the overall markup in the search model is a function of the markup in the centralized market, λ, and the

markup in the decentralized market, closely related to the Nash-bargaining parameter θ, we do not fix λ

in the estimation of the search model. We will describe below how we force the estimates to produce an

economy-wide mark-up that is close to 15%. The utility function parameter κ, which captures the utility of

households that do not consume goods produced in the decentralized market, is fixed at 0.0001.

The marginal prior distributions for the remaining parameters of the MIU model are summarized in

Table 2. The prior for inverse velocity is based on pre-sample information. Similarly, the prior for α is

chosen so that the implied prior for the labor share is consistent with pre-sample evidence. We use a uniform

prior on the indexation parameter ι and our prior for ζ is broadly consistent with micro-evidence on the

frequency of price changes. The prior distributions for ρg and ρχ reflect the belief that the government

spending (demand) disturbance and the money demand shock are fairly persistent. The remaining priors

were loosely chosen such that the implied distribution of the variability of the endogenous variables is broadly

in line with the pre-sample variability of the observed series. We assume that all the parameters listed in

6In future versions of this paper, we will parameterize the empirical models in terms of steady state GDP and labor

productivity so that it is more straightforward to ensure that the two models agree in these dimensions.
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Table 2 are a priori independent. Since we fix the policy rule parameters at values that are far away from

the boundary of the determinacy region, no further adjustment of the prior is needed.

Table 3 provides information on the prior distribution for the parameters of the search model. We focus

our discussion on the four additional parameters7 that appear in Table 3: B, θ, σ̃ = 2σ and λ. While it is

difficult to fully disentangle the effect of these four parameters, it is instructive to take a look at the share

of the decentralized market:

sh = σ
1
π∗

M∗

Y∗
.

We can infer a plausible magnitude for M∗/Y∗ based on a pre-sample observations. Since the steady state

(inverse) velocity is related to the parameter B, we pick a prior for B such that our implicit beliefs about

velocity are in line with pre-sample evidence. Since σ relates velocity to the share of the decentralized

market, a prior for σ is linked to prior beliefs about the DM share. The parameter θ affects the bargaining

power of the seller in the decentralized market and hence the markup. The economy-wide markup in turn

depends on the DM markup, the DM share, and the markup in the centralized market, λ. Since it is difficult

to directly specify a prior on the structural parameters of the search model, that reflect beliefs or pre-sample

information about observables, we follow the approach proposed in Del Negro and Schorfheide (2007).

We combine the marginal prior distributions reported in Table 3 and denoted as p̃(ϑ) with a function

f(ϑ) that in our case reflects beliefs about the investment output ratio and the economy-wide markup. Here

the vector ϑ stacks the parameters of the DSGE model. The overall prior is given by

p(ϑ) ∝ p̃(ϑ) exp
{
−1

2

[
(I∗(ϑ)/Y∗(ϑ)− 0.16)2

0.012
− (mu(ϑ)− 0.15)2

0.012

]}
I{ϑ ∈ ΘD}, (63)

where ∝ signifies proportionality, I∗ and Y∗ denote the steady states of investment and output (as a function

of ϑ), mu(ϑ) is the economy-wide mark-up, and I{ϑ ∈ ΘD} is an indicator function that is one if ϑ

falls in the region of the parameter space in which the linearized search model has a unique stable rational

expectations solution (determinacy) The adjustment function down-weights parameter combination for which

the investment output ratio deviates from 0.16 and the economy-wide mark-up deviates from 15%. We use

p(ϑ) as the prior for the estimation of the search model.8

4.3 Parameter Estimates and Model Dynamics

We report prior and posterior means and 90% credible intervals for the parameters of the two models in

Tables 4 and 2. The posterior is obtained by combining the prior distribution described in the previous

subsection with the likelihood function derived from the state-space representations of the linearized DSGE
7Since according to our model σ ∈ [0, 1/2] we introduce the transformed parameter σ̃, which lives on the unit interval.
8Draws from this prior can be generated using the random-walk Metropolis algorithm described in An and Schorfheide

(2007). The normalization constant can be computed using Geweke’s (1999) harmonic mean estimator.
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models. We then use a random-walk Metropolis algorithm to generate draws from the posterior distribution

of the parameters. To make inference about steady states, impulse responses, and variance decompositions,

we convert the parameter draws into the statistics of interest. Further technical details are described in An

and Schorfheide (2007).

The parameters ζ and ι determine the shape of the Phillips curve. According to the estimates of the MIU

model, there is virtually no dynamic indexation and a moderate degree of nominal rigidity. The estimates

ζ̂ = 0.737 implies that the average duration of prices is slightly less than four quarters. Adjustment costs

are fairly large, Ŝ′′, reducing the volatility of the return to capital and dampening its effect on the marginal

costs that enter the Phillips curve relationship. Of particular interest is the estimate of the elasticity νm. In

log-linear form, the money demand equation for the MIU model can be written as9

M̃t+1 =
1
νm

X̃t −
1− νm
νm

Et[π̃t+1]−
1

νm(R∗ − 1)
R̃t + Et[χ̃t+1] (64)

= 0.037X̃t + 0.963Et[π̃t+1]− 2.786R̃t + Et[χ̃t+1].

The money demand shock is highly persistent, ρ̂χ = 0.974. We will defer a discussion of the estimated shock

standard deviation until we examine the impulse response dynamics and variance decompositions.

From the search model we obtain a slightly lower posterior mean estimate of the Calvo parameter,

ζ̂ = 0.652, find a higher degree of dynamic indexation, ι̂ = 0.347, and obtain a larger estimate of the

adjustment cost parameter, Ŝ′′ = 12.97, than in the MIU model. As stated previously, the estimate of B is

by and large driven by the average velocity in the sample, and the estimates of θ, σ, and λ adjust such that

economy-wide markup is about 15% and the model is able to capture the cyclical fluctuations of M2.

The implied posterior distribution of the steady states is reported in Table 6. As mentioned in Section 4.1,

we fix the parameters Z∗ and A in the MIU model such that near the posterior mean steady state output

and steady state labor productivity in the centralized market are similar across the two models. Since our

estimation sample contains information about average velocity post 1984, the model estimates imply similar

M∗/Y∗ ratios. The estimation of both models is based on a tight prior on the economy-wide markup: for

the MIU model we fixed λ and for the search model we included an adjustment term (63) that forces the

implied overall markup to be close to 15%. Hence, the overall markup remains close to 15% a posteriori.

Since the MIU was re-parameterized in terms of M∗/Y∗ we report the implicit posterior for χ∗ in Table 6,

which is very close to zero. As will become clear in the steady state welfare analysis conducted in Section 5,

our estimated MIU model behaves essentially like a cashless economy.

The estimated markup in the decentralized market of the search model is about 25% and the share of

the decentralized market is around 38% of the economy. Compared to AWW, we find a smaller markup in

9We re-normalized χ̃t such that it has a unit coefficient in the money demand equation.
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the DM, which coincides with a fairly large estimate of θ, and obtain a more sizeable DM share. While the

calibration in AWW also tries to match an overall markup of 15% in the economy, it focuses on the long-run

elasticity of demand for M1 to choose the remaining DM parameters. We conjecture that our larger estimate

of the DM share is due to the fact that the likelihood function forces the model to capture the observed

business cycle fluctuations in the stock of money.

The variance decompositions associated with the two estimated models are reported in Table 7. Most

of the fluctuations of output, inflation, and the Federal Funds Rate are driven by the highly persistent

technology shock. It is important to note that we are reporting decompositions of the unconditional variance

in the table, rather than decompositions of h-step ahead forecast errors or decompositions of the variation

at business cycle frequency. Neither in the MIU model nor in the search model, monetary policy shocks play

an important role for the overall variability of output, inflation, and the Federal Funds Rate. Due to the

block-triangular structure of the MIU model, money demand shocks have no effect on output, inflation, and

the interest rate. However, money demand shocks in the MIU model explain almost 80% of the variance of

the monetary aggregate. We interpret this as a disconnect between fluctuations in money and the shocks

that drive output and inflation.

The estimated search model produces a tighter link between technology shocks and monetary aggregates:

more than 75% of the variance of real money balances is due to technology shocks, which affect productivity

in the decentralized market that uses money as a medium of exchange. Money demand shocks, modeled

as shocks to the taste for goods produced in the decentralized market, play a much smaller role for the

fluctuations of real money balances. They explain only about 18% of the variation. Unfortunately, the tight

link between money and output generated by the search model comes at a cost. The overall fit of the search

model relative to the MIU model, as measured by the difference of log marginal data densities is not as good.

The log marginal data density for the search model is -522.36, whereas it is -434.12 for the MIU model.10

The calculation of the marginal data densities puts the search model at a slight disadvantage, because we

conducted a preliminary estimation with the MIU model to determine the values at which we fixed the policy

rule coefficients.

Impulse response dynamics for the two models are depicted in Figure 1. As mentioned previously, output,

inflation, and interest rates do not respond to money demand shocks in the MIU model, because monetary

policy is conducted through an interest rate feedback rule and real money balances enter the utility function

in an additively separable manner. The estimated response of the output to technology, monetary policy, and

government spending shock is very similar for the search and the MIU model. The slightly higher nominal

10Someone who places equal prior probability on the two models would conclude that the odds in favor of the MIU model

are exp[88.36].
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rigidity in the MIU model manifests itself through a weaker response of inflation to a monetary policy shock.

In other words, a nominal shock moves real output more relative to prices in the MIU model.

Money demand is more responsive to a monetary policy shock in the search model. A shock that raises

interest rates by 70 basis points, lowers demand for real money balances by 50 basis points in the MIU

model and about 140 basis points in the search model. A positive technology shock in the MIU model lowers

the marginal costs of production, despite rising wages and rental rates of capital. Since inflation can be

represented as the expected sum of discounted future marginal costs, inflation falls below its steady state

value. According to the interest rate feedback rule, low inflation creates a desire to reduce interest rates

whereas high output would ceteris paribus lead to in increase in nominal interest rates. On balance, nominal

rates fall such that along the response real rates and the return on capital are positive. According to the

MIU money demand equation (64) below steady state inflation lowers the demand for real money balances

whereas below average interest rates raise the demand for real money balances. Overall, the response of

money is slightly positive. In the search model prices are less rigid and inflation (and interest rates) respond

more strongly. Moreover, the increased activity in the decentralized market due to the positive technology

shock strongly increases the demand for real money balances.

Finally, we examine to what extent the estimated DSGE models can reproduce the observed correlation

between money and output. To this extent, we conduct a posterior predictive check as follows. We take draws

from the posterior distribution of the parameters and simulate the models conditional on these parameters.

For each simulated trajectory, we compute some sample statistics, in particular, sample correlations between

money and output. Thus, we obtain draws from the posterior predictive distribution for these sample

moments. Means and 90% credible intervals are summarized in Table 8. We also report the corresponding

statistics for post-1984 U.S. data. If the statistics computed from the actual data fall far in the tails of

the posterior predictive distribution, then this can be interpreted as an inability of the estimated model

to reproduce a particular feature of the data. The data exhibit a fairly strong correlation between lagged

real money balances and output, whereas the contemporaneous correlation is only about 0.13. In both

DSGE models the correlation function between output and money is rather flat, due to the very persistent

technology shock. The correlation is stronger in the search model, because it attributes a larger fraction of

the variation in real money balances to technology, which is the major driving force for output. While the

posterior predictive distribution is rather diffuse for both models, neither one seems to be able to generate

the particular shape of the observed correlation function.
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5 Steady State Welfare Comparisons

In this section, we consider policy experiments where we change the inflation target of the central bank,

π∗, which is the inflation rate that prevails at the steady state. For now we simply compare steady states,

ignoring transitions but at the end of the section we comment on what we expect regarding the transitions.

Unless noted otherwise, we fix the parameter values at the posterior mean estimates reported in Section 4

(see Tables 1, 4, and 5).

A priori, we can think about four sources of welfare cost of inflation that are present in the search-based

model, two of which are also shared by the MIU model. First, inflation is a tax on money holdings in both

models and as inflation rises and hance the net nominal interest rate increases welfare will be reduced. This

logic underlies Friedman’s prescription of a zero percent net nominal interest rate which has come to be

known as the Friedman rule. We will label this channel of welfare loss the Friedman channel. This channel

will reveal itself as a reduction in real money balances and hence lower utility from the MIU part in the MIU

model while we will see a lower q in the search-based model, which will lower utility in the DM. Second,

both models display some level of price rigidity given by positive ζ and the fact that some firms cannot

optimally change their prices create a price dispersion. This price dispersion becomes more severe as the

steady state inflation level goes away from 0% (in both directions), reducing welfare. We will label this

channel the price dispersion channel. The remaining two channels in the search-based model are unique to

this model and is explained in detail in AWW. To summarize, the bilateral nature of trade and the fact that

the surplus in a meeting is split by the two parties in the DM create two holdup problems: the buyers do

not bring in the optimal amount of money (a money demand holdup problem) and the sellers do not bring

in the optimal amount of capital (an investment holdup problem). These holdup problems are aggravated

as inflation increases as this further reduces the payoffs in the DM by reducing q. We will collectively refer

to these two sources of welfare loss as the holdup problem channel.

Our estimation results reveal differences between the search-based model and the MIU model in terms of

some key parameters that affect welfare. For example, χ∗ is fixed at unity in the search-based model while it

is estimated to be 4.52×10−10 in the MIU model.11 This makes the MIU model essentially a cashless model

and diminishes the importance of the Friedman channel. In fact it is well-known that in the cashless version

of such models welfare is maximized at 0% inflation. On the other hand, the two model display somewhat

different levels of markup of the monopolistically competitive firms and degree of price stickiness. These will

affect the dominance of the price dispersion channel.

Before we turn to the results, a brief discussion about how we compute the welfare loss is in order. In

11Fixing χast is a normalization in the search-based model as both models have the same implied steady state velocity at

the estimated parameters.
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the MIU model, the steady state value up to a constant is given by

W (π∗) = U(x∗)−Ah∗ +
χ∗

1− νm

(
AM∗

π∗Z
1/1−α
∗

)1−νm

(65)

and we solve for the percentage change required in x∗ to make the households indifferent between two

economies with different steady state inflation rates. In the search-based model, the reduced-form steady

state value up to a constant is given by

V (π∗) = σ [u(q∗)− c(q∗, k∗, Z∗)] + U(x∗)−Ah∗ (66)

and we solve for the percentage change required in x∗ and consumption in the DM which will be the q∗ inside

the utility function to make the households indifferent between two economies with different steady state

inflation rates.12 Finally, as a technical point, we replace
(

1− 1
g∗

)
Y∗ with simply a constant G∗ obtained

from the estimations.

Our main results are provided in Figures 2 and 3. Figure 2 plots the welfare cost of deviating from 0%

in both models in terms of consumption on a grid running from the Friedman rule up to 10% inflation.13 We

see that the welfare loss for the MIU model has the familiar u-shape which shows that welfare is maximized

around 0% and deviations in either direction are costly.14 The welfare cost of 10% inflation is as high as

12% of consumption. The search-based model tells a very different story. Welfare cost is monotonically

increasing, which shows that the optimal inflation is the one implied by the Friedman rule. The welfare cost

of 10% is under 6%, which is roughly half of what is implied by the MIU model. We see that the Friedman

channel is dominated by the price dispersion channel in the MIU model while the Friedman and holdup

problem channels dominate the price dispersion channel in the search-based model.

Figure 3 show some of the steady state allocations and prices in both models as inflation changes, relative

to the values at 0% inflation. First, we want to emphasize that there is a crucial difference between the MIU

and the search-based model. In the MIU model, the change in welfare due to the Friedman channel is only

due to the direct effect of inflation on real money balances and this has no indirect effect. However, in the

search-based model, inflation effects q, which might be interpreted in the reduced form as an MIU effect but

changes in q in turn affect all the other allocations and prices in the model. As a result of this, we see that

12Note that we will not change the q∗ term inside the cost function as it is a part of production.
13As a side remark, note that welfare at the Friedman rule is not defined for the MIU model as unless we put an artificial

bound on money holdings, there is no solution to the household’s problem. Money is costless to hold and utility is increasing in

money balances so the households would like to hold arbitrarily large amounts. This is not the case in the search-based model

as households would never want to hold more money than what they need to purchase q∗, the first-best quantity. As a result

welfare is well-defined at the Friedman rule. For the figures, we omit the Friedman rule for the MIU model.
14The maximum is not exactly at 0% as one would expect based on earlier work but it is slightly positive. This is an artifact

of having capital in the model, which is an observation shared by other researchers in the area.
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some of the key changes, decreases in X, K and W and the increase in H are more severe in the MIU model.

This is why the welfare cost of higher levels of inflation is more pronounced in the MIU model.

To emphasize the finding that at the estimated parameters different channels dominate in the two models,

and to establish that both models are in principle able to generate either of the two shapes of welfare loss,

we vary the level of price stickiness in both models, holding all other parameters at their estimated levels.

The results for a region around 0% inflation are plotted in Figure 4. In the first panel, we start from the

estimated ζ and reduce it towards zero. Around ζ = 0.5 the price dispersion channel loses its dominance

and the welfare loss curve becomes monotonically increasing, making Friedman rule the optimal. Similarly,

in the second panel we start increasing ζ from its estimated value towards unity. Around ζ = 0.9 the price

dispersion channel overweighs the other two channels and we get the u-shape that shows optimal inflation

is around 0%.

To investigate the contribution of the New Keynesian features of the model, we repeat the exercise in

Figure 2 with λ = ζ = 0 for both models. Figure 5 plots the results along with the curves in Figure 2 for

reference. First, we see that in both models welfare cost is monotonically increasing in the rate of inflation

and hence the Friedman rule is optimal. Second, the welfare cost of inflation in the MIU model is about one

order of magnitude smaller than that in the search-based model. In the MIU model, the only channel that

is in play is the Friedman channel, while in the search model the holdup problem channels are also active.

In fact, about 3.5% of consumption steady state welfare loss for 10% annual inflation is consistent with the

results of AWW. Turning on the New Keynesian features boosts the welfare cost of 10% by about 1.5% for

the search-based model while the increase in the MIU model is over 10%. These results confirm that the

Friedman channel is much more important for the search-based model.

As we pointed out, we did not consider transitions in this section. One interpretation of the exercise we

conducted is that we compare the welfare of two economies with different inflation rates. If, however, the

exercise we want to conduct involves a policy change for a given economy, it is more appropriate to consider

the transition path of the economy to the new steady state. Recent results in the literature tell us that these

transitions may have quite large welfare implications. For example, AWW reports welfare costs associated

with going from a bad steady state (high inflation) to a good one (low inflation) can be as large as half

of the steady state gain. Intuitively, the magnitude of the transition depends on the change in the level

of capital between the two steady states as resources are temporarily devoted to accumulating this extra

capital. Looking at Figure 3, we see that going from 10% inflation to 0% inflation, the level of steady state

capital changes by more in the MIU model: capital stock goes up by less than 2% in the search-based model

while the change is over 4% in the MIU model. This would mean that welfare loss during the transition will

be bigger for the MIU model and the curve for the MIU model in Figure 2 will shift down more so than the

curve for the search-based model.
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6 Conclusion

As an alternative to the commonly used MIU model, we have developed an estimable DSGE model in which

the presence of a decentralized market creates an incentive for households to hold money, because money is

needed as a medium of exchange. The model specification is closely tied to the theoretical literature that

is developing microfounded models of monetary exchange. In particular, we base our model on recent work

by Lagos and Wright (2005), and Aruoba, Waller, and Wright (2007). Using post-1984 U.S. on output,

inflation, interest rates, and real money balances, we estimate our search-based DSGE model along with a

standard New Keynesian model in which real money balances enter the utility function. We obtain parameter

estimates for the taste and technology parameters that determine the exchange in the decentralized market

of the search model. These parameter estimates are potentially useful for the theoretically-oriented literature

on microfounded monetary models. We compare the dynamics of the estimated search model and the MIU

model. While the decentralized market mechanism of the search model creates a stronger linkage between

technology shocks and fluctuations in the stock of money, this linkage comes at a cost in terms of overall

fit. Finally, we explore the steady state welfare implications of the two models. The estimated MIU model

behaves very much like a New Keynesian DSGE model and a near-zero inflation rate is optimal. According

to the search model, which also has embodied some New Keynesian feature, the Friedman motive for keeping

the nominal interest rate near zero dominates and negative inflation rates are optimal. This paper is part

of a research agenda that tries to link the literatures on microfounded monetary models and estimable New

Keynesian DSGE models that are popular at central banks. Many interesting questions are left unanswered

and will hopefully be addressed in future research.
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A The Search-Based Model

We use a slightly more general specification of the utility and production functions in the subsequent expo-

sition:

U(x) = B
x1−γ

1− γ
, u(q) =

(q + κ)1−η − κ1−η

1− η
.

Moreover, we let f(e, k) = eΦk1−Φ.

A.1 Further Details: Intermediate Good Producers

The first-order condition for a intermediate good producing firm is:

IEt

{ ∞∑
s=0

ζsβsΞpt+s|t
1

P ot (i)

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+s

[
P ot (i)πadjt+s|t − (1 + λ)Pt+sMCt+s

]}
= 0. (67)

Define and rewrite

F (1)
t = IEt

[ ∞∑
s=0

ζsβsΞpt+s|t

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+sπ
adj
t+s|t

]
(68)

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβIEt

[ ∞∑
s=0

ζsβsΞpt+1+s|t

(
P ot (i)πadjt+1+s|t

Pt+1+s

)− 1+λ
λ

Yt+1+sπ
adj
t+1+s|t

]

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβ
(
πιtπ

(1−ι)
∗∗

)−1/λ

×IEt
[(

P ot (i)
P ot+1(i)

)− 1+λ
λ

Ξpt+1|t

∞∑
s=0

ζsβsΞpt+1+s|t+1

(
P ot+1(i)π

adj
t+1+s|t+1

Pt+1+s

)− 1+λ
λ

Yt+1+sπ
adj
t+1+s|t+1

]

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβ
(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
P ot (i)
P ot+1(i)

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
.

Similarly,

F (2)
t = IEt

[ ∞∑
s=0

ζsβsΞt+s

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+s
Pt+sMCt+s

P ot (i)

]
(69)

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt
PtMCt
P ot (i)

+ ζβ
(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
P ot (i)
P ot+1(i)

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
.

and the first-order condition becomes

F (1)
t = (1 + λ)F (2)

t . (70)
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A.2 Further Details: Price Dispersion

To capture the evolution of the price distribution we introduced a new variable Dt. Its law of motion can

be derived as follows:

Dt = (1− ζ)
∞∑
j=0

ζj

(
(πt−1πt−2 · · ·πt−j)ιπj(1−ι)∗∗

πtπt−1 · · ·πt−j+1

P ot−j
Pt−j

)− 1+λ
λ

= (1− ζ)
[
P ot
Pt

]− 1+λ
λ

+(1− ζ)ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι) P ot−1

Pt−1

]− 1+λ
λ

+(1− ζ)ζ2

[(
πt−2

πt

)ι(
π2
∗∗

πtπt−1

)(1−ι)
P ot−2

Pt−2

]− 1+λ
λ

. . . .

Lagging Dt by one period yields

Dt−1 = (1− ζ)
[
P ot−1

Pt−1

]− 1+λ
λ

+(1− ζ)ζ

[(
πt−2

πt−1

)ι(
π∗∗
πt−1

)(1−ι) P ot−2

Pt−2

]− 1+λ
λ

+(1− ζ)ζ2

[(
πt−3

πt−1

)ι(
π2
∗∗

πt−1πt−2

)(1−ι)
P ot−3

Pt−3

]− 1+λ
λ

. . . .

Therefore, we obtain the following law of motion for the price dispersion:

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ)
[
P ot
Pt

]− 1+λ
λ

. (71)

A.3 Equilibrium Conditions

We now summarize the equilibrium conditions for the search-based model. The timing is such that all t shocks

are realized at the beginning of t and S̄t = (Zt, gt, χt) and Rt are observed. S̄t summarizes the exogenous

state variables. We define St =
(
S̄t, Rt

)
which will be the aggregate state variables of the household’s

problem. In the following definitions, we do not track ht (individual labor supply) and Bt (the bond supply

of the government). We also do not track nominal money balances but instead track Mt as defined in the

main text. Finally, we use πt ≡ Pt/Pt−1 and do not track the level of prices.

Given exogenous states
{
S̄t
}∞
t=0

, a monetary equilibrium is defined as allocations

{qt, Xt,Ht,Kt, It, µt, Yt,Mt,Yt}∞t=0 , policy {Rt}∞t=0 and prices
{
Wt, R

k
t , p

0
t , πt, Dt

}∞
t=0

such that :
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Household’s Problem: Given exogenous states, policy and prices,
{
qt, Xt,Ht,Kt, It, µt,Mt,Ξ

p
t+1|t

}∞
t=0

satisfy

Wt =
A

U ′(Xt)
(72)

1 = βEt

[
U ′(Xt+1)
U ′(Xt)

Rt
πt+1

]
(73)

1 = µt

[
1− S

(
It
It−1

)
+

It
It−1

S′
(

It
It−1

)]
+ βEt

{
µt+1

U ′(Xt+1)
U ′(Xt)

(
It+1

It

)2

S′
(
it+1

it

)}
(74)

Kt+1 = (1− δ)Kt +
[
1− S

(
It
It−1

)]
It (75)

µt = βEt

{
U ′(Xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(Xt)
γ(qt+1,Kt+1, χt+1, Zt+1)

}
(76)

Mt =
g (qt,Kt, χt, Zt)Wtπt

A
(77)

U ′(Xt) = βEt

{
U ′(Xt+1)
πt+1

[
σχt+1u

′(qt+1)
gq(qt+1,Kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(78)

Ξpt+1|t =
U ′(Xt+1)
U ′(Xt)πt+1

(79)

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose their capital labor

ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α

Wt

Rkt
Ht. (80)

Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the aggregate price

level) to maximize expected profits subject to the demand curve for their differentiated product, taking the

aggregate price level Pt as well as the prices charged by other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )

αZ−1
t (81)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(82)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(83)

F (1)
t = (1 + λ)F (2)

t (84)

Final Good Producing Firms’ Problem: Final goods producers take factor prices and output prices

as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry ensures that final good

producers make zero profits and leads to

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(85)
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Monetary Policy: The central bank supplies the quantity of money necessary to attain the nominal interest

rate
Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πt
π∗

)ψ1
(
Yt
Y∗

)ψ2
]1−ρR

exp (σrεrt ) (86)

Aggregate Resource Constraint for CM is given by

Yt = D−1
t (ZtKα

t H
(1−α)
t −F), (87)

where

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (88)

The gross domestic product of this economy is given by

Yt = Yt + σ
Mt

πt
(89)

Market Clearing: The goods market in the CM clears:

Xt + It +
(

1− 1
gt

)
Yt = Yt (90)
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A.4 Steady States

Noting that µ∗ = 1, given a target inflation rate π∗, a monetary steady state is defined as allocations q∗, X∗,

H∗, K∗, I∗, Y∗, M∗, Y∗, policy R∗ and prices W∗, Rk∗ , p
o
∗ that satisfy:

U ′(X∗) =
A

W∗

R∗ = 1 + σ

[
χ∗u

′(q∗)
gq(q∗,K∗, χ∗, 1)

− 1
]

1 = β
(
1 +Rk∗ − δ

)
− σβ

γ(q∗,K∗, χ∗, 1)
U ′(X∗)

M∗ =
g (q∗,K∗, χ∗, 1)W∗π∗

A

K∗ =
α

1− α

W∗

Rk∗
H∗

po∗ = (1 + λ)

 1− ζβ
(
π∗∗
π∗

)−(1−ι)/λ

1− ζβ
(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

α−α(1− α)−(1−α)W 1−α
∗ (Rk∗)

α

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ
R∗ = π∗/β

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

Y∗ =
Ȳ∗
D∗

Ȳ∗ = Z∗K
α
∗H

1−α
∗ −F

I∗ = δK∗

Y∗ = X∗ + I∗ + (1− 1
g∗

)Y∗

Y∗ = Y∗ + σ
M∗

π∗

Note that from the firm’s problem we have

F (1)
∗ =

(
1− ζβπ∗

(
π∗∗
π∗

)−(1−ι)/λ
)−1

(po∗)
− 1+λ

λ Y∗

F (2)
∗ =

(
1− ζβπ∗

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ
)−1

(po∗)
− 1+λ

λ −1Y∗MC∗

F (1)
∗ = (1 + λ)F (2)

∗

π∗ =
[
(1− ζ) (π∗po∗)

− 1
λ + ζ

(
πι∗π

1−ι
∗∗
)− 1

λ

]−λ
which lead to the conditions for po∗ above. The term D∗ measures the steady state price dispersion. The

larger π∗/π∗∗, that is, the faster the price of the non-adjusters is eroding in real terms, the bigger D∗.
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A.5 Log-Linearizations

In the subsequent presentation of the log-linearized equations we adopt the convention that we abbreviate

time t expectations of a t+ 1 variable simply by a time t+ 1 subscript, omitting the expectation operator.

Firms’s Problem: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃kt − Z̃t.. (91)

Conditional on capital and factor prices, the labor demand is determined according to

H̃t = K̃t + R̃kt − W̃t. (92)

Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions can be written

as follows.

F̃t = (1−A)
[
−1 + λ

λ
p̃ot + Ỹt

]
(93)

+A
[
− ι

λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A = ζβ

(
π∗∗
π∗

)−(1−ι)/λ

and

F̃t = (1−A)
[
−
(

1 + λ

λ
+ 1
)
p̃ot + Ỹt + M̃Ct

]
(94)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1
)
p̃ot +

(
1 + λ

λ
+ 1
)
π̃t+1

+
(

1 + λ

λ
+ 1
)
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A = ζβ

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

.

The relationship between the optimal price charged by the adjusting firms and the inflation rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(
π∗∗
π∗

)−(1−ι)/λ

π̃t−1 (95)

A =
(po∗)

1/λ

1− ζ

Equations (93) to (95) determine π̃t, F̃t, and π̃ot .
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Household’s Problem: The optimality conditions for the household can be expressed as

W̃t = γX̃t (96)

X̃t = X̃t+1 −
1
γ

(R̃t − π̃t+1) (97)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1
(1 + β)S′′

µ̃t (98)

k̃t+1 = (1− δ)k̃t + δĩt (99)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γβ(1− δ +Rk∗)X̃t+1 + βR∗tR̃
k
t+1 (100)

+(1− β(1− δ +Rk∗))Γ̃t+1

M̃t = g̃t + W̃t + π̃t (101)

R̃t =
R∗ − 1 + σ

R∗
[χ̃t+1 − g̃q,t+1 − η

q∗
(q∗ + κ)

q̃t+1] (102)

Ξ̃pt|t−1 = −γ(X̃t − X̃t−1)− π̃t (103)

Equations (96) to (103) determine wages, CM consumption, investment, capital, the shadow price of installed

capital, the rental rate of capital, real money balances, the stochastic discount factor used in the firms’

problem, and DM consumption.

Decentralized Market: We now determine the law of motion for g̃q,t, Γ̃t, and g̃t. In addition, we are

introducing some auxiliary variables. We begin with (omitting t subscripts),

u =
(q + κ)1−η − κ1−η

1− η

u′ = (q + κ)−η

u′′ = −η(q + κ)−η−1

c = exp{−Z̃}qψk1−ψ

cq = ψ exp{−Z̃}qψ−1k1−ψ

ck = (1− ψ) exp{−Z̃}qψk−ψ

cqq = ψ(ψ − 1) exp{−Z̃}qψ−2k1−ψ

ckk = ψ(ψ − 1) exp{−Z̃}qψk−ψ−1

cqk = ψ(1− ψ) exp{−Z̃}qψ−1k−ψ
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which can be log-linearized as follows

ũu∗ =
q∗

(q∗ + κ)η
q̃

ũ′ = −η q∗
q∗ + κ

q̃

ũ′′ = −(η + 1)
q∗

q∗ + κ
q̃

c̃ = −Z̃ + ψq̃ + (1− ψ)k̃

c̃q = −Z̃ + (ψ − 1)q̃ + (1− ψ)k̃

c̃k = −Z̃ + ψq̃ − ψk̃

c̃qq = −Z̃ + (ψ − 2)q̃ + (1− ψ)k̃

c̃kk = −Z̃ + ψq̃ − (1 + ψ)k̃

c̃qk = −Z̃ + (ψ − 1)q̃ +−ψk̃

Recall that

Γt =
ck,tgq,t − cq,tgk,t

gq,t

which implies that Γ̃t evolves according to

g̃q,t + Γ̃t =
ck∗gq∗

ck∗gq∗ − cq∗gk∗
[c̃k,t + g̃q,t]−

cq∗gk∗
ck∗gq∗ − cq∗gk∗

[c̃q,t + g̃k,t]. (104)

Now consider the equation

gt(θχu′t + (1− θ)cq,t) = θχctu
′
t + (1− θ)χcq,tut,

which can be written in log-linear form as

[θχ∗u′∗ + (1− θ) cq∗] g∗g̃t

= θχ∗u
′
∗ (c∗ − g∗) ũ′t + (1− θ)χ∗cq∗u∗ũt + (1− θ) cq∗ (χ∗u∗ − g∗) c̃q,t (105)

+θχ∗c∗u′∗c̃+ [−θχ∗g∗u′∗ + θχ∗c∗u
′
∗ + (1− θ)χ∗cq∗u∗] χ̃t (106)

and determines g̃t.

Now consider

gq =
χu′cq[θχu′ + (1− θ)cq] + θ(1− θ)(χu− c) (χu′cqq − cqχu

′′)
[θχu′ + (1− θ)cq]2
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In log-linear form, the equation can be rewritten as

gq∗ [θχ∗u′∗ + (1− θ) cq∗]
2
g̃q,t

= −ηgq∗ [θχ∗u′∗ + (1− θ) cq∗] [θχ∗u′∗ (ũt + χ̃t) + (1− θ) cq∗c̃q,t] (107)

+χ∗u′∗cq∗ [θχu′∗ + (1− θ) cq∗] (ũ′t + χ̃t + c̃q,t)

+θ (χ∗u′∗)
2
cq∗ (ũ′t + χ̃t) + χ∗ (1− θ)u′∗c

2
q∗c̃q,t

+θ (1− θ)χ∗ (u′∗cqq∗ − cq∗u
′′
∗)
[
χ∗u∗ (ũt + χ̃t)− c∗ ˜c, t

]
+θ (1− θ)χ∗ (χ∗u∗ − c∗)u′∗cqq∗ (ũ′t + χ̃t + c̃qq,tt)

−θ (1− θ)χ∗ (χ∗u∗ − c∗)u′′∗cq∗ (ũ′′t + χ̃t + c̃q,t) .

Moreover,

gk =
θχu′ck [θχu′ + (1− θ)cq] + θ(1− θ)(χu− c)χu′cqk

[θχu′ + (1− θ)cq]
2 ,

which leads to an equation for g̃k,t:

gk∗[θχu′∗ + (1− θ)cq∗]2g̃k,t

= −2gk∗[θχ∗u′∗ + (1− θ)cq∗]
(
θχ∗u

′
∗(ũtχ̃t) + (1− θ)cq∗c̃q,t

)
(108)

+θχ∗u′∗ck∗ [θχ∗u′∗ + (1− θ) cq∗] (ũ′t + χ̃t + c̃k,t)

+ (θχ∗u′∗)
2
ck∗ (ũ′t + χ̃t) + χ∗θ (1− θ)u′∗ck∗cq∗c̃q,t

+θ (1− θ)χ∗ (χ∗u∗ − c∗)u′∗cqk∗ (ũ′t + χ̃t + c̃qk,t)

+θ (1− θ)χ∗u′∗cqk∗ [χ∗u∗ (ũt + χ̃t)− c∗c̃t] .

To summarize, Equations (104) to (108) determine Γ̃t, g̃t, g̃q,t, and g̃k,t. The first three variables appear in

the characterization of the households’ problem above.

Resource Constraint, Market Clearing Conditions: Aggregate output across evolves according to

˜̇Yt = Ỹt + D̃t = (1 + F/Ẏ∗)[Z̃t + αK̃t + (1− α)H̃t]. (109)

and the steady state price dispersion follows

D̃t = ζ

(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)
λ

π̃t −
ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (110)

The goods market clearing condition is of the form

Ỹt =
X∗

Y∗
X̃t +

I∗
Y∗
Ĩt +

(
1− 1

g∗

)
Y∗
Y∗
Yt +

Y∗
Y∗g∗

g̃t (111)

and determines investment. GDP evolves according to

Ỹt =
Y∗
Y∗
Ỹt +

(
1− Y∗

Y∗

)
(Mt − πt) (112)
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Government Policies: The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1π̃t + ψ2Ỹt] + εR,t. (113)
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B The MIU Model

The subsequent exposition is based on a slightly more general utility function:

U(x) = B
x1−γ

1− γ
.

B.1 Equilibrium Conditions

Household’s Problem: Given exogenous states, policy and prices,

U ′(xt) =
A

Wt
(114)

1 = βEt

[
U ′(xt+1)
U ′(xt)

Rt
πt+1

]
(115)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEt

{
µt+1

U ′(xt+1)
U ′(xt)

(
it+1

it

)2

S′
(
it+1

it

)}
(116)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
(117)

µt = βEt

{
U ′(xt+1

U ′(xt)
[
Rkt+1 + (1− δ)µt+1

]}
(118)

U ′(xt)
Pt

= βEt

U ′(xt+1)
Pt+1

+
χt+1

Pt+1

(
A

Z
1/1−α
t+1

)1−νm (
mt+1

Pt+1

)−νm

 (119)

Ξpt+1|t =
U ′(xt+1)
U ′(xt)πt+1

(120)

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose their capital labor

ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α

Wt

Rkt
Ht. (121)

Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the aggregate price

level) to maximize expected profits subject to the demand curve for their differentiated product, taking the

aggregate price level Pt as well as the prices charged by other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )

αZ−1
t (122)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(123)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(124)

F (1)
t = (1 + λ)F (2)

t (125)
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Final Good Producing Firms’ Problem: Final goods producers take factor prices and output prices

as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry ensures that final good

producers make zero profits and leads to

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(126)

Monetary Policy: The central bank supplies the quantity of money necessary to attain the nominal interest

rate
Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πt
π∗

)ψ1
(
Yt
Y∗

)ψ2
]1−ρR

exp (σrεrt ) (127)

Aggregate Resource Constraint: is given by

Yt = D−1
t (ZtKα

t H
(1−α)
t −F), (128)

where

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (129)

The gross domestic product of this economy is given by

Yt = Yt (130)

Market Clearing: The goods market in the CM clears:

Xt + It +
(

1− 1
gt

)
Yt = Yt (131)

B.2 Steady States

As in the search model µ∗ = 1 and the presence of the capital adjustment costs does not affect the derivation

of the steady states. Given a target inflation rate π∗, a monetary steady state is defined as allocations X∗,
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H∗, K∗, Y∗, M∗, policy R∗ and prices W∗, Rk∗ , p
o
∗ that satisfy:

U ′(X∗) =
A

W∗

1 = β
(
1 +Rk∗ − δ

)
M∗ =

[
A1−νmχ∗π

νm
∗

(R∗ − 1)U ′(X∗)Z
1−νm/1−α
∗

]1/νm

K∗ =
α

1− α

W∗

Rk∗
H∗

po∗ = (1 + λ)

 1− ζβ
(
π∗∗
π∗

)−(1−ι)/λ

1− ζβ
(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

α−α(1− α)−(1−α)W 1−α
∗ (Rk∗)

α

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ
R∗ = π∗/β

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

Y∗ =
Ȳ∗
D∗

Ȳ∗ = Z∗K
α
∗H

1−α
∗ −F

Y∗ = Y∗

Y∗ = X∗ + δK∗ +
(

1− 1
g∗

)
Y∗
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The steady state equations can be solved recursively as follows:

R∗ = π∗/β

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ
Rk∗ =

1
β

+ δ − 1

W∗ =

 Z∗p
o
∗α

α(1− α)(1−α)

(1 + λ)
[

1−ζβ(π∗∗
π∗ )−(1−ι)/λ

1−ζβ(π∗∗
π∗ )−(1−ι)(1+λ)/λ

]
(Rk∗)α


1

1−α

X∗ = [U ′]−1(A/W∗)

M∗ =

[
χ∗π

νm
∗

(R∗ − 1)U ′(X∗)

(
A

Z
1/(1−α)
∗

)1−νm
]1/νm

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

= (1− ζ)−λ

[
1− ζ

(
π∗
π∗∗

) 1−ι
λ

](1+λ)

1− ζ
(
π∗
π∗∗

) 1−ι
λ (1+λ)

K∗ =

[
Z∗

(
1− α

α

Rk∗
W∗

)1−α

− g∗D∗δ

]−1

(D∗g∗X∗ + F)

H∗ = K∗
1− α

α

Rk∗
W∗

Y∗ = g∗(X∗ + δK∗)

Ȳ∗ = Z∗K
α
∗H

1−α
∗ −F

B.3 Log-Linearizations

We will frequently use equation-specific constants, such as A and B. Variables dated t + 1 refer to time t

conditional expectations.

Firms’s Problem: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃kt − Z̃t. (132)

Conditional on capital, the labor demand is determined according to

H̃t = K̃t + R̃kt − W̃t (133)

Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions can be written
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as follows.

F̃t = (1−A)
[
−1 + λ

λ
p̃ot + Ỹt

]
(134)

+A
[
− ι

λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A1 = ζβ

(
π∗∗
π∗

)−(1−ι)/λ

and

F̃t = (1−A)
[
−
(

1 + λ

λ
+ 1
)
p̃ot + Ỹt + M̃Ct

]
(135)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1
)
p̃ot +

(
1 + λ

λ
+ 1
)
π̃t+1

+
(

1 + λ

λ
+ 1
)
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A2 = ζβ

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

.

The relationship between the optimal price charged by the adjusting firms and the inflation rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(
π∗∗
π∗

)−(1−ι)/λ

π̃t−1 (136)

Ap =
(po∗)

1/λ

1− ζ

Equations (134) to (136) determine π̃t, F̃t, and p̃ot .

Household’s Problem The optimality conditions for the household can be expressed as

W̃t =
1
γ
X̃t (137)

−γX̃t = −γX̃t+1 + (R̃t − π̃t+1) (138)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1
(1 + β)S′′

µ̃t (139)

k̃t+1 = (1− δ)k̃t + δĩt (140)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γX̃t+1 + βRk∗R̃
k
t+1 (141)

νmM̃t+1 = γX̃t + νmχ̃t+1 − (1− νm)π̃t+1 −
1

R∗ − 1
R̃t (142)

Ξ̃pt|t−1 = −γ(X̃t − X̃t−1)− π̃t. (143)

Equations (137) to (143) determine wages, consumption, investment, capital, the shadow value of installed

capital, the rental rate of capital, real money balances, and the stochastic discount factor.

Resource Constraint, Market Clearing Conditions Aggregate output across evolves according to

˜̄Yt = Ỹt + D̃t = (1 + F/Ȳ∗)[Z̃t + αK̃t + (1− α)H̃t]. (144)
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and the steady state price dispersion follows

D̃t = ζ

(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)
λ

π̃t −
ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (145)

The goods market clearing condition is of the form

Ỹt =
X∗

X∗ + I∗
X̃t +

I∗
X∗ + I∗

Ĩt + g̃t. (146)

Government Policies The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1π̃t + ψ2Ỹt] + εR,t. (147)
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Table 1: Parameters Fixed During Estimation

Name MIU Model Search Model

Depreciation Rate δ 0.013 0.013

Steady State TFP Z∗ 1.260 1.000

Persistence of TFP ρz 0.980 0.980

Fixed Costs F 0.000 0.000

Markup Parameter λ 0.150 estim.

Indexation π∗∗ 1.000 1.000

Preference Parameter A 0.435 1.000

Preference Parameter B 0.067 estim.

Preference Parameter χ∗ estim. 1.000

Preference Parameter κ N/A .0001

Steady State Real Rate rA 2.842 2.842

Steady State Inflation Rate πA 2.499 2.499

Policy Rule ψ1 1.820 1.820

Policy Rule ψ2 0.180 0.180

Policy Rule ρR 0.780 0.780

Share of Government Spending g∗ 1.299 1.299

Notes: We use the following transformations: β = 1/(1 + rA/400), π∗ = 1 + πA/400.
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Table 2: Prior Distribution for MIU Model

Name Domain Density Para (1) Para (2)

Household

M/PY IR+ Gamma 2.25 0.50

νm IR+ Gamma 20.00 5.00

Firms

α [0, 1) Beta 0.30 0.03

ζ [0, 1) Beta 0.60 0.15

ι [0, 1) Beta 0.50 0.25

S′′ IR+ Gamma 4.00 1.50

Shocks

ρg [0, 1) Beta 0.90 0.05

ρχ [0, 1) Beta 0.90 0.05

σg IR+ InvGamma 1.00 4.00

σχ IR+ InvGamma 1.00 4.00

σR IR+ InvGamma 0.50 4.00

σZ IR+ InvGamma 1.00 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal

distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.
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Table 3: Prior Distribution for Search Model

Name Domain Density Para (1) Para (2)

Household

B IR+ Gamma 0.20 0.10

θ [0, 1) Beta 0.50 0.20

σ̃ [0, 1) Beta 0.20 0.10

Firms

α [0, 1) Beta 0.30 0.03

ζ [0, 1) Beta 0.60 0.15

ι [0, 1) Beta 0.50 0.25

λ IR+ Gamma 0.15 0.05

S′′ IR+ Gamma 4.00 1.50

Shocks

ρg [0, 1) Beta 0.80 0.10

ρχ [0, 1) Beta 0.80 0.10

σg IR+ InvGamma 1.00 4.00

σχ IR+ InvGamma 1.00 4.00

σR IR+ InvGamma 0.50 4.00

σZ IR+ InvGamma 1.00 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal

distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. We multiply the product of the marginal densities

reported in the table with the function f(·) = −0.5(I∗/Y∗−0.16)2/0.012−0.5(µ−0.15)2/0.012 and truncate

the effective prior at the boundary of the determinacy region.
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Table 4: Prior and Posterior Moments for MIU Model

Name Prior Posterior

Mean 90% Intv Mean 90% Intv

Household

M/PY 2.249 [1.426, 3.036] 2.273 [2.173, 2.372]

νm 20.002 [11.366, 27.529] 26.883 [20.754, 33.077]

Firms

α 0.300 [0.258, 0.340] 0.326 [0.283, 0.370]

ζ 0.595 [0.366, 0.837] 0.737 [0.681, 0.796]

ι 0.505 [0.105, 0.908] 0.058 [0.000, 0.118]

S′′ 3.995 [1.614, 6.308] 8.209 [5.332, 10.944]

Shocks

ρg 0.900 [0.827, 0.979] 0.895 [0.865, 0.928]

ρχ 0.900 [0.826, 0.977] 0.974 [0.958, 0.991]

σg 1.259 [0.535, 1.996] 1.229 [1.066, 1.395]

σχ 1.254 [0.527, 1.984] 0.814 [0.711, 0.914]

σR 0.627 [0.270, 0.994] 0.200 [0.175, 0.224]

σZ 1.255 [0.526, 1.969] 0.514 [0.439, 0.591]

Notes:
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Table 5: Prior and Posterior Moments for Search Model

Name Prior Posterior

Mean 90% Intv Mean 90% Intv

B 0.206 [0.056, 0.349] 0.067 [0.056, 0.079]

θ 0.498 [0.171, 0.825] 0.933 [0.926, 0.941]

σ̃ 0.200 [0.043, 0.352] 0.338 [0.285, 0.382]

Firms

α 0.300 [0.259, 0.341] 0.364 [0.339, 0.387]

ζ 0.593 [0.374, 0.843] 0.652 [0.592, 0.711]

ι 0.512 [0.107, 0.909] 0.347 [0.129, 0.540]

λ 0.152 [0.072, 0.229] 0.089 [0.048, 0.125]

S′′ 4.987 [1.162, 8.634] 12.966 [8.411, 15.704]

Shocks

ρg 0.800 [0.651, 0.959] 0.889 [0.850, 0.926]

ρχ 0.799 [0.648, 0.958] 0.902 [0.879, 0.926]

σg 1.246 [0.532, 1.962] 0.640 [0.529, 0.747]

σχ 1.256 [0.541, 1.969] 1.719 [1.474, 1.976]

σR 0.629 [0.262, 0.991] 0.239 [0.208, 0.268]

σZ 1.271 [0.536, 2.030] 0.380 [0.313, 0.445]

Notes:
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Table 6: Posterior Steady States

Shock Search Model MIU Model

Mean 90% Intv Mean 90% Intv

Y∗ 0.780 [0.700, 0.854] 0.773 [0.532, 1.011]

I∗/Y∗ 0.137 [0.124, 0.151] 0.183 [0.158, 0.208]

K∗/Y∗ 10.546 [9.524, 11.591] 14.086 [12.176, 15.963]

M∗/Y∗ 2.251 [2.220, 2.287] 2.275 [2.181, 2.374]

Y∗/H∗ 5.118 [4.102, 6.028] 5.201 [3.474, 6.926]

W∗H∗/Y∗ 0.584 [0.545, 0.618] 0.587 [0.548, 0.625]

Overall Markup 0.151 [0.135, 0.165] 0.150 fixed

χ∗ 1.000 fixed 9E-6 [8E-21, 2E-7]

B 0.067 [0.056, 0.079] 0.067 fixed

DM Share 0.378 [0.326, 0.432] N/A N/A

DM Markup 0.252 [0.177, 0.328] N/A N/A

Notes: For the MIU model Y∗ = Y∗. In the estimation of the MIU model we treat the inverse velocity

as “parameter” and derive the implied χ∗ from the steady state relationships. In the estimation of the

search model we treat B as parameter and calculate the implied inverse velocity. We can choose Z∗ in the

MIU model to match the level of output Y∗ in the search model without affecting the steady state numbers

reported in the table.
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Table 7: Posterior Variance Decomposition

Shock Search Model MIU Model

Mean 90% Intv Mean 90% Intv

Output

Gov Spending 0.079 [0.052, 0.111] 0.105 [0.064, 0.140]

Money Demand 0.004 [0.002, 0.006] 0.000

Monetary Policy 0.008 [0.005, 0.012] 0.012 [0.006, 0.016]

Technology 0.909 [0.876, 0.938] 0.883 [0.846, 0.924]

Inflation

Gov Spending 0.001 [0.000, 0.003] 0.021 [0.007, 0.034]

Money Demand 0.030 [0.016, 0.048] 0.000

Monetary Policy 0.016 [0.008, 0.024] 0.014 [0.004, 0.024]

Technology 0.952 [0.932, 0.974] 0.965 [0.948, 0.985]

Federal Funds Rate

Gov Spending 0.006 [0.003, 0.009] 0.001 [0.000, 0.003]

Money Demand 0.011 [0.003, 0.019] 0.000

Monetary Policy 0.023 [0.012, 0.032] 0.041 [0.021, 0.056]

Technology 0.960 [0.945, 0.974] 0.958 [0.939, 0.976]

Real Money Balances

Gov Spending 0.022 [0.012, 0.032] 0.003 [0.000, 0.004]

Money Demand 0.181 [0.110, 0.237] 0.786 [0.631, 0.930]

Monetary Policy 0.029 [0.016, 0.042] 0.022 [0.007, 0.034]

Technology 0.768 [0.694, 0.840] 0.190 [0.055, 0.326]

Notes: to be added.
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Table 8: Posterior Predictive Check: Corr(M̂t+h, Ŷt)

Lag h Data Search Model MIU Model

Mean 90% Intv Mean 90% Intv

+4 0.198 0.476 [0.096, 0.879] 0.252 [-0.212, 0.766]

+3 0.177 0.492 [0.096, 0.861] 0.267 [-0.188, 0.785]

+2 0.152 0.510 [0.159, 0.899] 0.283 [-0.184, 0.798]

+1 0.159 0.533 [0.195, 0.904] 0.301 [-0.210, 0.775]

0 0.131 0.567 [0.207, 0.891] 0.319 [-0.169, 0.811]

−1 0.390 0.594 [0.284, 0.914] 0.310 [-0.184, 0.792]

−2 0.566 0.567 [0.248, 0.897] 0.303 [-0.135, 0.833]

−3 0.717 0.542 [0.214, 0.871] 0.295 [-0.140, 0.823]

−4 0.856 0.519 [0.176, 0.864] 0.286 [-0.158, 0.813]

Notes: The column “Data” contains sample correlations between real money balances and output. The

remaining columns summarize the posterior predictive distribution for these sample correlations based on

the Search and MIU models. Draws from the posterior predictive distributions are obtained by simulating

sample paths from the DSGE model conditional on the posterior parameter draws and calculating moments

from the simulated sample paths. For the MIU model Y∗ = Y∗.
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Figure 1: Impulse Responses, Search versus MIU Model

Notes: Figure depicts pointwise posterior mean of impulse response functions.
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Figure 2: Welfare Comparison

-2 0 2 4 6 8

0

2

4

6

8

10

Inflation (%)

W
el

fa
re

 C
os

t (
%

 o
f C

on
su

m
pt

io
n)

MIU Model
Search Model

Notes:



This Version: October 4, 2007 55

Figure 3: Allocations in Search-Based and MIU Model
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Figure 4: Nominal Rigidities and Welfare
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Figure 5: Welfare and the New Keynesian Mechanism
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